This dataset and the accompagnying codebook was created using R version 3.4.4 on an Rstudio Server.
PsyCourse 3.1 contains data of 1223 clinical and 320 control participants. The variable “v1_stat” gives information whethere the respective individual is a clinical or a control participant. For a more in-depth description of the PsyCourse study, please refer to and cite this article.
Three very important points to consider:
PsyCourse is purely observational, i.e. there is no intervention at baseline such as e.g. in clinical trials. More bluntly stated, there is nothing special happening at the first measurement point.
PsyCourse is very heterogeneous in terms of participants. Approximately half of them were treated as in- or daypatient at baseline, and the participants are from different disease stages.
Longitudinal measurements were approximately six months aparts, which is a rather short time, so most longitudinal measurements are highly correlated.
Interviews were conducted in German, using German translations of the tests and scales presented herein. Some scales were measured only cross-sectionally, others were measured longitudinally, some were only measured in clinical participants, others only in control participants (see below). Wherever possible, we alternately used parallel versions of tests assessed multiple times to avoid recall effects.
Importantly, the assessment period of many variables varies greatly, this should be taken into account when making inferences. For example, the SCID questions generally assess if a symptom has ever occurrred (lifetime assessment), whereas other rating scales use the past week, or shorter, as assessment period.
We created this dataset and the accompanying code bookfor three reasons:
Some items (especially demographic information) in the original case-report form (CRF, “Phänotypisierungsinventar”) are rather complicated (e.g. items on the German educational system) and virtually every item needs explanation.
Missing values in our phenotype database do not distinguish between structurally missing data (missing because not applicable, e.g. skipped because a screening question was answered negatively) and missing because the information was not collected (for whatever reason, e.g. drop-out of study participants). This is especially important for machine learning analyses. In this dataset, structurally missing data are coded as -999; this includes items that were not assessed in the clinical or control subsample. The remaining missing values are coded as NA.
The original CRF is in German language, so it is of little use for English-speaking collaborators.
Apart from providing a reproducible codebook for the PsyCourse study, this file also contains some descriptive statistics (e.g. how many NAs, distribution of data).
For easy navigation, the table of contents contanins links to the respective sections of the document, also the overview of the measured variables contains some links.
The names of variables in the wide dataset are contained in the heading describing each variable. For example, “Age at first interview (continuous [years], v1_age)”, means that age at first interview is measured on a continuous scale, unit years, and that it has the name “v1_age” in the dataset.
If you request data from us in the context of a proposal:
Variables in this dataset have one of the following scale levels: continuous, ordinal, categorical, dichotomous, checkbox and character. For continuous variables, the units (e.g. cm) are usually given in square brackets following the variable description([]). Ordinal or categorical variables often have a list of their levels/categories in square brackets. Please note that for ordinal variables, -999, if applicable, constitutes a level itself and thus care should be taken not to analyze together with the other ordinal levels. Dichotomous variables are usually coded “Y” (yes) and “N” (no), if not mentioned otherwise. Checkboxes are either checked (coded “Y”) or -999.
Important: When analyzing GAF or other continuous or ordinal variables containing -999, please keep in mind that the -999 will falsify your analysis, if you do not recode it.
We now provide the dataset both in wide format (one row corresponds to one individual), and in long format (in which each row represents a study visit of one individual).
The variable names given in this codebook refer to the variables in wide format dataset. These have a “vX_” prefix, where X indicates the particulat study visit. In long format, variables that were measured multiple times (e.g. PANSS) do not have this prefix in the variable names (but the prefix is still present in cross-sectionally measured variables).
The wide format dataset is contained in the file “191018_v3.1_psycourse_wd.RData”, the long format dataset is contained in the file “191018_v3.1_psycourse_ln.RData”.
Also, .csv files are provided (“191018_v3.1_psycourse_wd.csv” and “191018_v3.1_psycourse_ln.csv). The field separator used in the .csv files is tab. Please note that information of scale levels is lost when using the .csv files. We recommend to analyze these data with R, using an .RData file and .
This dataset was created from exports of our phenotype database. As we are still completing follow-up visits, relases of the dataset will include more participants and the information already in the database is also continuously improved.
Please also note that the dataset may contain errors, even though we do our best to avoid these. The re-coding of many variables also introduces error. Therefore, we recommend to look at the data you are analyzing carefully, and to contact us if suspicion arises.
Some basic QC steps were implemented, but please be sure to inspect the data you are analyzing thorougly.
In the following table, “cl” means a test was only measured in clinical participants, “cn” that a test was only measured in control participants, and “b” that it was measured in both clinical and control participants.
Control individuals were recruited at the centers LMU Munich and UMG Göttingen. Now, all psychiatric rating scales (PANSS, IDS-C30, YMRS, and GAF) are also assessed in control individuals. However, at the beginning of control recruitment, these rating scales were not included in the assessment protocol. Therefore these data are missing from a subset of control individuals, as is the CAPE-42 (also introduced later). These control participants were recruited in the center UMG Göttingen.
Section | Instrument | Visit 1 | Visit 2 | Visit 3 | Visit 4 |
---|---|---|---|---|---|
Demographic information | b | b | b | b | |
Psychiatric history | cl | ||||
Medication | b | b | b | b | |
ALDA scale | cl1 | ||||
Family history of psychiat. ill. | b | ||||
Physical measures and somatic ill. | b2 | ||||
Substance abuse | b | b | b | b | |
Event triggering first ill. ep. | cl | ||||
Illness episodes between study visits | cl | cl | cl | ||
Life events precipitating ill. ep. | cl | cl | cl | ||
Psych. problems between study visits | cn | cn | cn | ||
Screening for psychiatric disorders | MINI-DIPS | cn3 | |||
DSM-IV Diagnosis | SCID I Depression | cl | |||
SCID I Hypo-/Mania | cl | ||||
SCID I Psychosis | cl | ||||
SCID I Suicidality | cl | cl | cl | cl | |
Neuropsychology (cognitive tests) | Trail-Making-Test | b | b | b | b |
Verbal digit span | b | b | b | b | |
Digit-symbol-test | b | b | b | b | |
MWT-B | b | ||||
VLMT | b | b | b | ||
Rating scales | PANSS | b | b | b | b |
IDS-C30 | b | b | b | b | |
YMRS | b | b | b | b | |
CGI | cl | cl | cl | cl | |
GAF | b | b | b | b | |
OPCRIT item 90 | cl | ||||
Questionnaires | SF-12 | cn | cn | cn | cn |
CAPE-42 | cn | ||||
Religious beliefs | b | b4 | |||
Med. adherence | cl | cl | cl | cl | |
CTS | b | ||||
BDI-II | b | b | b | b | |
ASRM | b | b | b | b | |
MSS | b | b | b | b | |
LEQ | b | b | b | b | |
WHOQOL-BREF | b | b | b | b | |
Personality | b |
Briefly, adult (minimum age 18 years) control and clinical participants were recruited. Clinical participants with the following ICD-10 diagnoses were recruited: schizophrenia (F20.X), acute and transient psychotic disorder (F23.X), schizoaffective disorder (F25.X), bipolar disorder (F31.X), manic episode (F30.X) and recurrent depressive disorder (F33.X). After conducting the SCID Interview (part of the first study visit), we ascertained that participants met one of the following corresponding DSM-IV diagnoses: schizophrenia (295.1/.2/.3/.6/.9), schizophreniform disorder (295.4), brief psychotic disorder (298.8), schizoaffective disorder (295.7), bipolar disorder (296.X [bipolar disorders incl. manic episode]) or recurrent major depression (296.3). If the DSM-IV diagnosis ascertained through SCID interview differed from the aforementioned DSM-IV diagnostic categories, the participant was excluded. Control participants were excluded from the study if they had ever been treated as inpatient for one of the investigated ICD-10 diagnoses.
Functions that are needed to recode variables from the original dataset to the described variables are defined here. This section is not relevant for people that want only to analyze data.
library("sjmisc") #neccessary for row_sum function
desc <- function(x) {
noquote(cbind(c("No. cases", "Percent"),rbind(summary(x),
round(summary(x)/length(x)*100,1)),
c(length(x),sum(summary(x)/length(x)*100))))
}
descT <- function(x) {
noquote(cbind(c("No. cases", "Percent"),rbind(table(x, useNA="ifany"),
round(table(x,useNA="ifany")/length(x)*100,1)),
c(length(x),sum(table(x, useNA="ifany")/length(x)*100))))
}
as.numeric.factor <- function(x) {as.numeric(levels(x))[x]}
CAPE-42 A and B items
#First argument w/o quotes, second with quotes
v1_cape_recode <- function(cape_old_name,cape_new_name) {
itm_cape<-ifelse((is.na(v1_con$v1_cape_cape_korrekt) | v1_con$v1_cape_cape_korrekt!=2),
cape_old_name,NA)
all_itm_cape<-c(rep(-999,dim(v1_clin)[1]),itm_cape) #add -999 for clinical subjects
assign(cape_new_name,all_itm_cape,envir=.GlobalEnv)
descT(all_itm_cape)}
SF-12 items, Visit 1
#First argument w/o quotes, second with quotes
v1_sf12_recode <- function(v1_sf12_old_name,v1_sf12_new_name) {
itm_sf12<-ifelse((is.na(v1_con$v1_sf12_sf12_korrekt) | v1_con$v1_sf12_sf12_korrekt!=2),
v1_sf12_old_name,NA)
v1_all_itm_sf12<-c(rep(-999,dim(v1_clin)[1]),itm_sf12) #add -999 for clinical subjects
assign(v1_sf12_new_name,v1_all_itm_sf12,envir=.GlobalEnv)
descT(v1_all_itm_sf12)}
SF-12 items, Visit 2
#First argument w/o quotes, second with quotes
v2_sf12_recode <- function(v2_sf12_old_name,v2_sf12_new_name) {
itm_sf12<-ifelse((is.na(v2_con$v2_sf12_sf12_korrekt) | v2_con$v2_sf12_sf12_korrekt!=2),
v2_sf12_old_name,NA)
v2_all_itm_sf12<-c(rep(-999,dim(v2_clin)[1]),itm_sf12) #add -999 for clinical subjects
assign(v2_sf12_new_name,v2_all_itm_sf12,envir=.GlobalEnv)
descT(v2_all_itm_sf12)}
SF-12 items, Visit 3
#First argument w/o quotes, second with quotes
v3_sf12_recode <- function(v3_sf12_old_name,v3_sf12_new_name) {
itm_sf12<-ifelse((is.na(v3_con$v3_sf12_sf12_korrekt) | v3_con$v3_sf12_sf12_korrekt!=2),
v3_sf12_old_name,NA)
v3_all_itm_sf12<-c(rep(-999,dim(v3_clin)[1]),itm_sf12) #add -999 for clinical subjects
assign(v3_sf12_new_name,v3_all_itm_sf12,envir=.GlobalEnv)
descT(v3_all_itm_sf12)}
SF-12 items, Visit 4
#First argument w/o quotes, second with quotes
v4_sf12_recode <- function(v4_sf12_old_name,v4_sf12_new_name) {
itm_sf12<-ifelse((is.na(v4_con$v4_sf12_sf12_korrekt) | v4_con$v4_sf12_sf12_korrekt!=2),
v4_sf12_old_name,NA)
v4_all_itm_sf12<-c(rep(-999,dim(v4_clin)[1]),itm_sf12) #add -999 for clinical subjects
assign(v4_sf12_new_name,v4_all_itm_sf12,envir=.GlobalEnv)
descT(v4_all_itm_sf12)}
BDI-2 items, Visit 1
#First and second arguments w/o quotes, third with quotes
v1_bdi2_recode <- function(bdi2_clin_old_name,bdi2_con_old_name,bdi2_new_name) {
v1_itm_bdi2_chk_clin<-v1_clin$v1_bdi2_s1_verwer_fragebogen
v1_itm_bdi2_chk_con<-v1_con$v1_bdi2_s1_bdi_korrekt
v1_itm_bdi2_clin<-ifelse((is.na(v1_itm_bdi2_chk_clin) | v1_itm_bdi2_chk_clin!=2),
bdi2_clin_old_name,NA)
v1_itm_bdi2_con<-ifelse((is.na(v1_itm_bdi2_chk_con) | v1_itm_bdi2_chk_con!=2),
bdi2_con_old_name,NA)
v1_all_itm_bdi2<-factor(c(v1_itm_bdi2_clin,v1_itm_bdi2_con),ordered=T)
assign(bdi2_new_name,v1_all_itm_bdi2,envir=.GlobalEnv)
descT(v1_all_itm_bdi2)}
BDI-2 items, Visit 2
#First and second arguments w/o quotes, third with quotes
v2_bdi2_recode <- function(bdi2_clin_old_name,bdi2_con_old_name,bdi2_new_name) {
v2_itm_bdi2_chk_clin<-v2_clin$v2_bdi2_s1_verwer_fragebogen
v2_itm_bdi2_chk_con<-v2_con$v2_bdi2_s1_bdi_korrekt
v2_itm_bdi2_clin<-ifelse((is.na(v2_itm_bdi2_chk_clin) | v2_itm_bdi2_chk_clin!=2),
bdi2_clin_old_name,NA)
v2_itm_bdi2_con<-ifelse((is.na(v2_itm_bdi2_chk_con) | v2_itm_bdi2_chk_con!=2),
bdi2_con_old_name,NA)
v2_all_itm_bdi2<-factor(c(v2_itm_bdi2_clin,v2_itm_bdi2_con),ordered=T)
assign(bdi2_new_name,v2_all_itm_bdi2,envir=.GlobalEnv)
descT(v2_all_itm_bdi2)}
BDI-2 items, Visit 3
#First and second arguments w/o quotes, third with quotes
v3_bdi2_recode <- function(bdi2_clin_old_name,bdi2_con_old_name,bdi2_new_name) {
v3_itm_bdi2_chk_clin<-v3_clin$v3_bdi2_s1_verwer_fragebogen
v3_itm_bdi2_chk_con<-v3_con$v3_bdi2_s1_bdi_korrekt
v3_itm_bdi2_clin<-ifelse((is.na(v3_itm_bdi2_chk_clin) | v3_itm_bdi2_chk_clin!=2),
bdi2_clin_old_name,NA)
v3_itm_bdi2_con<-ifelse((is.na(v3_itm_bdi2_chk_con) | v3_itm_bdi2_chk_con!=2),
bdi2_con_old_name,NA)
v3_all_itm_bdi2<-factor(c(v3_itm_bdi2_clin,v3_itm_bdi2_con),ordered=T)
assign(bdi2_new_name,v3_all_itm_bdi2,envir=.GlobalEnv)
descT(v3_all_itm_bdi2)}
BDI-2 items, Visit 4
#First and second arguments w/o quotes, third with quotes
v4_bdi2_recode <- function(bdi2_clin_old_name,bdi2_con_old_name,bdi2_new_name) {
v4_itm_bdi2_chk_clin<-v4_clin$v4_bdi2_s1_verwer_fragebogen
v4_itm_bdi2_chk_con<-v4_con$v4_bdi2_s1_bdi_korrekt
v4_itm_bdi2_clin<-ifelse((is.na(v4_itm_bdi2_chk_clin) | v4_itm_bdi2_chk_clin!=2),
bdi2_clin_old_name,NA)
v4_itm_bdi2_con<-ifelse((is.na(v4_itm_bdi2_chk_con) | v4_itm_bdi2_chk_con!=2),
bdi2_con_old_name,NA)
v4_all_itm_bdi2<-factor(c(v4_itm_bdi2_clin,v4_itm_bdi2_con),ordered=T)
assign(bdi2_new_name,v4_all_itm_bdi2,envir=.GlobalEnv)
descT(v4_all_itm_bdi2)}
ASRM items, Visit 1
#First and second arguments w/o quotes, second with quotes
v1_asrm_recode <- function(asrm_clin_old_name,asrm_con_old_name,asrm_new_name) {
v1_itm_asrm_chk_clin<-v1_clin$v1_asrm_verwer_fragebogen
v1_itm_asrm_chk_con<-v1_con$v1_asrm_asrm_korrekt
v1_itm_asrm_clin<-ifelse((is.na(v1_itm_asrm_chk_clin) | v1_itm_asrm_chk_clin!=2),
asrm_clin_old_name,NA)
v1_itm_asrm_con<-ifelse((is.na(v1_itm_asrm_chk_con) | v1_itm_asrm_chk_con!=2),
asrm_con_old_name,NA)
v1_all_itm_asrm<-factor(c(v1_itm_asrm_clin,v1_itm_asrm_con),ordered=T)
assign(asrm_new_name,v1_all_itm_asrm,envir=.GlobalEnv)
descT(v1_all_itm_asrm)}
ASRM items, Visit 2
#First and second arguments w/o quotes, second with quotes
v2_asrm_recode <- function(asrm_clin_old_name,asrm_con_old_name,asrm_new_name) {
v2_itm_asrm_chk_clin<-v2_clin$v2_asrm_verwer_fragebogen
v2_itm_asrm_chk_con<-v2_con$v2_asrm_asrm_korrekt
v2_itm_asrm_clin<-ifelse((is.na(v2_itm_asrm_chk_clin) | v2_itm_asrm_chk_clin!=2),
asrm_clin_old_name,NA)
v2_itm_asrm_con<-ifelse((is.na(v2_itm_asrm_chk_con) | v2_itm_asrm_chk_con!=2),
asrm_con_old_name,NA)
v2_all_itm_asrm<-factor(c(v2_itm_asrm_clin,v2_itm_asrm_con),ordered=T)
assign(asrm_new_name,v2_all_itm_asrm,envir=.GlobalEnv)
descT(v2_all_itm_asrm)}
ASRM items, Visit 3
#First and second arguments w/o quotes, second with quotes
v3_asrm_recode <- function(asrm_clin_old_name,asrm_con_old_name,asrm_new_name) {
v3_itm_asrm_chk_clin<-v3_clin$v3_asrm_verwer_fragebogen
v3_itm_asrm_chk_con<-v3_con$v3_asrm_asrm_korrekt
v3_itm_asrm_clin<-ifelse((is.na(v3_itm_asrm_chk_clin) | v3_itm_asrm_chk_clin!=2),
asrm_clin_old_name,NA)
v3_itm_asrm_con<-ifelse((is.na(v3_itm_asrm_chk_con) | v3_itm_asrm_chk_con!=2),
asrm_con_old_name,NA)
v3_all_itm_asrm<-factor(c(v3_itm_asrm_clin,v3_itm_asrm_con),ordered=T)
assign(asrm_new_name,v3_all_itm_asrm,envir=.GlobalEnv)
descT(v3_all_itm_asrm)}
ASRM items, Visit 4
#First and second arguments w/o quotes, second with quotes
v4_asrm_recode <- function(asrm_clin_old_name,asrm_con_old_name,asrm_new_name) {
v4_itm_asrm_chk_clin<-v4_clin$v4_asrm_verwer_fragebogen
v4_itm_asrm_chk_con<-v4_con$v4_asrm_asrm_korrekt
v4_itm_asrm_clin<-ifelse((is.na(v4_itm_asrm_chk_clin) | v4_itm_asrm_chk_clin!=2),
asrm_clin_old_name,NA)
v4_itm_asrm_con<-ifelse((is.na(v4_itm_asrm_chk_con) | v4_itm_asrm_chk_con!=2),
asrm_con_old_name,NA)
v4_all_itm_asrm<-factor(c(v4_itm_asrm_clin,v4_itm_asrm_con),ordered=T)
assign(asrm_new_name,v4_all_itm_asrm,envir=.GlobalEnv)
descT(v4_all_itm_asrm)}
MSS items, Visit 1
#First and second arguments w/o quotes, third with quotes
v1_mss_recode <- function(mss_clin_old_name,mss_con_old_name,mss_new_name) {
v1_itm_mss_chk_clin<-v1_clin$v1_mss_s1_verwer_fragebogen
v1_itm_mss_chk_con<-v1_con$v1_mss_s1_mss_korrekt
v1_itm_mss_clin<-ifelse((is.na(v1_itm_mss_chk_clin) | v1_itm_mss_chk_clin!=2),
mss_clin_old_name,NA)
v1_itm_mss_con<-ifelse((is.na(v1_itm_mss_chk_con) | v1_itm_mss_chk_con!=2),
mss_con_old_name,NA)
v1_all_itm_mss<-c(v1_itm_mss_clin,v1_itm_mss_con)
v1_all_itm_mss<-factor(ifelse(v1_all_itm_mss==1,"Y","N"))
assign(mss_new_name,v1_all_itm_mss,envir=.GlobalEnv)
descT(v1_all_itm_mss)}
MSS items, Visit 2
#First and second arguments w/o quotes, third with quotes
v2_mss_recode <- function(mss_clin_old_name,mss_con_old_name,mss_new_name) {
v2_itm_mss_chk_clin<-v2_clin$v2_mss_s1_verwer_fragebogen
v2_itm_mss_chk_con<-v2_con$v2_mss_s1_mss_korrekt
v2_itm_mss_clin<-ifelse((is.na(v2_itm_mss_chk_clin) | v2_itm_mss_chk_clin!=2),
mss_clin_old_name,NA)
v2_itm_mss_con<-ifelse((is.na(v2_itm_mss_chk_con) | v2_itm_mss_chk_con!=2),
mss_con_old_name,NA)
v2_all_itm_mss<-c(v2_itm_mss_clin,v2_itm_mss_con)
v2_all_itm_mss<-factor(ifelse(v2_all_itm_mss==1,"Y","N"))
assign(mss_new_name,v2_all_itm_mss,envir=.GlobalEnv)
descT(v2_all_itm_mss)}
MSS items, Visit 3
#First and second arguments w/o quotes, third with quotes
v3_mss_recode <- function(mss_clin_old_name,mss_con_old_name,mss_new_name) {
v3_itm_mss_chk_clin<-v3_clin$v3_mss_s1_verwer_fragebogen
v3_itm_mss_chk_con<-v3_con$v3_mss_s1_mss_korrekt
v3_itm_mss_clin<-ifelse((is.na(v3_itm_mss_chk_clin) | v3_itm_mss_chk_clin!=2),
mss_clin_old_name,NA)
v3_itm_mss_con<-ifelse((is.na(v3_itm_mss_chk_con) | v3_itm_mss_chk_con!=2),
mss_con_old_name,NA)
v3_all_itm_mss<-c(v3_itm_mss_clin,v3_itm_mss_con)
v3_all_itm_mss<-factor(ifelse(v3_all_itm_mss==1,"Y","N"))
assign(mss_new_name,v3_all_itm_mss,envir=.GlobalEnv)
descT(v3_all_itm_mss)}
MSS items, Visit 4
#First and second arguments w/o quotes, third with quotes
v4_mss_recode <- function(mss_clin_old_name,mss_con_old_name,mss_new_name) {
v4_itm_mss_chk_clin<-v4_clin$v4_mss_s1_verwer_fragebogen
v4_itm_mss_chk_con<-v4_con$v4_mss_s1_mss_korrekt
v4_itm_mss_clin<-ifelse((is.na(v4_itm_mss_chk_clin) | v4_itm_mss_chk_clin!=2),
mss_clin_old_name,NA)
v4_itm_mss_con<-ifelse((is.na(v4_itm_mss_chk_con) | v4_itm_mss_chk_con!=2),
mss_con_old_name,NA)
v4_all_itm_mss<-c(v4_itm_mss_clin,v4_itm_mss_con)
v4_all_itm_mss<-factor(ifelse(v4_all_itm_mss==1,"Y","N"))
assign(mss_new_name,v4_all_itm_mss,envir=.GlobalEnv)
descT(v4_all_itm_mss)}
LEQ A Items, Visit 1
#First and second arguments w/o quotes, third with quotes
v1_leq_a_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v1_itm_leq_chk_clin<-v1_clin$v1_leq_a_verwer_fragebogen
v1_itm_leq_chk_con<-v1_con$v1_leq_a_leq_korrekt
v1_itm_leq_clin<-rep(NA,dim(v1_clin)[1])
v1_itm_leq_con<-rep(NA,dim(v1_con)[1])
v1_itm_leq_clin<-ifelse(((is.na(v1_itm_leq_chk_clin) | v1_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)==F),
leq_clin_old_name,
ifelse(((is.na(v1_itm_leq_chk_clin) | v1_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)), -999, v1_itm_leq_clin))
v1_itm_leq_con<-ifelse(((is.na(v1_itm_leq_chk_con) | v1_itm_leq_chk_con!=2) & is.na(leq_con_old_name)==F),
leq_con_old_name,
ifelse(((is.na(v1_itm_leq_chk_con) | v1_itm_leq_chk_con!=2) & is.na(leq_con_old_name)), -999, v1_itm_leq_con))
v1_all_itm_leq<-c(v1_itm_leq_clin,v1_itm_leq_con)
v1_all_itm_leq[v1_all_itm_leq==1]<-"good"
v1_all_itm_leq[v1_all_itm_leq==0]<-"bad"
v1_all_itm_leq<-factor(v1_all_itm_leq)
assign(leq_new_name,v1_all_itm_leq,envir=.GlobalEnv)
descT(v1_all_itm_leq)}
LEQ A Items, Visit 2
#First and second arguments w/o quotes, third with quotes
v2_leq_a_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v2_itm_leq_chk_clin<-v2_clin$v2_leq_a_verwer_fragebogen
v2_itm_leq_chk_con<-v2_con$v2_leq_a_leq_korrekt
v2_itm_leq_clin<-rep(NA,dim(v2_clin)[1])
v2_itm_leq_con<-rep(NA,dim(v2_con)[1])
v2_itm_leq_clin<-ifelse(is.na(v2_clin$v2_ausschluss1_rekr_datum), NA,
ifelse(((is.na(v2_itm_leq_chk_clin) | v2_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)==F),leq_clin_old_name,
ifelse(((is.na(v2_itm_leq_chk_clin) | v2_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)), -999, v2_itm_leq_clin)))
v2_itm_leq_con<-ifelse(is.na(v2_con$v2_rekru_visit_rekr_datum), NA,
ifelse(((is.na(v2_itm_leq_chk_con) | v2_itm_leq_chk_con!=2) & is.na(leq_con_old_name)==F),leq_con_old_name,
ifelse(((is.na(v2_itm_leq_chk_con) | v2_itm_leq_chk_con!=2) & is.na(leq_con_old_name)), -999, v2_itm_leq_con)))
v2_all_itm_leq<-c(v2_itm_leq_clin,v2_itm_leq_con)
v2_all_itm_leq[v2_all_itm_leq==1]<-"good"
v2_all_itm_leq[v2_all_itm_leq==0]<-"bad"
v2_all_itm_leq<-factor(v2_all_itm_leq)
assign(leq_new_name,v2_all_itm_leq,envir=.GlobalEnv)
descT(v2_all_itm_leq)}
LEQ A Items, Visit 3
#First and second arguments w/o quotes, third with quotes
v3_leq_a_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v3_itm_leq_chk_clin<-v3_clin$v3_leq_a_verwer_fragebogen
v3_itm_leq_chk_con<-v3_con$v3_leq_a_leq_korrekt
v3_itm_leq_clin<-rep(NA,dim(v3_clin)[1])
v3_itm_leq_con<-rep(NA,dim(v3_con)[1])
v3_itm_leq_clin<-ifelse(is.na(v3_clin$v3_ausschluss1_rekr_datum), NA,
ifelse(((is.na(v3_itm_leq_chk_clin) | v3_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)==F),leq_clin_old_name,
ifelse(((is.na(v3_itm_leq_chk_clin) | v3_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)), -999, v3_itm_leq_clin)))
v3_itm_leq_con<-ifelse(is.na(v3_con$v3_rekru_visit_rekr_datum), NA,
ifelse(((is.na(v3_itm_leq_chk_con) | v3_itm_leq_chk_con!=2) & is.na(leq_con_old_name)==F),leq_con_old_name,
ifelse(((is.na(v3_itm_leq_chk_con) | v3_itm_leq_chk_con!=2) & is.na(leq_con_old_name)), -999, v3_itm_leq_con)))
v3_all_itm_leq<-c(v3_itm_leq_clin,v3_itm_leq_con)
v3_all_itm_leq[v3_all_itm_leq==1]<-"good"
v3_all_itm_leq[v3_all_itm_leq==0]<-"bad"
v3_all_itm_leq<-factor(v3_all_itm_leq)
assign(leq_new_name,v3_all_itm_leq,envir=.GlobalEnv)
descT(v3_all_itm_leq)}
LEQ A Items, Visit 4
#First and second arguments w/o quotes, third with quotes
v4_leq_a_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v4_itm_leq_chk_clin<-v4_clin$v4_leq_a_verwer_fragebogen
v4_itm_leq_chk_con<-v4_con$v4_leq_a_leq_korrekt
v4_itm_leq_clin<-rep(NA,dim(v4_clin)[1])
v4_itm_leq_con<-rep(NA,dim(v4_con)[1])
v4_itm_leq_clin<-ifelse(is.na(v4_clin$v4_ausschluss1_rekr_datum), NA,
ifelse(((is.na(v4_itm_leq_chk_clin) | v4_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)==F),leq_clin_old_name,
ifelse(((is.na(v4_itm_leq_chk_clin) | v4_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name)), -999, v4_itm_leq_clin)))
v4_itm_leq_con<-ifelse(is.na(v4_con$v4_rekru_visit_rekr_datum), NA,
ifelse(((is.na(v4_itm_leq_chk_con) | v4_itm_leq_chk_con!=2) & is.na(leq_con_old_name)==F),leq_con_old_name,
ifelse(((is.na(v4_itm_leq_chk_con) | v4_itm_leq_chk_con!=2) & is.na(leq_con_old_name)), -999, v4_itm_leq_con)))
v4_all_itm_leq<-c(v4_itm_leq_clin,v4_itm_leq_con)
v4_all_itm_leq[v4_all_itm_leq==1]<-"good"
v4_all_itm_leq[v4_all_itm_leq==0]<-"bad"
v4_all_itm_leq<-factor(v4_all_itm_leq)
assign(leq_new_name,v4_all_itm_leq,envir=.GlobalEnv)
descT(v4_all_itm_leq)}
LEQ B Items, Visit 1
#First and second arguments w/o quotes, third with quotes
v1_leq_b_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v1_itm_leq_chk_clin<-v1_clin$v1_leq_a_verwer_fragebogen
v1_itm_leq_chk_con<-v1_con$v1_leq_a_leq_korrekt
v1_itm_leq_b_clin<-rep(NA,dim(v1_clin)[1])
v1_itm_leq_b_con<-rep(NA,dim(v1_con)[1])
v1_itm_leq_b_clin<-ifelse((is.na(v1_itm_leq_chk_clin) | v1_itm_leq_chk_clin!=2) &
is.na(leq_clin_old_name), -999,
#data present but this LEQ item empty -> -999
ifelse((is.na(v1_itm_leq_chk_clin) | v1_itm_leq_chk_clin!=2) &
!is.na(leq_clin_old_name),leq_clin_old_name,NA))
v1_itm_leq_b_con<-ifelse((is.na(v1_itm_leq_chk_con) | v1_itm_leq_chk_con!=2) &
is.na(leq_con_old_name), -999,
#data present but this LEQ item empty -> -999
ifelse((is.na(v1_itm_leq_chk_con) | v1_itm_leq_chk_con!=2) &
!is.na(leq_con_old_name),leq_con_old_name,NA))
v1_all_itm_leq_b<-factor(c(v1_itm_leq_b_clin,v1_itm_leq_b_con),ordered=T)
assign(leq_new_name,v1_all_itm_leq_b,envir=.GlobalEnv)
descT(v1_all_itm_leq_b)}
LEQ B Items, Visit 2
#First and second arguments w/o quotes, third with quotes
v2_leq_b_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v2_itm_leq_chk_clin<-v2_clin$v2_leq_a_verwer_fragebogen
v2_itm_leq_chk_con<-v2_con$v2_leq_a_leq_korrekt
v2_itm_leq_b_clin<-rep(NA,dim(v2_clin)[1])
v2_itm_leq_b_con<-rep(NA,dim(v2_con)[1])
v2_itm_leq_b_clin<-ifelse(is.na(v2_clin$v2_ausschluss1_rekr_datum), NA,
ifelse((is.na(v2_itm_leq_chk_clin) | v2_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name), -999, #data but LEQ item empty -> -999
ifelse((is.na(v2_itm_leq_chk_clin) | v2_itm_leq_chk_clin!=2) & !is.na(leq_clin_old_name),leq_clin_old_name,NA)))
v2_itm_leq_b_con<-ifelse(is.na(v2_con$v2_rekru_visit_rekr_datum), NA,
ifelse((is.na(v2_itm_leq_chk_con) | v2_itm_leq_chk_con!=2) & is.na(leq_con_old_name), -999, #data but LEQ item empty -> -999
ifelse((is.na(v2_itm_leq_chk_con) | v2_itm_leq_chk_con!=2) & !is.na(leq_con_old_name),leq_con_old_name,NA)))
v2_all_itm_leq_b<-factor(c(v2_itm_leq_b_clin,v2_itm_leq_b_con),ordered=T)
assign(leq_new_name,v2_all_itm_leq_b,envir=.GlobalEnv)
descT(v2_all_itm_leq_b)}
LEQ B Items, Visit 3
#First and second arguments w/o quotes, third with quotes
v3_leq_b_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v3_itm_leq_chk_clin<-v3_clin$v3_leq_a_verwer_fragebogen
v3_itm_leq_chk_con<-v3_con$v3_leq_a_leq_korrekt
v3_itm_leq_b_clin<-rep(NA,dim(v3_clin)[1])
v3_itm_leq_b_con<-rep(NA,dim(v3_con)[1])
v3_itm_leq_b_clin<-ifelse(is.na(v3_clin$v3_ausschluss1_rekr_datum), NA,
ifelse((is.na(v3_itm_leq_chk_clin) | v3_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name), -999, #data but LEQ item empty -> -999
ifelse((is.na(v3_itm_leq_chk_clin) | v3_itm_leq_chk_clin!=2) & !is.na(leq_clin_old_name),leq_clin_old_name,NA)))
v3_itm_leq_b_con<-ifelse(is.na(v3_con$v3_rekru_visit_rekr_datum), NA,
ifelse((is.na(v3_itm_leq_chk_con) | v3_itm_leq_chk_con!=2) & is.na(leq_con_old_name), -999, #data but LEQ item empty -> -999
ifelse((is.na(v3_itm_leq_chk_con) | v3_itm_leq_chk_con!=2) & !is.na(leq_con_old_name),leq_con_old_name,NA)))
v3_all_itm_leq_b<-factor(c(v3_itm_leq_b_clin,v3_itm_leq_b_con),ordered=T)
assign(leq_new_name,v3_all_itm_leq_b,envir=.GlobalEnv)
descT(v3_all_itm_leq_b)}
LEQ B Items, Visit 4
#First and second arguments w/o quotes, third with quotes
v4_leq_b_recode <- function(leq_clin_old_name,leq_con_old_name,leq_new_name) {
v4_itm_leq_chk_clin<-v4_clin$v4_leq_a_verwer_fragebogen
v4_itm_leq_chk_con<-v4_con$v4_leq_a_leq_korrekt
v4_itm_leq_b_clin<-rep(NA,dim(v4_clin)[1])
v4_itm_leq_b_con<-rep(NA,dim(v4_con)[1])
v4_itm_leq_b_clin<-ifelse(is.na(v4_clin$v4_ausschluss1_rekr_datum), NA,
ifelse((is.na(v4_itm_leq_chk_clin) | v4_itm_leq_chk_clin!=2) & is.na(leq_clin_old_name), -999, #data but LEQ item empty -> -999
ifelse((is.na(v4_itm_leq_chk_clin) | v4_itm_leq_chk_clin!=2) & !is.na(leq_clin_old_name),leq_clin_old_name,NA)))
v4_itm_leq_b_con<-ifelse(is.na(v4_con$v4_rekru_visit_rekr_datum), NA,
ifelse((is.na(v4_itm_leq_chk_con) | v4_itm_leq_chk_con!=2) & is.na(leq_con_old_name), -999, #data but LEQ item empty -> -999
ifelse((is.na(v4_itm_leq_chk_con) | v4_itm_leq_chk_con!=2) & !is.na(leq_con_old_name),leq_con_old_name,NA)))
v4_all_itm_leq_b<-factor(c(v4_itm_leq_b_clin,v4_itm_leq_b_con),ordered=T)
assign(leq_new_name,v4_all_itm_leq_b,envir=.GlobalEnv)
descT(v4_all_itm_leq_b)}
WHOQOL-BREF Items, Visit 1
#First and second arguments w/o quotes, third with quotes
v1_quol_recode <- function(quol_clin_old_name,quol_con_old_name,quol_new_name,recode) {
v1_itm_quol_chk_clin<-v1_clin$v1_whoqol_bref_verwer_fragebogen
v1_itm_quol_chk_con<-v1_con$v1_whoqol_bref_whoqol_korrekt
v1_itm_quol_clin<-ifelse((is.na(v1_itm_quol_chk_clin) | v1_itm_quol_chk_clin!=2),
quol_clin_old_name,NA)
v1_itm_quol_con<-ifelse((is.na(v1_itm_quol_chk_con) | v1_itm_quol_chk_con!=2),
quol_con_old_name,NA)
if(recode==0) {v1_all_itm_quol<-factor(c(v1_itm_quol_clin,v1_itm_quol_con),ordered=T)}
else {v1_all_itm_quol<-factor(6-c(v1_itm_quol_clin,v1_itm_quol_con),ordered=T)}
assign(quol_new_name,v1_all_itm_quol,envir=.GlobalEnv)
desc(v1_all_itm_quol)}
WHOQOL-BREF Items, Visit 2
#First and second arguments w/o quotes, third with quotes
v2_quol_recode <- function(quol_clin_old_name,quol_con_old_name,quol_new_name,recode) {
v2_itm_quol_chk_clin<-v2_clin$v2_whoqol_bref_verwer_fragebogen
v2_itm_quol_chk_con<-v2_con$v2_whoqol_bref_whoqol_korrekt
v2_itm_quol_clin<-ifelse((is.na(v2_itm_quol_chk_clin) | v2_itm_quol_chk_clin!=2),
quol_clin_old_name,NA)
v2_itm_quol_con<-ifelse((is.na(v2_itm_quol_chk_con) | v2_itm_quol_chk_con!=2),
quol_con_old_name,NA)
if(recode==0) {v2_all_itm_quol<-factor(c(v2_itm_quol_clin,v2_itm_quol_con),ordered=T)}
else {v2_all_itm_quol<-factor(6-c(v2_itm_quol_clin,v2_itm_quol_con),ordered=T)}
assign(quol_new_name,v2_all_itm_quol,envir=.GlobalEnv)
desc(v2_all_itm_quol)}
WHOQOL-BREF Items, Visit 3
#First and second arguments w/o quotes, third with quotes
v3_quol_recode <- function(quol_clin_old_name,quol_con_old_name,quol_new_name,recode) {
v3_itm_quol_chk_clin<-v3_clin$v3_whoqol_bref_verwer_fragebogen
v3_itm_quol_chk_con<-v3_con$v3_whoqol_bref_whoqol_korrekt
v3_itm_quol_clin<-ifelse((is.na(v3_itm_quol_chk_clin) | v3_itm_quol_chk_clin!=2),
quol_clin_old_name,NA)
v3_itm_quol_con<-ifelse((is.na(v3_itm_quol_chk_con) | v3_itm_quol_chk_con!=2),
quol_con_old_name,NA)
if(recode==0) {v3_all_itm_quol<-factor(c(v3_itm_quol_clin,v3_itm_quol_con),ordered=T)}
else {v3_all_itm_quol<-factor(6-c(v3_itm_quol_clin,v3_itm_quol_con),ordered=T)}
assign(quol_new_name,v3_all_itm_quol,envir=.GlobalEnv)
desc(v3_all_itm_quol)}
WHOQOL-BREF Items, Visit 4
#First and second arguments w/o quotes, third with quotes
v4_quol_recode <- function(quol_clin_old_name,quol_con_old_name,quol_new_name,recode) {
v4_itm_quol_chk_clin<-v4_clin$v4_whoqol_bref_verwer_fragebogen
v4_itm_quol_chk_con<-v4_con$v4_whoqol_bref_whoqol_korrekt
v4_itm_quol_clin<-ifelse((is.na(v4_itm_quol_chk_clin) | v4_itm_quol_chk_clin!=2),
quol_clin_old_name,NA)
v4_itm_quol_con<-ifelse((is.na(v4_itm_quol_chk_con) | v4_itm_quol_chk_con!=2),
quol_con_old_name,NA)
if(recode==0) {v4_all_itm_quol<-factor(c(v4_itm_quol_clin,v4_itm_quol_con),ordered=T)}
else {v4_all_itm_quol<-factor(6-c(v4_itm_quol_clin,v4_itm_quol_con),ordered=T)}
assign(quol_new_name,v4_all_itm_quol,envir=.GlobalEnv)
desc(v4_all_itm_quol)}
Big Five Personality Items
#First and second arguments w/o quotes, third with quotes
big_five_recode <- function(big_five_clin_old_name,big_five_con_old_name,big_five_new_name,recode) {
itm_big_five_chk_clin<-v1_clin$v1_bfi_10_verwer_fragebogen
itm_big_five_chk_con<-v1_con$v1_bfi_10_bfi_korrekt
itm_big_five_clin<-ifelse((is.na(itm_big_five_chk_clin) | itm_big_five_chk_clin!=2),
big_five_clin_old_name,NA)
itm_big_five_con<-ifelse((is.na(itm_big_five_chk_con) | itm_big_five_chk_con!=2),
big_five_con_old_name,NA)
if(recode==0) {all_itm_big_five<-factor(c(itm_big_five_clin,itm_big_five_con),ordered=T)}
else {all_itm_big_five<-factor(6-c(itm_big_five_clin,itm_big_five_con),ordered=T)}
assign(big_five_new_name,all_itm_big_five,envir=.GlobalEnv)
desc(all_itm_big_five)}
Life event between study visits, LEQ item number, Visit 2
leq_event_recode_v2<- function(leq_ev_old_name,leq_ev_new_name) {
leq_itm_no<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
leq_itm_no<-ifelse(v2_clin_ill_ep_snc_lst=="Y" & is.na(c(leq_ev_old_name,rep(-999,dim(v2_con)[1])))==F,
c(leq_ev_old_name,rep(-999,dim(v2_con)[1])),
ifelse((v2_clin_ill_ep_snc_lst=="Y" & is.na(c(leq_ev_old_name,rep(-999,dim(v2_con)[1])))) |
v2_clin_ill_ep_snc_lst=="N" | v2_clin_ill_ep_snc_lst=="C",-999,leq_itm_no))
leq_itm_no<-factor(leq_itm_no)
assign(leq_ev_new_name,leq_itm_no,envir=.GlobalEnv)
descT(leq_itm_no)}
Life event between study visits, LEQ item number, Visit 3
leq_event_recode_v3<- function(leq_ev_old_name,leq_ev_new_name) {
leq_itm_no<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
leq_itm_no<-ifelse(v3_clin_ill_ep_snc_lst=="Y" & is.na(c(leq_ev_old_name,rep(-999,dim(v3_con)[1])))==F,
c(leq_ev_old_name,rep(-999,dim(v3_con)[1])),
ifelse((v3_clin_ill_ep_snc_lst=="Y" & is.na(c(leq_ev_old_name,rep(-999,dim(v3_con)[1])))) |
v3_clin_ill_ep_snc_lst=="N" | v3_clin_ill_ep_snc_lst=="C",-999,leq_itm_no))
leq_itm_no<-factor(leq_itm_no)
assign(leq_ev_new_name,leq_itm_no,envir=.GlobalEnv)
descT(leq_itm_no)}
Life event between study visits, LEQ item number, Visit 4
leq_event_recode_v4<- function(leq_ev_old_name,leq_ev_new_name) {
leq_itm_no<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
leq_itm_no<-ifelse(v4_clin_ill_ep_snc_lst=="Y" & is.na(c(leq_ev_old_name,rep(-999,dim(v4_con)[1])))==F,
c(leq_ev_old_name,rep(-999,dim(v4_con)[1])),
ifelse((v4_clin_ill_ep_snc_lst=="Y" & is.na(c(leq_ev_old_name,rep(-999,dim(v4_con)[1])))) |
v4_clin_ill_ep_snc_lst=="N" | v4_clin_ill_ep_snc_lst=="C",-999,leq_itm_no))
leq_itm_no<-factor(leq_itm_no)
assign(leq_ev_new_name,leq_itm_no,envir=.GlobalEnv)
descT(leq_itm_no)}
Life events between study visits, occurred before illness episode, Visit 2
#First argument w/o quotes, second with quotes
b4_event_recode_v2<- function(between_clin_old_name,between_new_name) {
itm_btw<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
itm_btw<-ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(between_clin_old_name,rep(-999,dim(v2_con)[1]))==1,"Y",
ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(between_clin_old_name,rep(-999,dim(v2_con)[1]))==2,"N",-999))
itm_btw<-factor(itm_btw)
assign(between_new_name,itm_btw,envir=.GlobalEnv)
descT(itm_btw)}
Life events between study visits, occurred before illness episode, Visit 3
#First argument w/o quotes, second with quotes
b4_event_recode_v3<- function(between_clin_old_name,between_new_name) {
itm_btw<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
itm_btw<-ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(between_clin_old_name,rep(-999,dim(v3_con)[1]))==1,"Y",
ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(between_clin_old_name,rep(-999,dim(v3_con)[1]))==2,"N",-999))
itm_btw<-factor(itm_btw)
assign(between_new_name,itm_btw,envir=.GlobalEnv)
descT(itm_btw)}
Life events between study visits, occurred before illness episode, Visit 4
#First argument w/o quotes, second with quotes
b4_event_recode_v4<- function(between_clin_old_name,between_new_name) {
itm_btw<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
itm_btw<-ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(between_clin_old_name,rep(-999,dim(v4_con)[1]))==1,"Y",
ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(between_clin_old_name,rep(-999,dim(v4_con)[1]))==2,"N",-999))
itm_btw<-factor(itm_btw)
assign(between_new_name,itm_btw,envir=.GlobalEnv)
descT(itm_btw)}
Life events between study visits, was a preciptitating factor, Visit 2
#First argument w/o quotes, second with quotes
prcp_event_recode_v2<- function(prcp_clin_old_name,prcp_new_name) {
itm_prcp<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
itm_prcp<-ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v2_con)[1]))==1,"Y",
ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v2_con)[1]))==2,"N",
ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v2_con)[1]))==3,"U",-999)))
itm_prcp<-factor(itm_prcp)
assign(prcp_new_name,itm_prcp,envir=.GlobalEnv)
descT(itm_prcp)}
Life events between study visits, was a preciptitating factor, Visit 3
#First argument w/o quotes, second with quotes
prcp_event_recode_v3<- function(prcp_clin_old_name,prcp_new_name) {
itm_prcp<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
itm_prcp<-ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v3_con)[1]))==1,"Y",
ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v3_con)[1]))==2,"N",
ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v3_con)[1]))==3,"U",-999)))
itm_prcp<-factor(itm_prcp)
assign(prcp_new_name,itm_prcp,envir=.GlobalEnv)
descT(itm_prcp)}
Life events between study visits, was a preciptitating factor, Visit 4
#First argument w/o quotes, second with quotes
prcp_event_recode_v4<- function(prcp_clin_old_name,prcp_new_name) {
itm_prcp<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
itm_prcp<-ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v4_con)[1]))==1,"Y",
ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v4_con)[1]))==2,"N",
ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(prcp_clin_old_name,rep(-999,dim(v4_con)[1]))==3,"U",-999)))
itm_prcp<-factor(itm_prcp)
assign(prcp_new_name,itm_prcp,envir=.GlobalEnv)
descT(itm_prcp)}
Childhood Trauma Screener
#First and second arguments w/o quotes, third with quotes
cts_recode <- function(cts_clin_old_name,cts_con_old_name,cts_new_name,recode) {
itm_cts_chk_clin<-v3_clin$v3_chidlhood_verwer_fragebogen
itm_cts_chk_con<-v3_con$v3_chidlhood_childhood_korrekt
itm_cts_clin<-ifelse((is.na(itm_cts_chk_clin) | itm_cts_chk_clin!=2),
cts_clin_old_name,NA)
itm_cts_clin[itm_cts_clin==0]<-NA #important only with clinical participants!
itm_cts_con<-ifelse((is.na(itm_cts_chk_con) | itm_cts_chk_con!=2),
cts_con_old_name,NA)
if(recode==0) {all_itm_cts<-factor(c(itm_cts_clin,itm_cts_con),ordered=T)}
else {all_itm_cts<-factor(6-c(itm_cts_clin,itm_cts_con),ordered=T)}
assign(cts_new_name,all_itm_cts,envir=.GlobalEnv)
desc(all_itm_cts)}
## [1] 1223
## [1] 320
Clinical participants
Control participants
Conbine clincal and control participants Code as factor
v1_center<-factor(c(v1_clin_center,v1_con_center),ordered=F)
Number of participants (clinical and control combined) by recruitment center
descT(v1_center)
## 1 2 3 4 5 6 7 10 11 12 13 14 16 18 19
## [1,] No. cases 19 39 11 5 41 62 32 7 13 36 13 257 370 101 100
## [2,] Percent 1.2 2.5 0.7 0.3 2.7 4 2.1 0.5 0.8 2.3 0.8 16.7 24 6.5 6.5
## 20 21 22 23
## [1,] 147 148 98 44 1543
## [2,] 9.5 9.6 6.4 2.9 100
par(mar=c(5.1,4.1,2.1,0))
ctr<-barplot(table(v1_center),las=2,ylim=c(0,400),lwd=2,horiz=F,axisnames=F, ylab="Number of baseline interviews")
nmctr<-names(table(v1_center))
text(ctr, par("usr")[3], labels=nmctr, srt = 45, adj = c(1.1,1.1), xpd = TRUE, cex=.8)
Interviewers were de-identified due to data protection requirements.
Clinical participants
Control participants
Conbine clincal and control participants
v1_tstlt<-as.factor(c(as.character(v1_clin_int),as.character(v1_con_int)))
Determine number of interviewers (teams counted as separate raters)
length(unique(v1_tstlt))
## [1] 86
Determine number of rater teams
length(unique(v1_tstlt)) #(NB: rater teams counted as separate interviewer)
## [1] 86
Create dataset
v1_rec<-data.frame(v1_stat,v1_center,v1_tstlt,v1_interv_date)
v1_clin_sex<-ifelse(v1_clin$v1_demogr_s1_dem1_ses01_geschl==1,"M","F")
v1_con_sex<-ifelse(v1_con$v1_demo1_sex==1,"M","F")
v1_sex<-c(v1_clin_sex,v1_con_sex)
v1_sex<-as.factor(v1_sex)
descT(v1_sex)
## F M
## [1,] No. cases 758 785 1543
## [2,] Percent 49.1 50.9 100
v1_age_years_clin<-as.numeric(substr(v1_clin$v1_ausschluss_rekr_datum,1,4))-as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,1,4))
v1_age_years_clin[v1_age_years_clin==-54]<-46 #correct age of one participant, typo in phenotype database
v1_age_years_con<-as.numeric(substr(v1_con$v1_rek_rekrdat,1,4))-as.numeric(substr(v1_con$v1_demo1_gebdat,1,4))
v1_age_years<-c(v1_age_years_clin,v1_age_years_con)
v1_age<-ifelse(c(as.numeric(substr(v1_clin$v1_ausschluss_rekr_datum,5,6)),as.numeric(substr(v1_con$v1_rek_rekrdat,5,6)))<
c(as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6)),as.numeric(substr(v1_con$v1_demo1_gebdat,5,6))),
v1_age_years-1,v1_age_years)
summary(v1_age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 18.0 29.5 42.0 41.6 52.0 86.0
v1_yob_clin<-as.integer(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,1,4))
v1_yob_con<-as.integer(substr(v1_con$v1_demo1_gebdat,1,4))
v1_yob<-c(v1_yob_clin,v1_yob_con)
summary(v1_yob)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1931 1962 1972 1973 1985 1998
v1_seas_birth_clin<-rep(NA,dim(v1_clin)[1])
v1_seas_birth_clin<-ifelse(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6) %in% c("03","04","05"), "Spring",
ifelse(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6) %in% c("06","07","08"), "Summer",
ifelse(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6) %in% c("09","10","11"), "Fall",
ifelse(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6) %in% c("12","01","02"),"Winter", v1_seas_birth_clin))))
table(v1_seas_birth_clin)
## v1_seas_birth_clin
## Fall Spring Summer Winter
## 319 311 294 299
v1_seas_birth_con<-rep(NA,dim(v1_con)[1])
v1_seas_birth_con<-ifelse(substr(v1_con$v1_demo1_gebdat,5,6) %in% c("03","04","05"), "Spring",
ifelse(substr(v1_con$v1_demo1_gebdat,5,6) %in% c("06","07","08"), "Summer",
ifelse(substr(v1_con$v1_demo1_gebdat,5,6) %in% c("09","10","11"), "Fall",
ifelse(substr(v1_con$v1_demo1_gebdat,5,6) %in% c("12","01","02"),"Winter", v1_seas_birth_con))))
table(v1_seas_birth_con)
## v1_seas_birth_con
## Fall Spring Summer Winter
## 74 99 77 70
v1_seas_birth<-c(v1_seas_birth_clin,v1_seas_birth_con)
v1_seas_birth<-as.factor(v1_seas_birth)
table(v1_seas_birth)
## v1_seas_birth
## Fall Spring Summer Winter
## 393 410 371 369
v1_age_m_birth_clin<-as.integer(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,1,4))-as.integer(
substr(v1_clin$v1_demogr_s1_dem4_geb_m,1,4))
v1_age_m_birth_clin[v1_age_m_birth_clin==0]<-NA #set one case of 0 to NA
v1_age_m_birth_con<-as.integer(substr(v1_con$v1_demo1_gebdat,1,4))-as.integer(substr(v1_con$v1_demo1_mgebdat,1,4))
v1_age_m_birth<-c(v1_age_m_birth_clin,v1_age_m_birth_con)
summary(v1_age_m_birth)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 12.00 24.00 28.00 28.11 31.00 49.00 118
v1_age_f_birth_clin<-as.integer(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,1,4))-as.integer(substr(v1_clin$v1_demogr_s1_dem5_geb_v,1,4))
v1_age_f_birth_con<-as.integer(substr(v1_con$v1_demo1_gebdat,1,4))-as.integer(substr(v1_con$v1_demo1_vgebdat,1,4))
v1_age_f_birth<-c(v1_age_f_birth_clin,v1_age_f_birth_con)
summary(v1_age_f_birth)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 13.0 27.0 31.0 31.9 36.0 62.0 195
v1_mar_clin<-v1_clin$v1_demogr_s1_dem6_ses12_famstand
v1_mar_con<-v1_con$v1_demo1_famstand
cat_mar<-c("Married","Married_living_sep","Single","Divorced","Widowed")
v1_marital_stat_clin<-cat_mar[v1_mar_clin]
v1_marital_stat_con<-cat_mar[v1_mar_con]
v1_marital_stat<-as.factor(c(v1_marital_stat_clin,v1_marital_stat_con))
descT(v1_marital_stat)
## Divorced Married Married_living_sep Single Widowed <NA>
## [1,] No. cases 213 343 67 881 21 18
## [2,] Percent 13.8 22.2 4.3 57.1 1.4 1.2
##
## [1,] 1543
## [2,] 100
v1_clin_partner<-ifelse(v1_clin$v1_demogr_s1_dem9_ses13_partner==1,"Y","N")
v1_con_partner<-ifelse(v1_con$v1_demo1_partner==1,"Y","N")
v1_partner<-as.factor(c(v1_clin_partner,v1_con_partner))
desc(v1_partner)
## N Y NA's
## [1,] No. cases 759 742 42 1543
## [2,] Percent 49.2 48.1 2.7 100
v1_no_bio_chld<-c(v1_clin$v1_demogr_s1_dem10_ses15a_lkind,v1_con$v1_demo1_lkind)
descT(v1_no_bio_chld)
## 0 1 2 3 4 5 <NA>
## [1,] No. cases 939 265 195 89 26 3 26 1543
## [2,] Percent 60.9 17.2 12.6 5.8 1.7 0.2 1.7 100
v1_no_adpt_chld<-c(v1_clin$v1_demogr_s1_dem11_ses15b_akind,v1_con$v1_demo1_adkind)
descT(v1_no_adpt_chld)
## 0 1 2 <NA>
## [1,] No. cases 1496 2 2 43 1543
## [2,] Percent 97 0.1 0.1 2.8 100
v1_stp_chld<-c(v1_clin$v1_demogr_s1_dem12_skind,v1_con$v1_demo1_stkind)
descT(v1_stp_chld)
## 0 1 2 3 4 <NA>
## [1,] No. cases 1439 24 26 7 2 45 1543
## [2,] Percent 93.3 1.6 1.7 0.5 0.1 2.9 100
v1_brothers<-c(v1_clin$v1_demogr_s1_dem13_brueder,v1_con$v1_demo1_bruder)
descT(v1_brothers)
## 0 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 583 586 198 62 20 7 2 1 84 1543
## [2,] Percent 37.8 38 12.8 4 1.3 0.5 0.1 0.1 5.4 100
v1_sisters<-c(v1_clin$v1_demogr_s1_dem13_schwestern,v1_con$v1_demo1_schwester)
descT(v1_sisters)
## 0 1 2 3 4 5 6 7 8 <NA>
## [1,] No. cases 648 543 182 49 7 11 2 2 1 98 1543
## [2,] Percent 42 35.2 11.8 3.2 0.5 0.7 0.1 0.1 0.1 6.4 100
v1_hlf_brthrs<-c(v1_clin$v1_demogr_s1_dem13_halbbrueder,v1_con$v1_demo1_hbruder)
descT(v1_hlf_brthrs)
## 0 1 2 3 4 5 6 <NA>
## [1,] No. cases 1193 100 34 16 2 1 1 196 1543
## [2,] Percent 77.3 6.5 2.2 1 0.1 0.1 0.1 12.7 100
v1_hlf_sstrs<-c(v1_clin$v1_demogr_s1_dem13_halbschwestern,v1_con$v1_demo1_hschwester)
descT(v1_hlf_sstrs)
## 0 1 2 3 4 5 6 9 <NA>
## [1,] No. cases 1184 111 33 9 6 3 1 1 195 1543
## [2,] Percent 76.7 7.2 2.1 0.6 0.4 0.2 0.1 0.1 12.6 100
v1_stp_brthrs<-c(v1_clin$v1_demogr_s1_dem13_as_brueder,v1_con$v1_demo1_adbrueder)
descT(v1_stp_brthrs)
## 0 1 2 3 <NA>
## [1,] No. cases 1297 29 8 1 208 1543
## [2,] Percent 84.1 1.9 0.5 0.1 13.5 100
v1_stp_sstrs<-c(v1_clin$v1_demogr_s1_dem13_as_schwestern,v1_con$v1_demo1_adschwester)
descT(v1_stp_sstrs)
## 0 1 2 3 <NA>
## [1,] No. cases 1292 29 10 2 210 1543
## [2,] Percent 83.7 1.9 0.6 0.1 13.6 100
v1_clin_twin_fam<-ifelse(v1_clin$v1_demogr_s1_dem14_zwillinge==1,"Y","N")
v1_con_twin_fam<-ifelse(v1_con$v1_demo1_zwillinge==1,"Y","N")
v1_twin_fam<-as.factor(c(v1_clin_twin_fam,v1_con_twin_fam))
descT(v1_twin_fam)
## N Y <NA>
## [1,] No. cases 1355 153 35 1543
## [2,] Percent 87.8 9.9 2.3 100
v1_clin_twin_slf<-ifelse(v1_clin$v1_demogr_s1_dem15_selbst_zwill==1,"Y","N")
v1_con_twin_slf<-ifelse(v1_con$v1_demo1_szwilling==1,"Y","N")
v1_twin_slf<-as.factor(c(v1_clin_twin_slf,v1_con_twin_slf))
descT(v1_twin_slf)
## N Y <NA>
## [1,] No. cases 1464 47 32 1543
## [2,] Percent 94.9 3 2.1 100
v1_clin_liv_aln<-ifelse(v1_clin$v1_demogr_s1_dem17_allein==1,"Y","N")
v1_con_liv_aln<-ifelse(v1_con$v1_demo1_allein==1,"Y","N")
v1_liv_aln<-as.factor(c(v1_clin_liv_aln,v1_con_liv_aln))
descT(v1_liv_aln)
## N Y
## [1,] No. cases 958 585 1543
## [2,] Percent 62.1 37.9 100
Status in the German educational system is assessed in detail. However, many specialized types of German schools are unknown to English-speaking investigators and detailed information does not seem to play a role. Furthermore, high-school and professional education are assessed seperately in the interview. In order to combine the aforementioned types of education, we have transformed both scales to values that can be added together to form an “Educational status” variable. High-school level education was transformed into an ordinal scale from 0 to 3 (people still in high school at the time of the interview are give NA). Professional eduction is also transformed into an ordinal scale from 0 to 3. These two scales are added together to give an ordinal educational status scale ranging from 0 to 6.
The following transformation was used: “no information”/“missing”-NA, “no graduation”-0, “Hauptschule”-1, “Realschule”-2, “Polytechnische Oberschule”-2, “Fachhochschule”-3, “Allgemeine Hochschulreife”-3; still in school“/”other degree“- -999.
NB: Transformation to ordered factor below, after creation of v1_ed_status variable.
v1_clin_school<-rep(NA,dim(v1_clin)[1])
v1_con_school<-rep(NA,dim(v1_con)[1])
v1_clin_school<-ifelse(v1_clin$v1_demogr_s2_dem18_ses18_sabschl %in% c(1:2),v1_clin$v1_demogr_s2_dem18_ses18_sabschl-1,v1_clin_school)
v1_clin_school<-ifelse(v1_clin$v1_demogr_s2_dem18_ses18_sabschl %in% c(3:4),2,v1_clin_school)
v1_clin_school<-ifelse(v1_clin$v1_demogr_s2_dem18_ses18_sabschl %in% c(5:6),3,v1_clin_school)
v1_clin_school<-ifelse(v1_clin$v1_demogr_s2_dem18_ses18_sabschl %in% c(7:8),-999,v1_clin_school)
v1_con_school<-ifelse(v1_con$v1_demo2_abschl %in% c(1:2),v1_con$v1_demo2_abschl-1,v1_con_school)
v1_con_school<-ifelse(v1_con$v1_demo2_abschl %in% c(3:4),2,v1_con_school)
v1_con_school<-ifelse(v1_con$v1_demo2_abschl %in% c(5:6),3,v1_con_school)
v1_con_school<-ifelse(v1_con$v1_demo2_abschl %in% c(7:8),-999,v1_con_school)
v1_school<-c(v1_clin_school,v1_con_school)
descT(v1_school)
## -999 0 1 2 3 <NA>
## [1,] No. cases 17 24 278 371 838 15 1543
## [2,] Percent 1.1 1.6 18 24 54.3 1 100
The following transformation was used: missing or no information-NA, “no professional education”/“beruflich-betriebliche Anlernzeit, aber keine Lehre; Teilfacharbeiterabschluss”/“in professional education”-0, “Lehre”-1, “beruflich-betriebliche Ausbildung”/“beruflich-schulische Ausbildung”-2, “Fachhochschul-/Universitätsabschluss”-3, “other professional degree” - -999,
NB: Transformation to ordered factor below, after creation of v1_ed_status variable.
v1_clin_prof_dgr<-rep(NA,dim(v1_clin)[1])
v1_con_prof_dgr<-rep(NA,dim(v1_con)[1])
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_aba==1,-999,v1_clin_prof_dgr)
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_kba==1,0,v1_clin_prof_dgr)
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_anlern==1,0,v1_clin_prof_dgr)
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_in_ausb==1,0,v1_clin_prof_dgr)
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_lehre==1,1,v1_clin_prof_dgr)
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_ausb==1,2,v1_clin_prof_dgr)
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_fachs==1,2,v1_clin_prof_dgr)
v1_clin_prof_dgr<-ifelse(v1_clin$v1_demogr_s2_dem19_ses19_fh_uni==1,3,v1_clin_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_a_babschl==1,-999,v1_con_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_kba==1,0,v1_con_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_anlern==1,0,v1_con_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_ausbild==1,0,v1_con_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_lehre==1,1,v1_con_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_ausb==1,2,v1_con_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_fachs==1,2,v1_con_prof_dgr)
v1_con_prof_dgr<-ifelse(v1_con$v1_demo2_fhuni==1,3,v1_con_prof_dgr)
v1_prof_dgr<-c(v1_clin_prof_dgr,v1_con_prof_dgr)
descT(v1_prof_dgr)
## -999 0 1 2 3 <NA>
## [1,] No. cases 9 398 406 332 379 19 1543
## [2,] Percent 0.6 25.8 26.3 21.5 24.6 1.2 100
Important: more than one answer is possible, as people may have several professional degrees. The order of the commands above makes sure higher professional degrees overwrite lower ones.
As describe above, this scale was newly created.
v1_ed_status<-v1_school+v1_prof_dgr
v1_ed_status[v1_ed_status<0]<-NA
v1_ed_status<-factor(v1_ed_status, ordered=T)
descT(v1_ed_status)
## 0 1 2 3 4 5 6 <NA>
## [1,] No. cases 19 82 239 390 236 164 366 47 1543
## [2,] Percent 1.2 5.3 15.5 25.3 15.3 10.6 23.7 3 100
Transform school and professional degree variables to factors.
v1_school<-factor(v1_school, ordered=T)
v1_prof_dgr<-factor(v1_prof_dgr, ordered=T)
Because of several categories that are unique to the Germany labor market, several of answer categories were pooled to arrive at a more clear-cut (Y/N) answer to this question. Thr following transformations were used: “no information”-NA, “full-time”-Y, “part-time”-Y, “partial retirement”-Y, “marginal employment”-Y, “1-euro-job”-Y, “Occassionally/infrequently”-999, “in professional training”-Y, “professional retraining”-Y, “voluntary service/alternative military service”-Y, “maternity leave or other leave”-Y, “not employed”-N.
v1_clin_curr_paid_empl<-rep(NA,dim(v1_clin)[1])
v1_con_curr_paid_empl<-rep(NA,dim(v1_con)[1])
v1_clin_curr_paid_empl<-ifelse(v1_clin$v1_demogr_s2_dem20_ses20_erwbtaet %in% c(1:5,7:10),"Y",v1_clin_curr_paid_empl)
v1_clin_curr_paid_empl<-ifelse(v1_clin$v1_demogr_s2_dem20_ses20_erwbtaet %in% c(6,11),"N",v1_clin_curr_paid_empl)
v1_con_curr_paid_empl<-ifelse(v1_con$v1_demo2_erwerb %in% c(1:5,7:10),"Y",v1_con_curr_paid_empl)
v1_con_curr_paid_empl<-ifelse(v1_con$v1_demo2_erwerb %in% c(6,11),"N",v1_con_curr_paid_empl)
v1_curr_paid_empl<-c(v1_clin_curr_paid_empl,v1_con_curr_paid_empl)
v1_curr_paid_empl<-as.factor(v1_curr_paid_empl)
descT(v1_curr_paid_empl)
## N Y <NA>
## [1,] No. cases 815 706 22 1543
## [2,] Percent 52.8 45.8 1.4 100
v1_clin_disabl_pens<-ifelse(v1_clin$v1_demogr_s2_dem20_ses20_rente==1,"Y","N")
v1_con_disabl_pens<-ifelse(v1_con$v1_demo2_rente==1,"Y","N")
v1_disabl_pens<-as.factor(c(v1_clin_disabl_pens,v1_con_disabl_pens))
descT(v1_disabl_pens)
## N Y <NA>
## [1,] No. cases 764 381 398 1543
## [2,] Percent 49.5 24.7 25.8 100
v1_clin_spec_emp<-ifelse(v1_clin$v1_demogr_s2_dem20_ses20_werk==1,"Y","N")
v1_con_spec_emp<-ifelse(v1_con$v1_demo2_wfbm==1,"Y","N")
v1_spec_emp<-as.factor(c(v1_clin_spec_emp,v1_con_spec_emp))
descT(v1_spec_emp)
## N Y <NA>
## [1,] No. cases 549 74 920 1543
## [2,] Percent 35.6 4.8 59.6 100
Cases are set ot -999 in the following cases: 1) Pension, 2) Unknown, 3) Filled out but >60 months are set to -999.
v1_clin_wrk_abs_pst_5_yrs<-ifelse((v1_clin$v1_demogr_s2_dem23_unbekannt==1 | v1_clin$v1_demogr_s2_dem23_rente==1 | v1_clin$v1_demogr_s2_dem23_arbeitsausf>60),-999, v1_clin$v1_demogr_s2_dem23_arbeitsausf)
v1_con_wrk_abs_pst_5_yrs<-ifelse((v1_con$v1_demo2_ausfallu==1 | v1_con$v1_demo2_rente==1 | v1_con$v1_demo2_ausfallm>60),-999, v1_con$v1_demo2_ausfallm)
v1_wrk_abs_pst_5_yrs<-c(v1_clin_wrk_abs_pst_5_yrs,v1_con_wrk_abs_pst_5_yrs)
descT(v1_wrk_abs_pst_5_yrs)
## -999 0 1 2 3 4 5 6 7 8 9 10 11 12
## [1,] No. cases 507 334 51 65 43 32 31 50 9 20 13 19 3 40
## [2,] Percent 32.9 21.6 3.3 4.2 2.8 2.1 2 3.2 0.6 1.3 0.8 1.2 0.2 2.6
## 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 30 33
## [1,] 6 3 8 5 3 23 7 1 3 1 31 1 1 2 1 13 1
## [2,] 0.4 0.2 0.5 0.3 0.2 1.5 0.5 0.1 0.2 0.1 2 0.1 0.1 0.1 0.1 0.8 0.1
## 35 36 38 42 45 48 50 52 54 60 <NA>
## [1,] 2 14 1 3 1 13 2 1 1 39 139 1543
## [2,] 0.1 0.9 0.1 0.2 0.1 0.8 0.1 0.1 0.1 2.5 9 100
Important: if receiving pension, this question refers to impairments in the household
v1_clin_cur_work_restr<-ifelse(v1_clin$v1_demogr_s2_dem24_arbeitseinschr==1,"Y","N")
v1_con_cur_work_restr<-ifelse(v1_con$v1_demo2_psyeinsch==1,"Y","N")
v1_cur_work_restr<-as.factor(c(v1_clin_cur_work_restr,v1_con_cur_work_restr))
descT(v1_cur_work_restr)
## N Y <NA>
## [1,] No. cases 652 798 93 1543
## [2,] Percent 42.3 51.7 6 100
Create dataset
v1_dem<-data.frame(v1_sex,v1_age,v1_yob,v1_seas_birth,v1_age_m_birth,v1_age_f_birth,
v1_marital_stat,v1_partner,v1_no_bio_chld,v1_no_adpt_chld,
v1_stp_chld,v1_brothers,v1_sisters,v1_hlf_brthrs,v1_hlf_sstrs,
v1_stp_brthrs,v1_stp_sstrs,v1_twin_fam,v1_twin_slf,v1_liv_aln,
v1_school,v1_prof_dgr,v1_ed_status,v1_curr_paid_empl,
v1_disabl_pens,v1_spec_emp,v1_wrk_abs_pst_5_yrs,v1_cur_work_restr)
v1_clin_cntr_brth<-v1_clin$v1_demogr_s2_dem25_ses03a_lst_lnd
v1_clin_cntr_brth<-ifelse(is.na(v1_clin_cntr_brth) & v1_clin$v1_demogr_s2_dem25_ses03a_land_st==1,
"Deutschland",as.character(v1_clin_cntr_brth))
v1_con_cntr_brth<-v1_con$v1_demo2_land1
v1_con_cntr_brth<-ifelse(is.na(v1_con_cntr_brth) & v1_con$v1_demo2_gebort==1,
"Deutschland",as.character(v1_con$v1_con_cntr_brth))
v1_cntr_brth<-as.factor(c(v1_clin_cntr_brth,v1_con_cntr_brth))
descT(v1_cntr_brth)
## Afghanistan Ägypten anderes Land Argentinien Äthiopien
## [1,] No. cases 1 1 1 1 2
## [2,] Percent 0.1 0.1 0.1 0.1 0.1
## Australien Belarus (Weißrussland) Bosnien und Herzegowina Deutschland
## [1,] 2 1 1 1233
## [2,] 0.1 0.1 0.1 79.9
## Eritrea Estland Finnland Frankreich Irak Iran, Islamische Republik
## [1,] 2 1 1 2 1 3
## [2,] 0.1 0.1 0.1 0.1 0.1 0.2
## Italien Kasachstan Kirgisistan Kroatien Marokko
## [1,] 1 9 2 3 1
## [2,] 0.1 0.6 0.1 0.2 0.1
## Mazedonien, ehem. jugoslawische Republik Mongolei Niederlande Nigeria
## [1,] 2 1 1 1
## [2,] 0.1 0.1 0.1 0.1
## Österreich Pakistan Polen Rumänien Russische Föderation Senegal
## [1,] 134 1 25 10 11 1
## [2,] 8.7 0.1 1.6 0.6 0.7 0.1
## Serbien Slowakei Slowenien Sri Lanka Tadschikistan Thailand
## [1,] 7 1 1 1 1 1
## [2,] 0.5 0.1 0.1 0.1 0.1 0.1
## Tschechische Republik Türkei Ukraine Ungarn Usbekistan
## [1,] 3 8 1 2 1
## [2,] 0.2 0.5 0.1 0.1 0.1
## Vereinigte Staaten von Amerika
## [1,] 1
## [2,] 0.1
## Vereinigtes Königreich Großbritannien und Nordirland <NA>
## [1,] 2 57 1543
## [2,] 0.1 3.7 100
v1_clin_cntr_brth_m<-v1_clin$v1_demogr_s2_dem26_ses06_lm_lnd
v1_clin_cntr_brth_m<-ifelse(is.na(v1_clin_cntr_brth_m) & v1_clin$v1_demogr_s2_dem26_ses06_land_m==1,
"Deutschland",as.character(v1_clin_cntr_brth_m))
v1_con_cntr_brth_m<-v1_con$v1_demo2_land2
v1_con_cntr_brth_m<-ifelse(is.na(v1_con_cntr_brth_m) & v1_con$v1_demo2_gebortm==1,
"Deutschland",as.character(v1_con_cntr_brth_m))
v1_cntr_brth_m<-as.factor(c(v1_clin_cntr_brth_m,v1_con_cntr_brth_m))
descT(v1_cntr_brth_m)
## Afghanistan Algerien anderes Land Argentinien Äthiopien
## [1,] No. cases 1 1 2 1 2
## [2,] Percent 0.1 0.1 0.1 0.1 0.1
## Belarus (Weißrussland) Belgien Bosnien und Herzegowina Brasilien
## [1,] 2 1 5 1
## [2,] 0.1 0.1 0.3 0.1
## Bulgarien Chile Dänemark Deutschland Eritrea Estland Finnland
## [1,] 2 2 1 1047 2 2 1
## [2,] 0.1 0.1 0.1 67.9 0.1 0.1 0.1
## Frankreich Griechenland Indien Indonesien Irak
## [1,] 2 1 1 1 1
## [2,] 0.1 0.1 0.1 0.1 0.1
## Iran, Islamische Republik Irland Israel Italien Japan Kasachstan
## [1,] 5 1 1 7 1 10
## [2,] 0.3 0.1 0.1 0.5 0.1 0.6
## Kirgisistan Korea, Republik (Südkorea) Kroatien
## [1,] 1 1 10
## [2,] 0.1 0.1 0.6
## Libysch-Arabische Dschamahirija (Libyen) Luxemburg Marokko
## [1,] 1 3 1
## [2,] 0.1 0.2 0.1
## Mazedonien, ehem. jugoslawische Republik Mongolei Namibia Niederlande
## [1,] 3 1 2 1
## [2,] 0.2 0.1 0.1 0.1
## Österreich Pakistan Polen Rumänien Russische Föderation
## [1,] 136 1 95 14 25
## [2,] 8.8 0.1 6.2 0.9 1.6
## Schweiz (Confoederatio Helvetica) Senegal Serbien Singapur Slowakei
## [1,] 2 1 13 1 3
## [2,] 0.1 0.1 0.8 0.1 0.2
## Slowenien Spanien Sri Lanka Thailand Tschechische Republik Türkei
## [1,] 5 3 3 1 24 19
## [2,] 0.3 0.2 0.2 0.1 1.6 1.2
## Ukraine Ungarn Usbekistan
## [1,] 10 11 1
## [2,] 0.6 0.7 0.1
## Vereinigtes Königreich Großbritannien und Nordirland <NA>
## [1,] 2 45 1543
## [2,] 0.1 2.9 100
v1_clin_cntr_brth_f<-v1_clin$v1_demogr_s2_dem27_ses07_lv_lnd
v1_clin_cntr_brth_f<-ifelse(is.na(v1_clin_cntr_brth_f)==T & v1_clin$v1_demogr_s2_dem27_ses07_land_v==1,
"Deutschland",as.character(v1_clin_cntr_brth_f))
v1_con_cntr_brth_f<-v1_con$v1_demo2_land3
v1_con_cntr_brth_f<-ifelse(is.na(v1_con_cntr_brth_f)==T & v1_con$v1_demo2_gebortv==1,
"Deutschland",as.character(v1_con_cntr_brth_f))
v1_cntr_brth_f<-as.factor(c(v1_clin_cntr_brth_f,v1_con_cntr_brth_f))
descT(v1_cntr_brth_f)
## Afghanistan Ägypten anderes Land Argentinien Armenien
## [1,] No. cases 1 1 4 3 1
## [2,] Percent 0.1 0.1 0.3 0.2 0.1
## Äthiopien Australien Belarus (Weißrussland) Belgien
## [1,] 1 2 1 2
## [2,] 0.1 0.1 0.1 0.1
## Bosnien und Herzegowina Bulgarien Chile Deutschland
## [1,] 3 3 3 1008
## [2,] 0.2 0.2 0.2 65.3
## Dominikanische Republik Eritrea Estland Frankreich Griechenland
## [1,] 1 3 2 5 1
## [2,] 0.1 0.2 0.1 0.3 0.1
## Indien Indonesien Irak Iran, Islamische Republik Israel Italien Japan
## [1,] 1 1 1 5 1 9 2
## [2,] 0.1 0.1 0.1 0.3 0.1 0.6 0.1
## Jemen Kasachstan Korea, Republik (Südkorea) Kroatien Libanon
## [1,] 1 9 1 5 1
## [2,] 0.1 0.6 0.1 0.3 0.1
## Luxemburg Marokko Mazedonien, ehem. jugoslawische Republik Mongolei
## [1,] 1 2 3 1
## [2,] 0.1 0.1 0.2 0.1
## Namibia Nigeria Norwegen Österreich Pakistan
## [1,] 2 1 1 143 2
## [2,] 0.1 0.1 0.1 9.3 0.1
## Palästinensische Autonomiegebiete Polen Rumänien Russische Föderation
## [1,] 1 111 13 32
## [2,] 0.1 7.2 0.8 2.1
## Senegal Serbien Slowakei Slowenien Spanien Sri Lanka Tadschikistan
## [1,] 1 9 2 3 1 2 1
## [2,] 0.1 0.6 0.1 0.2 0.1 0.1 0.1
## Thailand Tschechische Republik Türkei Ukraine Ungarn Usbekistan
## [1,] 1 22 23 8 6 1
## [2,] 0.1 1.4 1.5 0.5 0.4 0.1
## Vereinigte Staaten von Amerika
## [1,] 5
## [2,] 0.3
## Vereinigtes Königreich Großbritannien und Nordirland <NA>
## [1,] 4 59 1543
## [2,] 0.3 3.8 100
v1_clin_cntr_brth_gmm<-v1_clin$v1_demogr_s2_dem28_land_gm_ms_lnd
v1_clin_cntr_brth_gmm<-ifelse(is.na(v1_clin_cntr_brth_gmm)==T & v1_clin$v1_demogr_s2_dem28_land_gm_ms==1,
"Deutschland",as.character(v1_clin_cntr_brth_gmm))
v1_con_cntr_brth_gmm<-v1_con$v1_demo2_land4
v1_con_cntr_brth_gmm<-ifelse(is.na(v1_con_cntr_brth_gmm)==T & v1_con$v1_demo2_gebortgmm==1,
"Deutschland",as.character(v1_con_cntr_brth_gmm))
v1_cntr_brth_gmm<-as.factor(c(v1_clin_cntr_brth_gmm,v1_con_cntr_brth_gmm))
descT(v1_cntr_brth_gmm)
## Afghanistan anderes Land Argentinien Äthiopien
## [1,] No. cases 1 2 1 1
## [2,] Percent 0.1 0.1 0.1 0.1
## Belarus (Weißrussland) Belgien Bosnien und Herzegowina Bulgarien
## [1,] 2 1 6 1
## [2,] 0.1 0.1 0.4 0.1
## Chile China, Volksrepublik Dänemark Deutschland Eritrea Estland
## [1,] 2 1 2 867 2 2
## [2,] 0.1 0.1 0.1 56.2 0.1 0.1
## Finnland Frankreich Georgien Griechenland Indien Indonesien Irak
## [1,] 2 1 1 3 2 1 1
## [2,] 0.1 0.1 0.1 0.2 0.1 0.1 0.1
## Iran, Islamische Republik Israel Italien Japan Kasachstan Kolumbien
## [1,] 5 2 7 1 5 1
## [2,] 0.3 0.1 0.5 0.1 0.3 0.1
## Korea, Republik (Südkorea) Kroatien Litauen Luxemburg Marokko
## [1,] 1 10 2 3 1
## [2,] 0.1 0.6 0.1 0.2 0.1
## Mazedonien, ehem. jugoslawische Republik Mongolei Namibia Niederlande
## [1,] 3 1 1 3
## [2,] 0.2 0.1 0.1 0.2
## Österreich Pakistan Polen Rumänien Russische Föderation Schweden
## [1,] 127 1 124 10 23 1
## [2,] 8.2 0.1 8 0.6 1.5 0.1
## Schweiz (Confoederatio Helvetica) Senegal Serbien Slowakei Slowenien
## [1,] 3 1 13 2 6
## [2,] 0.2 0.1 0.8 0.1 0.4
## Spanien Sri Lanka Thailand Tschechische Republik Türkei Ukraine
## [1,] 4 3 1 32 17 15
## [2,] 0.3 0.2 0.1 2.1 1.1 1
## Ungarn Usbekistan Vereinigte Staaten von Amerika
## [1,] 13 1 1
## [2,] 0.8 0.1 0.1
## Vereinigtes Königreich Großbritannien und Nordirland <NA>
## [1,] 2 195 1543
## [2,] 0.1 12.6 100
v1_clin_cntr_brth_gfm<-v1_clin$v1_demogr_s2_dem29_land_gv_ms_lnd
v1_clin_cntr_brth_gfm<-ifelse(is.na(v1_clin_cntr_brth_gfm)==T & v1_clin$v1_demogr_s2_dem29_land_gv_ms==1,
"Deutschland",as.character(v1_clin_cntr_brth_gfm))
v1_con_cntr_brth_gfm<-v1_con$v1_demo2_land5
v1_con_cntr_brth_gfm<-ifelse(is.na(v1_con_cntr_brth_gfm)==T & v1_con$v1_demo2_gebortgmv==1,
"Deutschland",as.character(v1_con_cntr_brth_gfm))
v1_cntr_brth_gfm<-as.factor(c(v1_clin_cntr_brth_gfm,v1_con_cntr_brth_gfm))
descT(v1_cntr_brth_gfm)
## Afghanistan anderes Land Argentinien Aserbaidschan
## [1,] No. cases 1 2 1 1
## [2,] Percent 0.1 0.1 0.1 0.1
## Äthiopien Belarus (Weißrussland) Belgien Bosnien und Herzegowina
## [1,] 1 3 1 6
## [2,] 0.1 0.2 0.1 0.4
## Bulgarien Chile China, Volksrepublik Dänemark Deutschland Eritrea
## [1,] 1 2 2 1 798 2
## [2,] 0.1 0.1 0.1 0.1 51.7 0.1
## Estland Finnland Frankreich Georgien Griechenland Indien Indonesien
## [1,] 2 1 3 1 4 2 1
## [2,] 0.1 0.1 0.2 0.1 0.3 0.1 0.1
## Irak Iran, Islamische Republik Israel Italien Japan Kasachstan
## [1,] 1 5 2 6 1 5
## [2,] 0.1 0.3 0.1 0.4 0.1 0.3
## Korea, Demokratische Volksrepublik (Nordkorea)
## [1,] 1
## [2,] 0.1
## Korea, Republik (Südkorea) Kroatien Luxemburg Marokko
## [1,] 1 10 3 1
## [2,] 0.1 0.6 0.2 0.1
## Mazedonien, ehem. jugoslawische Republik Mongolei Namibia Niederlande
## [1,] 3 1 2 4
## [2,] 0.2 0.1 0.1 0.3
## Österreich Pakistan Polen Rumänien Russische Föderation
## [1,] 123 1 114 9 27
## [2,] 8 0.1 7.4 0.6 1.7
## Schweiz (Confoederatio Helvetica) Senegal Serbien Slowakei Slowenien
## [1,] 2 1 12 3 5
## [2,] 0.1 0.1 0.8 0.2 0.3
## Spanien Sri Lanka Thailand Tschechische Republik Türkei Ukraine
## [1,] 4 3 1 23 18 8
## [2,] 0.3 0.2 0.1 1.5 1.2 0.5
## Ungarn Usbekistan Vereinigte Staaten von Amerika
## [1,] 14 1 1
## [2,] 0.9 0.1 0.1
## Vereinigtes Königreich Großbritannien und Nordirland <NA>
## [1,] 1 290 1543
## [2,] 0.1 18.8 100
v1_clin_cntr_brth_gmf<-v1_clin$v1_demogr_s2_dem30_land_gm_vs_lnd
v1_clin_cntr_brth_gmf<-ifelse(is.na(v1_clin_cntr_brth_gmf)==T & v1_clin$v1_demogr_s2_dem30_land_gm_vs==1,
"Deutschland",as.character(v1_clin_cntr_brth_gmf))
v1_con_cntr_brth_gmf<-v1_con$v1_demo2_land6
v1_con_cntr_brth_gmf<-ifelse(is.na(v1_con_cntr_brth_gmf)==T & v1_con$v1_demo2_gebortgvm==1,
"Deutschland",as.character(v1_con_cntr_brth_gmf))
v1_cntr_brth_gmf<-as.factor(c(v1_clin_cntr_brth_gmf,v1_con_cntr_brth_gmf))
descT(v1_cntr_brth_gmf)
## Afghanistan Ägypten anderes Land Argentinien Australien
## [1,] No. cases 1 1 5 1 1
## [2,] Percent 0.1 0.1 0.3 0.1 0.1
## Belarus (Weißrussland) Belgien Bosnien und Herzegowina Bulgarien
## [1,] 1 1 3 2
## [2,] 0.1 0.1 0.2 0.1
## Chile Dänemark Deutschland Dominikanische Republik Eritrea Estland
## [1,] 3 1 790 1 3 2
## [2,] 0.2 0.1 51.2 0.1 0.2 0.1
## Frankreich Ghana Griechenland Indien Irak Iran, Islamische Republik
## [1,] 6 1 3 2 1 5
## [2,] 0.4 0.1 0.2 0.1 0.1 0.3
## Israel Italien Japan Jemen Kasachstan Korea, Republik (Südkorea)
## [1,] 1 9 2 1 3 1
## [2,] 0.1 0.6 0.1 0.1 0.2 0.1
## Kroatien Libanon Luxemburg Marokko
## [1,] 4 2 1 1
## [2,] 0.3 0.1 0.1 0.1
## Mazedonien, ehem. jugoslawische Republik Moldawien (Republik Moldau)
## [1,] 3 2
## [2,] 0.2 0.1
## Mongolei Namibia Niederlande Nigeria Norwegen Österreich Pakistan
## [1,] 2 1 1 1 1 135 1
## [2,] 0.1 0.1 0.1 0.1 0.1 8.7 0.1
## Polen Rumänien Russische Föderation Schweiz (Confoederatio Helvetica)
## [1,] 107 11 31 1
## [2,] 6.9 0.7 2 0.1
## Senegal Serbien Slowakei Slowenien Spanien Sri Lanka Südafrika
## [1,] 1 10 2 4 3 2 1
## [2,] 0.1 0.6 0.1 0.3 0.2 0.1 0.1
## Thailand Tschechische Republik Türkei Ukraine Ungarn Usbekistan
## [1,] 1 28 20 8 8 1
## [2,] 0.1 1.8 1.3 0.5 0.5 0.1
## Vereinigte Staaten von Amerika
## [1,] 4
## [2,] 0.3
## Vereinigtes Königreich Großbritannien und Nordirland <NA>
## [1,] 4 290 1543
## [2,] 0.3 18.8 100
v1_clin_cntr_brth_gff<-v1_clin$v1_demogr_s2_dem31_land_gv_vs_lnd
v1_clin_cntr_brth_gff<-ifelse(is.na(v1_clin_cntr_brth_gff)==T & v1_clin$v1_demogr_s2_dem31_land_gv_vs==1,
"Deutschland",as.character(v1_clin_cntr_brth_gff))
v1_con_cntr_brth_gff<-v1_con$v1_demo2_land7
v1_con_cntr_brth_gff<-ifelse(is.na(v1_con_cntr_brth_gff)==T & v1_con$v1_demo2_gebortgvv==1,
"Deutschland",as.character(v1_con_cntr_brth_gff))
v1_cntr_brth_gff<-as.factor(c(v1_clin_cntr_brth_gff,v1_con_cntr_brth_gff))
descT(v1_cntr_brth_gff)
## Afghanistan Ägypten Algerien anderes Land Australien
## [1,] No. cases 1 1 1 5 1
## [2,] Percent 0.1 0.1 0.1 0.3 0.1
## Belarus (Weißrussland) Belgien Bosnien und Herzegowina Bulgarien
## [1,] 1 2 3 2
## [2,] 0.1 0.1 0.2 0.1
## Chile Deutschland Eritrea Estland Frankreich Ghana Griechenland
## [1,] 4 819 3 1 5 1 1
## [2,] 0.3 53.1 0.2 0.1 0.3 0.1 0.1
## Indien Irak Iran, Islamische Republik Israel Italien Japan Jemen
## [1,] 2 1 6 1 7 2 1
## [2,] 0.1 0.1 0.4 0.1 0.5 0.1 0.1
## Kasachstan Korea, Republik (Südkorea) Kroatien Litauen Luxemburg
## [1,] 3 1 5 2 1
## [2,] 0.2 0.1 0.3 0.1 0.1
## Marokko Mazedonien, ehem. jugoslawische Republik Mongolei Namibia
## [1,] 1 3 1 2
## [2,] 0.1 0.2 0.1 0.1
## Niederlande Nigeria Norwegen Österreich Pakistan
## [1,] 1 1 1 136 1
## [2,] 0.1 0.1 0.1 8.8 0.1
## Palästinensische Autonomiegebiete Polen Rumänien Russische Föderation
## [1,] 2 107 11 31
## [2,] 0.1 6.9 0.7 2
## Senegal Serbien Slowakei Slowenien Spanien Sri Lanka Thailand
## [1,] 1 9 3 5 3 2 1
## [2,] 0.1 0.6 0.2 0.3 0.2 0.1 0.1
## Tschechische Republik Türkei Ukraine Ungarn Usbekistan
## [1,] 25 21 7 8 1
## [2,] 1.6 1.4 0.5 0.5 0.1
## Vereinigte Staaten von Amerika
## [1,] 5
## [2,] 0.3
## Vereinigtes Königreich Großbritannien und Nordirland <NA>
## [1,] 3 268 1543
## [2,] 0.2 17.4 100
Create dataset
v1_eth<-data.frame(v1_cntr_brth,v1_cntr_brth_m,v1_cntr_brth_f,v1_cntr_brth_gmm,
v1_cntr_brth_gfm,v1_cntr_brth_gmf,v1_cntr_brth_gff)
This is an ordinal scale with four levels: “no”-1, “yes, outpatient”-2, “yes, day patient”-3, “yes, inpatient”-4.
v1_clin_cur_psy_trm<-rep(NA,dim(v1_clin)[1])
v1_con_cur_psy_trm<-rep(NA,dim(v1_con)[1])
v1_clin_cur_psy_trm<-ifelse(v1_clin$v1_psy_vorg_akt_pva1_akt_behand==0,"1",
ifelse(v1_clin$v1_psy_vorg_akt_pva1_akt_behand==3,"2",
ifelse(v1_clin$v1_psy_vorg_akt_pva1_akt_behand==2,"3",
ifelse(v1_clin$v1_psy_vorg_akt_pva1_akt_behand==1,"4",v1_clin_cur_psy_trm))))
v1_con_cur_psy_trm<-ifelse(v1_con$v1_psyaktuel_aktbehand==0,"1",
ifelse(v1_con$v1_psyaktuel_aktbehand==3,"2",
ifelse(v1_con$v1_psyaktuel_aktbehand==2,"3",
ifelse(v1_con$v1_psyaktuel_aktbehand==1,"4",v1_con_cur_psy_trm))))
v1_cur_psy_trm<-ordered(as.factor(c(v1_clin_cur_psy_trm,v1_con_cur_psy_trm)))
descT(v1_cur_psy_trm)
## 1 2 3 4 <NA>
## [1,] No. cases 352 585 73 513 20 1543
## [2,] Percent 22.8 37.9 4.7 33.2 1.3 100
This is an ordinal scale with four levels: “no”-1, “yes, consultation or short treatment”-2, “yes, continuous treatment for six months or numerous short episodes”-3, “yes, continuous treatment for several years or many short episodes”-4. The option “No information” was coded as “-999”.
v1_clin_outpat_psy_trm<-ifelse(v1_clin$v1_psy_vorg_akt_pva2_jemals_behand==0,-999,v1_clin$v1_psy_vorg_akt_pva2_jemals_behand)
v1_con_outpat_psy_trm<-ifelse(v1_con$v1_psyaktuel_jembehand==0,-999,v1_con$v1_psyaktuel_jembehand)
v1_outpat_psy_trm<-factor(c(v1_clin_outpat_psy_trm,v1_con_outpat_psy_trm),ordered=T)
summary(v1_outpat_psy_trm)
## -999 1 2 3 4 NA's
## 13 320 152 134 909 15
If controls were never treated for any mental health reason, they are coded as -999.
v1_age_1st_out_trm<-c(v1_clin$v1_psy_vorg_akt_pva3_alter_jahre,
ifelse(is.na(v1_con$v1_psyaktuel_alterj),-999,v1_con$v1_psyaktuel_alterj))
summary(v1_age_1st_out_trm)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -999.0 16.0 23.0 -166.9 32.0 73.0 103
v1_clin_daypat_inpat_trm<-ifelse(v1_clin$v1_psy_vorg_akt_pva4_teilst_behand==1, "Y","N")
v1_con_daypat_inpat_trm<-ifelse(v1_con$v1_psyaktuel_tstbehand==1, "Y","N")
v1_daypat_inpat_trm<-factor(c(v1_clin_daypat_inpat_trm,v1_con_daypat_inpat_trm))
descT(v1_daypat_inpat_trm)
## N Y <NA>
## [1,] No. cases 338 1187 18 1543
## [2,] Percent 21.9 76.9 1.2 100
v1_age_1st_inpat_trm<-c(v1_clin$v1_psy_vorg_akt_pva5_alter_jahre,
ifelse(is.na(v1_con$v1_psyaktuel_stalterj),-999,v1_con$v1_psyaktuel_stalterj))
summary(v1_age_1st_inpat_trm[v1_age_1st_inpat_trm>0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 5.00 22.00 27.00 30.27 37.50 73.00 67
This is a newly created variable by subtracting age at first inpatient treatment from age at first visit (unit is years). Please note that this assumes that the patient was hospitalized for the diagnosis given in here and may therefore not be entirely accurate. In control individuals this was set to -999.
v1_dur_illness_clin<-v1_age[v1_stat=="CLINICAL"]-v1_age_1st_inpat_trm[v1_stat=="CLINICAL"]
table(v1_dur_illness_clin)
## v1_dur_illness_clin
## -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 8 103 69 55 51 41 50 36 43 45 44 43 52 37 47 33 32 41
## 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
## 24 17 20 21 19 26 13 14 16 12 21 13 17 8 14 7 5 9
## 35 36 37 38 39 40 41 42 43 44 45 46 47 50 51 52 53
## 4 5 4 4 5 9 1 4 3 2 2 1 2 1 1 1 1
#Set negative values to NA
v1_dur_illness_clin[v1_dur_illness_clin<0]<-NA
table(v1_dur_illness_clin)
## v1_dur_illness_clin
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## 103 69 55 51 41 50 36 43 45 44 43 52 37 47 33 32 41 24
## 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
## 17 20 21 19 26 13 14 16 12 21 13 17 8 14 7 5 9 4
## 36 37 38 39 40 41 42 43 44 45 46 47 50 51 52 53
## 5 4 4 5 9 1 4 3 2 2 1 2 1 1 1 1
#Set controls to -999
v1_dur_illness_con<-rep(-999,dim(v1_con)[1])
v1_dur_illness<-c(v1_dur_illness_clin,v1_dur_illness_con)
table(v1_dur_illness)
## v1_dur_illness
## -999 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 320 103 69 55 51 41 50 36 43 45 44 43 52 37 47
## 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
## 33 32 41 24 17 20 21 19 26 13 14 16 12 21 13
## 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
## 17 8 14 7 5 9 4 5 4 4 5 9 1 4 3
## 44 45 46 47 50 51 52 53
## 2 2 1 2 1 1 1 1
This is a newly created variable. Clinical participants with duration of illness of zero years are labeled as first-episode. Control participants have “-999”.
v1_1st_ep_con<-rep(-999,dim(v1_con)[1])
v1_1st_ep_clin<-ifelse(v1_dur_illness_clin==0,"Y","N")
v1_1st_ep<-factor(c(v1_1st_ep_clin,v1_1st_ep_con))
descT(v1_1st_ep)
## -999 N Y <NA>
## [1,] No. cases 320 1045 103 75 1543
## [2,] Percent 20.7 67.7 6.7 4.9 100
Interviewers were instructed to use the lowest number if information is imprecise and to use “99” if too many treatments occurred. If the participant is currently treated as in- or daypatient, the number given contains this treatment.
v1_clin_tms_daypat_outpat_trm<-v1_clin$v1_psy_vorg_akt_pva6_anz_psy_behand
v1_con_tms_daypat_outpat_trm<-v1_con$v1_psyaktuel_anzahl
v1_tms_daypat_outpat_trm<-c(v1_clin_tms_daypat_outpat_trm,v1_con_tms_daypat_outpat_trm)
summary(v1_tms_daypat_outpat_trm)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0 2.0 4.0 6.4 7.0 99.0 392
We have decided to transform this variable into an ordinal variable using the following gradings: “smaller or equal five times”-1, “six to ten times”-2, “eleven to fourteen times”-3, “fifteen or more times”-4.
v1_clin_cat_daypat_outpat_trm<-rep(NA,dim(v1_clin)[1])
v1_con_cat_daypat_outpat_trm<-rep(NA,dim(v1_con)[1])
v1_clin_cat_daypat_outpat_trm<-ifelse(v1_clin_tms_daypat_outpat_trm<=5,"1",v1_clin_cat_daypat_outpat_trm)
v1_clin_cat_daypat_outpat_trm<-ifelse(v1_clin_tms_daypat_outpat_trm %in% c(6:10),"2",v1_clin_cat_daypat_outpat_trm)
v1_clin_cat_daypat_outpat_trm<-ifelse(v1_clin_tms_daypat_outpat_trm %in% c(11:13),"3",v1_clin_cat_daypat_outpat_trm)
v1_clin_cat_daypat_outpat_trm<-ifelse(v1_clin_tms_daypat_outpat_trm>=15,"4",v1_clin_cat_daypat_outpat_trm)
v1_con_cat_daypat_outpat_trm<-ifelse(v1_con_tms_daypat_outpat_trm<=5,"1",v1_con_cat_daypat_outpat_trm)
v1_con_cat_daypat_outpat_trm<-ifelse(v1_con_tms_daypat_outpat_trm %in% c(6:10),"2",v1_con_cat_daypat_outpat_trm)
v1_con_cat_daypat_outpat_trm<-ifelse(v1_con_tms_daypat_outpat_trm %in% c(11:13),"3",v1_con_cat_daypat_outpat_trm)
v1_con_cat_daypat_outpat_trm<-ifelse(v1_con_tms_daypat_outpat_trm>=15,"4",v1_con_cat_daypat_outpat_trm)
v1_cat_daypat_outpat_trm<-factor(c(v1_clin_cat_daypat_outpat_trm,v1_con_cat_daypat_outpat_trm),ordered=T)
descT(v1_cat_daypat_outpat_trm)
## 1 2 3 4 <NA>
## [1,] No. cases 766 257 37 82 401 1543
## [2,] Percent 49.6 16.7 2.4 5.3 26 100
Create dataset
v1_psy_trtmt<-data.frame(v1_cur_psy_trm,v1_outpat_psy_trm,v1_age_1st_out_trm,v1_daypat_inpat_trm,v1_age_1st_inpat_trm,
v1_dur_illness,v1_1st_ep,v1_tms_daypat_outpat_trm,v1_cat_daypat_outpat_trm)
PsyCourse 3.1 now contains medication data. The code below creates the following variables for each person:
Number of antidepressants prescribed (continuous [number], v1_Antidepressants) Number of antipsychotics prescribed (continuous [number], v1_Antipsychotics) Number of mood stabilizers prescribed (continuous [number], v1_Mood_Stabilizers) Number of tranquilizers prescribed (continuous [number], v1_Tranquilizers) Number of other psychiatric medications (continuous [number], v1_Other_psychiatric)
#get the following variables from v1_clin
#1. Medication name ["_med_medi_1"]
#2. Medication category ["_med_kategorie_1"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_1"]
#6. Bedarf category ["_bedarf_kategorie_1"]
v1_clin_medication_variables_1<-as.data.frame(v1_clin[,grep("mnppsd|_med_medi_1|_med_kategorie_1|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_1|_bedarf_kategorie_1",names(v1_clin))])
dim(v1_clin_medication_variables_1) #[1] 1223 61
## [1] 1223 61
#recode the variables that are coded as characters/logicals in the "v1_clin_medication_variables_1" as factors
v1_clin_medication_variables_1$v1_medikabehand3_med_medi_199998_17<-as.factor(v1_clin_medication_variables_1$v1_medikabehand3_med_medi_199998_17)
v1_clin_medication_variables_1$v1_medikabehand3_med_kategorie_199998_17<-as.factor(v1_clin_medication_variables_1$v1_medikabehand3_med_kategorie_199998_17)
v1_clin_medication_variables_1$v1_medikabehand3_bedarf_medi_199584_10<-as.factor(v1_clin_medication_variables_1$v1_medikabehand3_bedarf_medi_199584_10)
v1_clin_medication_variables_1$v1_medikabehand3_bedarf_kategorie_199584_10<-as.factor(v1_clin_medication_variables_1$v1_medikabehand3_bedarf_kategorie_199584_10)
#make the duplicated data frame
v1_clin_medications_duplicated_1<-as.data.frame(t(apply(v1_clin_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v1_clin_medications_duplicated_1)
## [1] 1223 30
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v1_clin, not as character
v1_clin_medication_variables_1[,!c(TRUE, FALSE)][v1_clin_medications_duplicated_1=="TRUE"] <- NA
dim(v1_clin_medication_variables_1)
## [1] 1223 61
#bind columns id and medication names, but not categories together
v1_clin_medication_name_1<-as.data.frame(cbind("mnppsd"=v1_clin_medication_variables_1[,1], v1_clin_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v1_clin_medication_name_1)
## [1] 1223 31
#get the medication categories from the "_medication_variables_1" dataframe
v1_clin_medication_categories_1<-as.data.frame(v1_clin_medication_variables_1[,c(TRUE, FALSE)])
dim(v1_clin_medication_categories_1)
## [1] 1223 31
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v1_clin, not as character
#Important: v1_clin_medication_name_1=="NA" replaced with is.na(v1_clin_medication_name_1)
v1_clin_medication_categories_1[is.na(v1_clin_medication_name_1)] <- NA
#write.csv(v1_clin_medication_categories_1, file="v1_clin_medication_group_1.csv")
#Make a count table of medications
v1_clin_med_table<-data.frame("mnppsd"=v1_clin$mnppsd)
v1_clin_med_table$v1_Antidepressants<-rowSums(v1_clin_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v1_clin_med_table$v1_Antipsychotics<-rowSums(v1_clin_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v1_clin_med_table$v1_Mood_stabilizers<-rowSums(v1_clin_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v1_clin_med_table$v1_Tranquilizers<-rowSums(v1_clin_medication_categories_1 == "Sedativa", na.rm = TRUE)
v1_clin_med_table$v1_Other_psychiatric<-rowSums(v1_clin_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
#get the following variables from v1_con
#1. Medication name ["_med_medi_2"]
#2. Medication category ["_med_kategorie_2"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_2"]
#6. Bedarf category ["_bedarf_kategorie_2"]
v1_con_medication_variables_1<-as.data.frame(v1_con[,grep("mnppsd|_med_medi_2|_med_kategorie_2|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_2|_bedarf_kategorie_2",names(v1_con))])
dim(v1_con_medication_variables_1)
## [1] 320 29
#recode the variables that are coded as characters/logicals in the "v1_con_medication_variables_1" as factors
v1_con_medication_variables_1$v1_medikabehand3_depot_medi_201224_2<-as.factor(v1_con_medication_variables_1$v1_medikabehand3_depot_medi_201224_2)
v1_con_medication_variables_1$v1_medikabehand3_depot_kategorie_201224_2<-as.factor(v1_con_medication_variables_1$v1_medikabehand3_depot_kategorie_201224_2)
v1_con_medication_variables_1$v1_medikabehand3_bedarf_medi_201187_4<-as.factor(v1_con_medication_variables_1$v1_medikabehand3_bedarf_medi_201187_4)
v1_con_medication_variables_1$v1_medikabehand3_bedarf_kategorie_201187_4<-as.factor(v1_con_medication_variables_1$v1_medikabehand3_bedarf_kategorie_201187_4)
#make the duplicated data frame
v1_con_medications_duplicated_1<-as.data.frame(t(apply(v1_con_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v1_con_medications_duplicated_1) #320 14
## [1] 320 14
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v1_con, not as character
v1_con_medication_variables_1[,!c(TRUE, FALSE)][v1_con_medications_duplicated_1=="TRUE"] <- NA
dim(v1_con_medication_variables_1) #320 29
## [1] 320 29
#bind columns id and medication names, but not categories together
v1_con_medication_name_1<-as.data.frame(cbind("mnppsd"=v1_con_medication_variables_1[,1], v1_con_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v1_con_medication_name_1) #320 15
## [1] 320 15
#get the medication categories from the "_medication_variables_1" dataframe
v1_con_medication_categories_1<-as.data.frame(v1_con_medication_variables_1[,c(TRUE, FALSE)])
dim(v1_con_medication_categories_1) #320 15
## [1] 320 15
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v1_con, not as character
#Important: v1_con_medication_name_1=="NA" replaced with is.na(v1_con_medication_name_1)
v1_con_medication_categories_1[is.na(v1_con_medication_name_1)] <- NA
#write.csv(v1_con_medication_categories_1, file="v1_con_medication_group_1.csv")
#Make a count table of medications
v1_con_med_table<-data.frame("mnppsd"=v1_con$mnppsd)
v1_con_med_table$v1_Antidepressants<-rowSums(v1_con_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v1_con_med_table$v1_Antipsychotics<-rowSums(v1_con_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v1_con_med_table$v1_Mood_stabilizers<-rowSums(v1_con_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v1_con_med_table$v1_Tranquilizers<-rowSums(v1_con_medication_categories_1 == "Sedativa", na.rm = TRUE)
v1_con_med_table$v1_Other_psychiatric<-rowSums(v1_con_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
Bind v1_clin and v1_con together by rows
v1_drugs<-rbind(v1_clin_med_table,v1_con_med_table)
dim(v1_drugs) #1543 6
## [1] 1543 6
#check if the id column of v1_drugs and v1_id match
table(droplevels(v1_drugs[,1])==v1_id)
##
## TRUE
## 1543
In control participants, this item is coded “-999”, as it was not assessed.
v1_clin_adv<-ifelse(v1_clin$v1_medikabehand_medi2_nebenwirk==1,"Y","N")
v1_con_adv<-rep("-999",dim(v1_con)[1])
v1_adv<-factor(c(v1_clin_adv,v1_con_adv))
descT(v1_adv)
## -999 N Y <NA>
## [1,] No. cases 320 302 553 368 1543
## [2,] Percent 20.7 19.6 35.8 23.8 100
In control participants, this item is coded “-999”, as it was not assessed.
v1_clin_medchange<-rep(NA,dim(v1_clin)[1])
v1_clin_medchange<-ifelse(v1_clin$v1_medikabehand_medi3_mediaenderung==1,"Y","N")
v1_con_medchange<-rep("-999",dim(v1_con)[1])
v1_medchange<-as.factor(c(v1_clin_medchange,v1_con_medchange))
descT(v1_medchange)
## -999 N Y <NA>
## [1,] No. cases 320 254 592 377 1543
## [2,] Percent 20.7 16.5 38.4 24.4 100
The following two items on medication with lithium are asked in all study vists, in order not to miss participants eligible for the ALDA scale, which is assessed at the last study visit.
v1_clin_lith<-rep(NA,dim(v1_clin)[1])
v1_clin_lith<-ifelse(v1_clin$v1_medikabehand_med_zusatz_lithium==1,"Y","N")
v1_con_lith<-rep("-999",dim(v1_con)[1])
v1_lith<-as.factor(c(v1_clin_lith,v1_con_lith))
v1_lith<-as.factor(v1_lith)
descT(v1_lith)
## -999 N Y <NA>
## [1,] No. cases 320 529 246 448 1543
## [2,] Percent 20.7 34.3 15.9 29 100
Ordinal variable, gradation the following: “less than one year”-1, “one to two years”-2, “two or more years”-3. Clinical paricipants not treated with lithium or control participants have “-999” here.
v1_clin_lith_prd<-rep(NA,dim(v1_clin)[1])
v1_con_lith_prd<-rep(-999,dim(v1_con)[1])
v1_clin_lith_prd<-ifelse(v1_clin_lith=="N", -999, ifelse(v1_clin$v1_medikabehand_med_zusatz_dauer==2,1,
ifelse(v1_clin$v1_medikabehand_med_zusatz_dauer==1,2,
ifelse(v1_clin$v1_medikabehand_med_zusatz_dauer==0,3,NA))))
v1_lith_prd<-factor(c(v1_clin_lith_prd,v1_con_lith_prd))
descT(v1_lith_prd)
## -999 1 2 3 <NA>
## [1,] No. cases 849 103 26 117 448 1543
## [2,] Percent 55 6.7 1.7 7.6 29 100
Create dataset
v1_med<-data.frame(v1_drugs[,2:6],v1_adv,v1_medchange,v1_lith,v1_lith_prd)
The option “Participant does not know” is coded as “NA”. The option “Participant does not want to disclose information” is coded as “-999”.
v1_clin_fam_hist<-rep(NA,dim(v1_clin)[1])
v1_con_fam_hist<-rep(NA,dim(v1_con)[1])
v1_clin_fam_hist<-ifelse(v1_clin$v1_psy_famanam_pfa_angeh_pe==0,"N",
ifelse(v1_clin$v1_psy_famanam_pfa_angeh_pe==1,"Y",
ifelse(v1_clin$v1_psy_famanam_pfa_angeh_pe==2,"-999",
ifelse(v1_clin$v1_psy_famanam_pfa_angeh_pe==3,NA,v1_clin_fam_hist))))
v1_con_fam_hist<-ifelse(v1_con$v1_famanam_psyangeh==0,"N",
ifelse(v1_con$v1_famanam_psyangeh==1,"Y",
ifelse(v1_con$v1_famanam_psyangeh==2,"-999",
ifelse(v1_con$v1_famanam_psyangeh==3,NA,v1_con_fam_hist))))
v1_fam_hist<-as.factor(c(v1_clin_fam_hist,v1_con_fam_hist))
descT(v1_fam_hist)
## -999 N Y <NA>
## [1,] No. cases 10 436 1034 63 1543
## [2,] Percent 0.6 28.3 67 4.1 100
Also, in the original assessment of psychiatric history, each affected family member is listed, together with an indication whther the diagnosis is certain or not. This detailed information is available on request.
The method of assessment of physical measures and somatic diseases changed during the course of the study. Selected diseases are now assessed specifically as dichotomous items. Before, it was only assessed whether a participant was ever affected by a group of diseases. If possble, these different phenotypes were harmonized. More detailed information on specific diseases (e.g. “Which type of cancer?”) may be available.
IMPORTANT:
Please note that all of the questions below are self-reported measurements and that interviews were mainly conducted by research/clinical psychologists. For diseases, participants were asked whethe a medical doctor had ever diagnosed them with the disease in question.
Due to the change of assessment of these diseases and the (rather poor) ad-hoc harmonization, a researcher should carefully consider whether these items should be used in research at all.
Height (continuous [centimeters], v1_height)
v1_clin_height<-ifelse(is.na(v1_clin$v1_medwkeii_groesse),v1_clin$v1_mwke_mw1_groesse,v1_clin$v1_medwkeii_groesse)
v1_con_height<-ifelse(is.na(v1_con$v1_mwke_groesse),v1_con$v1_medwkeii_groesse,v1_con$v1_mwke_groesse)
v1_height<-c(v1_clin_height,v1_con_height)
summary(v1_height)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 114.0 167.0 174.0 173.7 180.0 203.0 15
Weight (continuous [kilograms], v1_weight)
v1_clin_weight<-ifelse(is.na(v1_clin$v1_medwkeii_gewicht),v1_clin$v1_mwke_mw2_gewicht,v1_clin$v1_medwkeii_gewicht)
v1_con_weight<-ifelse(is.na(v1_con$v1_medwkeii_gewicht),v1_con$v1_mwke_gewicht,v1_con$v1_medwkeii_gewicht)
v1_weight<-c(v1_clin_weight,v1_con_weight)
summary(v1_weight)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 45.00 69.00 80.00 82.95 94.00 190.00 23
Waist circumference (continouos [centimeters], v1_waist) This item was only recorded in a subset of individuals, because the question was introduced while the study was running.
v1_clin_waist<-v1_clin$v1_medwkeii_mw1_taillenumfang
v1_con_waist<-v1_con$v1_medwkeii_mw1_taillenumfang
v1_waist<-c(v1_clin_waist,v1_con_waist)
summary(v1_waist)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 61.00 76.00 86.00 89.01 100.00 149.00 1127
Body mass index (BMI, continuous [BMI], v1_bmi) We here provide the body mass index of study participants, calculated as weight in kilograms divided by the squared height in meters.
v1_bmi<-round(v1_weight/(v1_height/100)^2,2)
summary(v1_bmi)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 16.18 23.05 26.22 27.41 30.41 75.41 23
Elevated cholesterol or triglyceride levels (dichotomous,v1_chol_trig) Phenotype was harmonized with the previous system.
v1_clin_chol_trig<-ifelse(v1_clin$v1_mwke_ke2_an090_stoffw==2,"N",
ifelse(v1_clin$v1_mwke_ke2_an090_stoffw==1 &
grepl("[Tt]riglyceride|[Cc]holesterin|[Hh]ypercholesterin|[Hh]ypertriglycerid|Hyperlipoproteinämie|Hypercholestrinomie",
v1_clin$v1_mwke_ke2_an090_stoffw_det),"Y","N"))
v1_clin_chol_trig<-ifelse(is.na(v1_clin_chol_trig) & v1_clin$v1_medwkeii_medwkeii_ecot==1,"Y",
ifelse(is.na(v1_clin_chol_trig) & v1_clin$v1_medwkeii_medwkeii_ecot==2,"N",v1_clin_chol_trig))
v1_con_chol_trig<-ifelse(v1_con$v1_mwke_stoffw==2,"N",
ifelse(v1_con$v1_mwke_stoffw==1 &
grepl("[Tt]riglyceride|[Cc]holesterin|[Hh]ypercholesterin|[Hh]ypertriglycerid|Hyperlipoproteinämie|Hypercholestrinomie",
v1_con$v1_mwke_stoffw_t),"Y","N"))
v1_con_chol_trig<-ifelse(is.na(v1_con_chol_trig) & v1_con$v1_medwkeii_medwkeii_ecot==1,"Y",
ifelse(is.na(v1_con_chol_trig) & v1_con$v1_medwkeii_medwkeii_ecot==2,"N",v1_con_chol_trig))
v1_chol_trig<-factor(c(v1_clin_chol_trig,v1_con_chol_trig))
descT(v1_chol_trig)
## N Y <NA>
## [1,] No. cases 1339 177 27 1543
## [2,] Percent 86.8 11.5 1.7 100
Hypertension (dichotomous, v1_hyperten) Phenotype was harmonized with the previous system.
v1_clin_hyperten<-ifelse(v1_clin$v1_mwke_ke1_an010_hke==2,"N",
ifelse(v1_clin$v1_mwke_ke1_an010_hke==1 &
grepl("[Hh]yperton|[Hh]oher Blutdruck|[Bb]luthochdruck",
v1_clin$v1_mwke_ke1_an010_hke_det),"Y","N"))
v1_clin_hyperten<-ifelse(is.na(v1_clin_hyperten) & v1_clin$v1_medwkeii_medwkeii_hyperton==1,"Y",
ifelse(is.na(v1_clin_hyperten) & v1_clin$v1_medwkeii_medwkeii_hyperton==2,"N",v1_clin_hyperten))
v1_con_hyperten<-ifelse(v1_con$v1_mwke_hke==2,"N",
ifelse(v1_con$v1_mwke_hke==1 &
grepl("[Hh]yperton|[Hh]oher Blutdruck|[Bb]luthochdruck",
v1_con$v1_mwke_hke_t),"Y","N"))
v1_con_hyperten<-ifelse(is.na(v1_con_hyperten) & v1_con$v1_medwkeii_medwkeii_hyperton==1,"Y",
ifelse(is.na(v1_con_hyperten) & v1_con$v1_medwkeii_medwkeii_hyperton==2,"N",v1_con_hyperten))
v1_hyperten<-factor(c(v1_clin_hyperten,v1_con_hyperten))
descT(v1_hyperten)
## N Y <NA>
## [1,] No. cases 1255 264 24 1543
## [2,] Percent 81.3 17.1 1.6 100
Angina pectoris (dichotomous, v1_ang_pec) Phenotype was harmonized with the previous system.
v1_clin_ang_pec<-ifelse(v1_clin$v1_mwke_ke1_an010_hke==2,"N",
ifelse(v1_clin$v1_mwke_ke1_an010_hke==1 & grepl("[Aa]ngina [Pp]ectoris",v1_clin$v1_mwke_ke1_an010_hke_det),"Y","N"))
v1_clin_ang_pec<-ifelse(is.na(v1_clin_ang_pec) & v1_clin$v1_medwkeii_medwkeii_angpec==1,"Y",
ifelse(is.na(v1_clin_ang_pec) & v1_clin$v1_medwkeii_medwkeii_angpec==2,"N",v1_clin_ang_pec))
v1_con_ang_pec<-ifelse(v1_con$v1_mwke_hke==2,"N",
ifelse(v1_con$v1_mwke_hke==1 & grepl("[Aa]ngina [Pp]ectoris",v1_con$v1_mwke_hke_t),"Y","N"))
v1_con_ang_pec<-ifelse(is.na(v1_con_ang_pec) & v1_con$v1_medwkeii_medwkeii_angpec==1,"Y",
ifelse(is.na(v1_con_ang_pec) & v1_con$v1_medwkeii_medwkeii_angpec==2,"N",v1_con_ang_pec))
v1_ang_pec<-factor(c(v1_clin_ang_pec,v1_con_ang_pec))
descT(v1_ang_pec)
## N Y <NA>
## [1,] No. cases 1503 16 24 1543
## [2,] Percent 97.4 1 1.6 100
Heart attack (dichotomous, v1_heart_att) Phenotype was harmonized with the previous system.
v1_clin_heart_att<-ifelse(v1_clin$v1_mwke_ke1_an010_hke==2,"N",
ifelse(v1_clin$v1_mwke_ke1_an010_hke==1 & grepl("[Hh]erzinfarkt|[Mm]yokardinfarkt",v1_clin$v1_mwke_ke1_an010_hke_det),"Y","N"))
v1_clin_heart_att<-ifelse(is.na(v1_clin_heart_att) & v1_clin$v1_medwkeii_medwkeii_herzinf==1,"Y",
ifelse(is.na(v1_clin_heart_att) & v1_clin$v1_medwkeii_medwkeii_herzinf==2,"N",v1_clin_heart_att))
v1_con_heart_att<-ifelse(v1_con$v1_mwke_hke==2,"N",
ifelse(v1_con$v1_mwke_hke==1 & grepl("[Hh]erzinfarkt|[Mm]yokardinfarkt",v1_con$v1_mwke_hke_t),"Y","N"))
v1_con_heart_att<-ifelse(is.na(v1_con_heart_att) & v1_con$v1_medwkeii_medwkeii_herzinf==1,"Y",
ifelse(is.na(v1_con_heart_att) & v1_con$v1_medwkeii_medwkeii_herzinf==2,"N",v1_con_heart_att))
v1_heart_att<-factor(c(v1_clin_heart_att,v1_con_heart_att))
descT(v1_heart_att)
## N Y <NA>
## [1,] No. cases 1502 15 26 1543
## [2,] Percent 97.3 1 1.7 100
Stroke (dichotomous, v1_stroke) Phenotype was harmonized with the previous system.
v1_clin_stroke<-ifelse(v1_clin$v1_mwke_ke1_an010_hke==2,"N",
ifelse(v1_clin$v1_mwke_ke1_an010_hke==1 & grepl("[Ss]chlaganfall|[Hh]irnblutung|[Gg]ehirnblutung",v1_clin$v1_mwke_ke1_an010_hke_det),"Y","N"))
v1_clin_stroke<-ifelse(is.na(v1_clin_stroke) & v1_clin$v1_medwkeii_medwkeii_schlag==1,"Y",
ifelse(is.na(v1_clin_stroke) & v1_clin$v1_medwkeii_medwkeii_schlag==2,"N",v1_clin_stroke))
v1_con_stroke<-ifelse(v1_con$v1_mwke_hke==2,"N",
ifelse(v1_con$v1_mwke_hke==1 & grepl("[Ss]chlaganfall|[Hh]irnblutung|[Gg]ehirnblutung",v1_con$v1_mwke_hke_t),"Y","N"))
v1_con_stroke<-ifelse(is.na(v1_con_stroke) & v1_con$v1_medwkeii_medwkeii_schlag==1,"Y",
ifelse(is.na(v1_con_stroke) & v1_con$v1_medwkeii_medwkeii_schlag==2,"N",v1_con_stroke))
v1_stroke<-factor(c(v1_clin_stroke,v1_con_stroke))
descT(v1_stroke)
## N Y <NA>
## [1,] No. cases 1507 11 25 1543
## [2,] Percent 97.7 0.7 1.6 100
Diabetes (dichotomous, v1_diabetes) Phenotype was harmonized with the previous system.
v1_clin_diabetes<-ifelse(v1_clin$v1_mwke_ke2_an090_stoffw==2,"N",
ifelse(v1_clin$v1_mwke_ke2_an090_stoffw==1 &
grepl("[Dd]iabetes|[Zz]ucker",v1_clin$v1_mwke_ke2_an090_stoffw_det),"Y","N"))
v1_clin_diabetes<-ifelse(is.na(v1_clin_diabetes) & v1_clin$v1_medwkeii_medwkeii_zuck==1,"Y",
ifelse(is.na(v1_clin_diabetes) & v1_clin$v1_medwkeii_medwkeii_zuck==2,"N",v1_clin_diabetes))
v1_con_diabetes<-ifelse(v1_con$v1_mwke_stoffw==2,"N",
ifelse(v1_con$v1_mwke_stoffw==1 & grepl("[Dd]iabetes|[Zz]ucker",v1_con$v1_mwke_stoffw_t),"Y","N"))
v1_con_diabetes<-ifelse(is.na(v1_con_diabetes) & v1_con$v1_medwkeii_medwkeii_zuck==1,"Y",
ifelse(is.na(v1_con_diabetes) & v1_con$v1_medwkeii_medwkeii_zuck==2,"N",v1_con_diabetes))
v1_diabetes<-factor(c(v1_clin_diabetes,v1_con_diabetes))
descT(v1_diabetes)
## N Y <NA>
## [1,] No. cases 1408 108 27 1543
## [2,] Percent 91.3 7 1.7 100
Hyperthyroidism (dichotomous, v1_hyperthy) Phenotype was harmonized with the previous system.
v1_clin_hyperthy<-ifelse(v1_clin$v1_mwke_ke3_an11_schildd==2,"N",
ifelse(v1_clin$v1_mwke_ke3_an11_schildd==1 &
grepl("[Üü]berfunktion|[Uu]eberfunktion|[Ss]childdrüsenüberfunktion|[Hh]yperthyreose",v1_clin$v1_mwke_ke3_an11_schildd_det),"Y","N"))
v1_clin_hyperthy<-ifelse(is.na(v1_clin_hyperthy) & v1_clin$v1_medwkeii_medwkeii_hypothy==1,"Y",
ifelse(is.na(v1_clin_hyperthy) & v1_clin$v1_medwkeii_medwkeii_hypothy==2,"N",v1_clin_hyperthy))
v1_con_hyperthy<-ifelse(v1_con$v1_mwke_schildd==2,"N",
ifelse(v1_con$v1_mwke_schildd==1 &
grepl("[Üü]berfunktion|[Uu]eberfunktion|[Ss]childdrüsenüberfunktion|[Hh]yperthyreose",v1_con$v1_mwke_schildd_t),"Y","N"))
v1_con_hyperthy<-ifelse(is.na(v1_con_hyperthy) & v1_con$v1_medwkeii_medwkeii_hypothy==1,"Y",
ifelse(is.na(v1_con_hyperthy) & v1_con$v1_medwkeii_medwkeii_hypothy==2,"N",v1_con_hyperthy))
v1_hyperthy<-factor(c(v1_clin_hyperthy,v1_con_hyperthy))
descT(v1_hyperthy)
## N Y <NA>
## [1,] No. cases 1402 111 30 1543
## [2,] Percent 90.9 7.2 1.9 100
Hypothyroidism (dichotomous, v1_hypothy) Phenotype was harmonized with the previous system.
v1_clin_hypothy<-ifelse(v1_clin$v1_mwke_ke3_an11_schildd==2,"N",
ifelse(v1_clin$v1_mwke_ke3_an11_schildd==1 &
grepl("[Uu]nterfunktion|[Ss]childdrüsenunterfunktion|Hashimoto|[Hh]ypothyreose|[Tt]hyreoiditis|[Ee]ntfernt",v1_clin$v1_mwke_ke3_an11_schildd_det),"Y","N"))
v1_clin_hypothy<-ifelse(is.na(v1_clin_hypothy) & v1_clin$v1_medwkeii_medwkeii_hypothy==1,"Y",
ifelse(is.na(v1_clin_hypothy) & v1_clin$v1_medwkeii_medwkeii_hypothy==2,"N",v1_clin_hypothy))
v1_con_hypothy<-ifelse(v1_con$v1_mwke_schildd==2,"N",
ifelse(v1_con$v1_mwke_schildd==1 &
grepl("[Uu]nterfunktion|[Ss]childdrüsenunterfunktion|Hashimoto|[Hh]ypothyreose|[Tt]hyreoiditis|[Ee]ntfernt",v1_con$v1_mwke_schildd_t),"Y","N"))
v1_con_hypothy<-ifelse(is.na(v1_con_hypothy) & v1_con$v1_medwkeii_medwkeii_hypothy==1,"Y",
ifelse(is.na(v1_con_hypothy) & v1_con$v1_medwkeii_medwkeii_hypothy==2,"N",v1_con_hypothy))
v1_hypothy<-factor(c(v1_clin_hypothy,v1_con_hypothy))
descT(v1_hypothy)
## N Y <NA>
## [1,] No. cases 1260 253 30 1543
## [2,] Percent 81.7 16.4 1.9 100
Osteoporosis (dichotomous, v1_osteopor) Phenotype was harmonized with the previous system.
v1_clin_osteopor<-ifelse(v1_clin$v1_mwke_ke4_an130_rme==2,"N",
ifelse(v1_clin$v1_mwke_ke4_an130_rme==1 &
grepl("[Oo]steoporose|[Kk]nochenschwund",v1_clin$v1_mwke_ke4_an130_rme_det),"Y","N"))
v1_clin_osteopor<-ifelse(is.na(v1_clin_osteopor) & v1_clin$v1_medwkeii_medwkeii_osterop==1,"Y",
ifelse(is.na(v1_clin_osteopor) & v1_clin$v1_medwkeii_medwkeii_osterop==2,"N",v1_clin_osteopor))
v1_con_osteopor<-ifelse(v1_con$v1_mwke_rme==2,"N",
ifelse(v1_con$v1_mwke_rme==1 &
grepl("[Oo]steoporose|[Kk]nochenschwund",v1_con$v1_mwke_rme_t),"Y","N"))
v1_con_osteopor<-ifelse(is.na(v1_con_osteopor) & v1_con$v1_medwkeii_medwkeii_osterop==1,"Y",
ifelse(is.na(v1_con_osteopor) & v1_con$v1_medwkeii_medwkeii_osterop==2,"N",v1_con_osteopor))
v1_osteopor<-factor(c(v1_clin_osteopor,v1_con_osteopor))
descT(v1_osteopor)
## N Y <NA>
## [1,] No. cases 1489 26 28 1543
## [2,] Percent 96.5 1.7 1.8 100
Asthma (dichotomous, v1_asthma) Phenotype was harmonized with the previous system.
v1_clin_asthma<-ifelse(v1_clin$v1_mwke_ke5_an180_lunge==2,"N",
ifelse(v1_clin$v1_mwke_ke5_an180_lunge==1 &
grepl("[Aa]sthma",v1_clin$v1_mwke_ke5_an180_lunge_det),"Y","N"))
v1_clin_asthma<-ifelse(is.na(v1_clin_asthma) & v1_clin$v1_medwkeii_medwkeii_asthma==1,"Y",
ifelse(is.na(v1_clin_asthma) & v1_clin$v1_medwkeii_medwkeii_asthma==2,"N",v1_clin_asthma))
v1_con_asthma<-ifelse(v1_con$v1_mwke_lunge==2,"N",
ifelse(v1_con$v1_mwke_lunge==1 &
grepl("[Aa]sthma",v1_con$v1_mwke_lunge_t),"Y","N"))
v1_con_asthma<-ifelse(is.na(v1_con_asthma) & v1_con$v1_medwkeii_medwkeii_asthma==1,"Y",
ifelse(is.na(v1_con_asthma) & v1_con$v1_medwkeii_medwkeii_asthma==2,"N",v1_con_asthma))
v1_asthma<-factor(c(v1_clin_asthma,v1_con_asthma))
descT(v1_asthma)
## N Y <NA>
## [1,] No. cases 1399 120 24 1543
## [2,] Percent 90.7 7.8 1.6 100
COPD/chronic Bronchitis (dichotomous, v1_copd) Phenotype was harmonized with the previous system.
v1_clin_copd<-ifelse(v1_clin$v1_mwke_ke5_an180_lunge==2,"N",
ifelse(v1_clin$v1_mwke_ke5_an180_lunge==1 &
grepl("COPD|[Cc]hronische Bronchitis|[Cc]hron. Bronchitis|Chronisch obstruktive Atemwegserkrankung",v1_clin$v1_mwke_ke5_an180_lunge_det),"Y","N"))
v1_clin_copd<-ifelse(is.na(v1_clin_copd) & v1_clin$v1_medwkeii_medwkeii_copd==1,"Y",
ifelse(is.na(v1_clin_copd) & v1_clin$v1_medwkeii_medwkeii_copd==2,"N",v1_clin_copd))
v1_con_copd<-ifelse(v1_con$v1_mwke_lunge==2,"N",
ifelse(v1_con$v1_mwke_lunge==1 &
grepl("COPD|[Cc]hronische Bronchitis|[Cc]hron. Bronchitis|Chronisch obstruktive Atemwegserkrankung",v1_con$v1_mwke_lunge_t),"Y","N"))
v1_con_copd<-ifelse(is.na(v1_con_copd) & v1_con$v1_medwkeii_medwkeii_copd==1,"Y",
ifelse(is.na(v1_con_copd) & v1_con$v1_medwkeii_medwkeii_copd==2,"N",v1_con_copd))
v1_copd<-factor(c(v1_clin_copd,v1_con_copd))
descT(v1_copd)
## N Y <NA>
## [1,] No. cases 1451 68 24 1543
## [2,] Percent 94 4.4 1.6 100
Allergies (dichotomus, v1_allerg) Phenotype was harmonized with the previous system.
v1_clin_allerg<-ifelse(v1_clin$v1_mwke_ke6_an200_allerg==1,"Y","N")
v1_clin_allerg<-ifelse(is.na(v1_clin_allerg) & v1_clin$v1_medwkeii_medwkeii_allerg==1,"Y",
ifelse(is.na(v1_clin_allerg) & v1_clin$v1_medwkeii_medwkeii_allerg==2,"N",v1_clin_allerg))
v1_con_allerg<-ifelse(v1_con$v1_mwke_allerg==1,"Y","N")
v1_con_allerg<-ifelse(is.na(v1_con_allerg) & v1_con$v1_medwkeii_medwkeii_allerg==1,"Y",
ifelse(is.na(v1_con_allerg) & v1_con$v1_medwkeii_medwkeii_allerg==2,"N",v1_con_allerg))
v1_allerg<-factor(c(v1_clin_allerg,v1_con_allerg))
descT(v1_allerg)
## N Y <NA>
## [1,] No. cases 888 633 22 1543
## [2,] Percent 57.6 41 1.4 100
Neurodermatitis (dichotomous, v1_neuroder) Phenotype was harmonized with the previous system.
v1_clin_neuroder<-ifelse(v1_clin$v1_mwke_ke9_an330_haut==2,"N",
ifelse(v1_clin$v1_mwke_ke9_an330_haut==1 &
grepl("[Nn]eurodermitis",v1_clin$v1_mwke_ke9_an330_haut_det),"Y","N"))
v1_clin_neuroder<-ifelse(is.na(v1_clin_neuroder) & v1_clin$v1_medwkeii_medwkeii_neurod==1,"Y",
ifelse(is.na(v1_clin_neuroder) & v1_clin$v1_medwkeii_medwkeii_neurod==2,"N",v1_clin_neuroder))
v1_con_neuroder<-ifelse(v1_con$v1_mwke_haut==2,"N",
ifelse(v1_con$v1_mwke_haut==1 &
grepl("[Nn]eurodermitis",v1_con$v1_mwke_haut_t),"Y","N"))
v1_con_neuroder<-ifelse(is.na(v1_con_neuroder) & v1_con$v1_medwkeii_medwkeii_neurod==1,"Y",
ifelse(is.na(v1_con_neuroder) & v1_con$v1_medwkeii_medwkeii_neurod==2,"N",v1_con_neuroder))
v1_neuroder<-factor(c(v1_clin_neuroder,v1_con_neuroder))
descT(v1_neuroder)
## N Y <NA>
## [1,] No. cases 1420 96 27 1543
## [2,] Percent 92 6.2 1.7 100
Psoriasis (dichotomous, v1_psoriasis) Phenotype was harmonized with the previous system.
v1_clin_psoriasis<-ifelse(v1_clin$v1_mwke_ke9_an330_haut==2,"N",
ifelse(v1_clin$v1_mwke_ke9_an330_haut==1 &
grepl("[Pp]soriasis|[Ss][Cc]huppenflechte",v1_clin$v1_mwke_ke9_an330_haut_det),"Y","N"))
v1_clin_psoriasis<-ifelse(is.na(v1_clin_psoriasis) & v1_clin$v1_medwkeii_medwkeii_neurod==1,"Y",
ifelse(is.na(v1_clin_psoriasis) & v1_clin$v1_medwkeii_medwkeii_neurod==2,"N",v1_clin_psoriasis))
v1_con_psoriasis<-ifelse(v1_con$v1_mwke_haut==2,"N",
ifelse(v1_con$v1_mwke_haut==1 &
grepl("[Ss][Cc]huppenflechte|[Ss][Cc]huppenflechte",v1_con$v1_mwke_haut_t),"Y","N"))
v1_con_psoriasis<-ifelse(is.na(v1_con_psoriasis) & v1_con$v1_medwkeii_medwkeii_neurod==1,"Y",
ifelse(is.na(v1_con_psoriasis) & v1_con$v1_medwkeii_medwkeii_neurod==2,"N",v1_con_psoriasis))
v1_psoriasis<-factor(c(v1_clin_psoriasis,v1_con_psoriasis))
descT(v1_psoriasis)
## N Y <NA>
## [1,] No. cases 1444 72 27 1543
## [2,] Percent 93.6 4.7 1.7 100
Autoimmune diseases (dichotomous, v1_autoimm)
v1_clin_autoimm_yn<-ifelse(v1_clin$v1_medwkeii_medwkeii_autoim==1,"Y","N")
v1_con_autoimm_yn<-ifelse(v1_con$v1_medwkeii_medwkeii_autoim==1,"Y","N")
v1_autoimm<-factor(c(v1_clin_autoimm_yn,v1_con_autoimm_yn))
descT(v1_autoimm)
## N Y <NA>
## [1,] No. cases 466 25 1052 1543
## [2,] Percent 30.2 1.6 68.2 100
Cancer (dichotomous, v1_cancer) Similar question asked in previous system.Information on the type of cancer is available on request.
v1_clin_cancer<-ifelse(v1_clin$v1_mwke_ke14_an56_krebs==1,"Y","N")
v1_clin_cancer<-ifelse(is.na(v1_clin_cancer) & v1_clin$v1_medwkeii_medwkeii_kreberk==1,"Y",
ifelse(is.na(v1_clin_cancer) & v1_clin$v1_medwkeii_medwkeii_kreberk==2,"N",v1_clin_cancer))
v1_con_cancer<-ifelse(v1_con$v1_mwke_krebs==1,"Y","N")
v1_con_cancer<-ifelse(is.na(v1_con_cancer) & v1_con$v1_medwkeii_medwkeii_kreberk==1,"Y",
ifelse(is.na(v1_con_cancer) & v1_con$v1_medwkeii_medwkeii_kreberk==2,"N",v1_con_cancer))
v1_cancer<-factor(c(v1_clin_cancer,v1_con_cancer))
descT(v1_cancer)
## N Y <NA>
## [1,] No. cases 1443 75 25 1543
## [2,] Percent 93.5 4.9 1.6 100
Stomach ulcer (dichotomous, v1_stom_ulc) Phenotype was harmonized with the previous system.
v1_clin_stom_ulc<-ifelse(v1_clin$v1_medwkeii_medwkeii_maggesch==1,"Y","N")
v1_clin_stom_ulc<-ifelse(is.na(v1_clin_stom_ulc) & v1_clin$v1_mwke_ke7_an270_mde==2,"N",
ifelse(is.na(v1_clin_stom_ulc) & v1_clin$v1_mwke_ke7_an270_mde==1 &
grepl("[Mm]agengeschwür",v1_clin$v1_mwke_ke7_an270_mde_det),"Y",v1_clin_stom_ulc))
v1_con_stom_ulc<-ifelse(v1_con$v1_medwkeii_medwkeii_maggesch==1,"Y","N")
v1_con_stom_ulc<-ifelse(is.na(v1_con_stom_ulc) & v1_con$v1_mwke_mde==2,"N",
ifelse(is.na(v1_con_stom_ulc) & v1_con$v1_mwke_mde==1 &
grepl("[Mm]agengeschwür",v1_con$v1_mwke_mde_t),"Y",v1_con_stom_ulc))
v1_stom_ulc<-factor(c(v1_clin_stom_ulc,v1_con_stom_ulc))
descT(v1_stom_ulc)
## N Y <NA>
## [1,] No. cases 1315 29 199 1543
## [2,] Percent 85.2 1.9 12.9 100
Kidney failure (dichotomous, v1_kid_fail)
v1_clin_kid_fail<-ifelse(v1_clin$v1_medwkeii_medwkeii_nierver==1,"Y","N")
v1_clin_kid_fail<-ifelse(is.na(v1_clin_kid_fail) & v1_clin$v1_mwke_ke10_an360_nibl==2,"N",
ifelse(is.na(v1_clin_kid_fail) & v1_clin$v1_mwke_ke10_an360_nibl==1 &
grepl("[Nn]ierenversagen",v1_clin$v1_mwke_ke10_an360_nibl_det),"Y",v1_clin_kid_fail))
v1_con_kid_fail<-ifelse(v1_con$v1_medwkeii_medwkeii_nierver==1,"Y","N")
v1_con_kid_fail<-ifelse(is.na(v1_con_kid_fail) & v1_con$v1_mwke_nibl==2,"N",
ifelse(is.na(v1_con_kid_fail) & v1_con$v1_mwke_nibl==1 &
grepl("[Nn]ierenversagen",v1_con$v1_mwke_nibl_t),"Y",v1_con_kid_fail))
v1_kid_fail<-factor(c(v1_clin_kid_fail,v1_con_kid_fail))
descT(v1_kid_fail)
## N Y <NA>
## [1,] No. cases 1390 4 149 1543
## [2,] Percent 90.1 0.3 9.7 100
Kidney-/Gallstone (dichotomous, v1_stone)
v1_clin_stone<-ifelse(v1_clin$v1_medwkeii_medwkeii_nierga==1,"Y","N")
v1_clin_stone<-ifelse(is.na(v1_clin_stone) & v1_clin$v1_mwke_ke10_an360_nibl==2,"N",
ifelse(is.na(v1_clin_stone) & (v1_clin$v1_mwke_ke10_an360_nibl==1 | v1_clin$v1_mwke_ke8_an300_galleb) &
(grepl("[Nn]ierenstein|[Nn]ierensteine",v1_clin$v1_mwke_ke10_an360_nibl_det) |
grepl("[Gg]allenstein|[Gg]allensteine",v1_clin$v1_mwke_ke8_an300_galleb_det)),"Y",v1_clin_stone))
v1_con_stone<-ifelse(v1_con$v1_medwkeii_medwkeii_nierga==1,"Y","N")
v1_con_stone<-ifelse(is.na(v1_con_stone) & v1_con$v1_mwke_nibl==2,"N",
ifelse(is.na(v1_con_stone) & (v1_con$v1_mwke_nibl==1 | v1_con$v1_mwke_galle==1) &
(grepl("[Nn]ierenstein|[Nn]ierensteine",v1_con$v1_mwke_nibl_t) |
grepl("[Gg]allenstein|[Gg]allensteine",v1_con$v1_mwke_galle_t)),"Y",v1_con_stone))
v1_stone<-factor(c(v1_clin_stone,v1_con_stone))
descT(v1_stone)
## N Y <NA>
## [1,] No. cases 1370 43 130 1543
## [2,] Percent 88.8 2.8 8.4 100
Epilepsy (dichotomous, v1_epilepsy)
v1_clin_epilepsy<-ifelse(v1_clin$v1_medwkeii_medwkeii_epile==1,"Y","N")
v1_clin_epilepsy<-ifelse(is.na(v1_clin_epilepsy) & v1_clin$v1_mwke_ke11_an400_npsy==2,"N",
ifelse(is.na(v1_clin_epilepsy) & v1_clin$v1_mwke_ke11_an400_npsy==1 &
grepl("[Ee]pilepsie",v1_clin$v1_mwke_ke11_an400_npsy_det),"Y",v1_clin_epilepsy))
v1_con_epilepsy<-ifelse(v1_con$v1_medwkeii_medwkeii_epile==1,"Y","N")
v1_con_epilepsy<-ifelse(is.na(v1_con_epilepsy) & v1_con$v1_mwke_npsy==2,"N",
ifelse(is.na(v1_con_epilepsy) & v1_con$v1_mwke_npsy==1 &
grepl("[Ee]pilepsie",v1_con$v1_mwke_npsy_t),"Y",v1_con_epilepsy))
v1_epilepsy<-factor(c(v1_clin_epilepsy,v1_con_epilepsy))
descT(v1_epilepsy)
## N Y <NA>
## [1,] No. cases 1266 19 258 1543
## [2,] Percent 82 1.2 16.7 100
Migraine (dichotomous, v1_migraine)
v1_clin_migraine<-ifelse(v1_clin$v1_medwkeii_medwkeii_mig==1,"Y","N")
v1_clin_migraine<-ifelse(is.na(v1_clin_migraine) & v1_clin$v1_mwke_ke11_an400_npsy==2,"N",
ifelse(is.na(v1_clin_migraine) & v1_clin$v1_mwke_ke11_an400_npsy==1 &
grepl("[Mm]igräne | Mirgäne | mIGRÄNE",v1_clin$v1_mwke_ke11_an400_npsy_det),"Y",v1_clin_migraine))
v1_con_migraine<-ifelse(v1_con$v1_medwkeii_medwkeii_mig==1,"Y","N")
v1_con_migraine<-ifelse(is.na(v1_con_migraine) & v1_con$v1_mwke_npsy==2,"N",
ifelse(is.na(v1_con_migraine) & v1_con$v1_mwke_npsy==1 &
grepl("[Mm]igräne | Mirgäne | mIGRÄNE",v1_con$v1_mwke_npsy_t),"Y",v1_con_migraine))
v1_migraine<-factor(c(v1_clin_migraine,v1_con_migraine))
descT(v1_migraine)
## N Y <NA>
## [1,] No. cases 1216 62 265 1543
## [2,] Percent 78.8 4 17.2 100
Parkinson syndrome (dichotomous, v1_parkinson)
v1_clin_parkinson<-ifelse(v1_clin$v1_medwkeii_medwkeii_parks==1,"Y","N")
v1_clin_parkinson<-ifelse(is.na(v1_clin_parkinson) & v1_clin$v1_mwke_ke11_an400_npsy==2,"N",
ifelse(is.na(v1_clin_parkinson) & v1_clin$v1_mwke_ke11_an400_npsy==1 &
grepl("[Pp]arkinson",v1_clin$v1_mwke_ke11_an400_npsy_det),"Y",v1_clin_parkinson))
v1_con_parkinson<-ifelse(v1_con$v1_medwkeii_medwkeii_parks==1,"Y","N")
v1_con_parkinson<-ifelse(is.na(v1_con_parkinson) & v1_con$v1_mwke_npsy==2,"N",
ifelse(is.na(v1_con_parkinson) & v1_con$v1_mwke_npsy==1 &
grepl("[Pp]arkinson",v1_con$v1_mwke_npsy_t),"Y",v1_con_parkinson))
v1_parkinson<-factor(c(v1_clin_parkinson,v1_con_parkinson))
descT(v1_parkinson)
## N Y <NA>
## [1,] No. cases 1269 8 266 1543
## [2,] Percent 82.2 0.5 17.2 100
Liver cirrhosis or inflammation (dichotomous, v1_liv_cir_inf)
v1_clin_liv_cir_inf<-ifelse(v1_clin$v1_medwkeii_medwkeii_leberz==1,"Y","N")
v1_clin_liv_cir_inf<-ifelse(is.na(v1_clin_liv_cir_inf) & v1_clin$v1_mwke_ke8_an300_galleb==2,"N",
ifelse(is.na(v1_clin_liv_cir_inf) & v1_clin$v1_mwke_ke8_an300_galleb==1 &
grepl("[Ll]eberzerose | [Ll]eberzirrhose |
[Ll]eberentzündung",v1_clin$v1_mwke_ke8_an300_galleb_det),"Y",v1_clin_liv_cir_inf))
v1_con_liv_cir_inf<-ifelse(v1_con$v1_medwkeii_medwkeii_leberz==1,"Y","N")
v1_con_liv_cir_inf<-ifelse(is.na(v1_con_liv_cir_inf) & v1_con$v1_mwke_galle==2,"N",
ifelse(is.na(v1_con_liv_cir_inf) & v1_con$v1_mwke_galle==1 &
grepl("[Ll]eberzerose | [Ll]eberzirrhose |
[Ll]eberentzündung",v1_con$v1_mwke_galle_t),"Y",v1_con_liv_cir_inf))
v1_liv_cir_inf<-factor(c(v1_clin_liv_cir_inf,v1_con_liv_cir_inf))
descT(v1_liv_cir_inf)
## N Y <NA>
## [1,] No. cases 1397 4 142 1543
## [2,] Percent 90.5 0.3 9.2 100
Traumatic brain injury (dichotomous, v1_tbi)
v1_clin_tbi<-ifelse(v1_clin$v1_medwkeii_medwkeii_parks==1,"Y","N")
v1_clin_tbi<-ifelse(is.na(v1_clin_tbi) & v1_clin$v1_mwke_ke11_an400_npsy==2,"N",
ifelse(is.na(v1_clin_tbi) & v1_clin$v1_mwke_ke11_an400_npsy==1 &
grepl("[Ss]chädel-Hirn-Trauma",v1_clin$v1_mwke_ke11_an400_npsy_det),"Y",v1_clin_tbi))
v1_con_tbi<-ifelse(v1_con$v1_medwkeii_medwkeii_parks==1,"Y","N")
v1_con_tbi<-ifelse(is.na(v1_con_tbi) & v1_con$v1_mwke_npsy==2,"N",
ifelse(is.na(v1_con_tbi) & v1_con$v1_mwke_npsy==1 &
grepl("[Ss]chädel-Hirn-Trauma",v1_con$v1_mwke_npsy_t),"Y",v1_con_tbi))
v1_tbi<-factor(c(v1_clin_tbi,v1_con_tbi))
descT(v1_tbi)
## N Y <NA>
## [1,] No. cases 1269 4 270 1543
## [2,] Percent 82.2 0.3 17.5 100
Disorders of the eyes or ears (dichotomous, v1_eyear) This item was also asked in the previous method of assessment, with three answering alternatives: “Yes,”No“, and”Don’t know“. The option”Don’t know" was coded as NA, to harmonize it with the new methode of assessment. Near- or farsightedness, according to our guidelines, is not a disease and should not be coded as such. There is more information on the type of disease, available on request.
v1_clin_eyear<-ifelse(v1_clin$v1_mwke_ke12_an440_auohr==1,"Y",ifelse(v1_clin$v1_mwke_ke12_an440_auohr==2,"N",NA))
v1_clin_eyear<-ifelse(is.na(v1_clin_eyear) & v1_clin$v1_medwkeii_medwkeii_auo==1,"Y",
ifelse(is.na(v1_clin_eyear) & v1_clin$v1_medwkeii_medwkeii_auo==2,"N",v1_clin_eyear))
v1_con_eyear<-ifelse(v1_con$v1_mwke_auohr==1,"Y",ifelse(v1_con$v1_mwke_auohr==2,"N",NA))
v1_con_eyear<-ifelse(is.na(v1_con_eyear) & v1_con$v1_medwkeii_medwkeii_auo==1,"Y",
ifelse(is.na(v1_con_eyear) & v1_con$v1_medwkeii_medwkeii_auo==2,"N",v1_con_eyear))
v1_eyear<-factor(c(v1_clin_eyear,v1_con_eyear))
descT(v1_eyear)
## N Y <NA>
## [1,] No. cases 1304 208 31 1543
## [2,] Percent 84.5 13.5 2 100
Infectious diseases (dichotomous, v1_inf) As the assessment of this item was modified in the course of the study (at some point interviewers were instructed not to code benign childhood diseases such as chickenpox), this item is NOT included in this version of the dataset anymore. The variable name remains in the codebook, but not in the dataset.
Create dataset
v1_som_dsrdr<-data.frame(v1_height,
v1_weight,
v1_waist,
v1_bmi,
v1_chol_trig,
v1_hyperten,
v1_ang_pec,
v1_heart_att,
v1_stroke,
v1_diabetes,
v1_hyperthy,
v1_hypothy,
v1_osteopor,
v1_asthma,
v1_copd,
v1_allerg,
v1_neuroder,
v1_psoriasis,
v1_autoimm,
v1_cancer,
v1_stom_ulc,
v1_kid_fail,
v1_stone,
v1_epilepsy,
v1_migraine,
v1_parkinson,
v1_liv_cir_inf,
v1_tbi,
v1_eyear)
There is some more information available (whether smokers have stopped smoking more than one year, if yes how many years, how many pipes, cigars and cigarillos), not part of the present dataset.
This is a categorical item with three optional answers: “never”-N, “yes”-Y, and “former” (having smoked in the past but not now)-F. It is required to have stopped smoking for at least three months to qualify as former smoker.
v1_clin_ever_smkd<-ifelse(v1_clin$v1_tabalk_ta1_jemals_ger==1,"N",
ifelse(v1_clin$v1_tabalk_ta1_jemals_ger==2,"Y",
ifelse(v1_clin$v1_tabalk_ta1_jemals_ger==3,"F",NA)))
v1_con_ever_smkd<-ifelse(v1_con$v1_tabalk_tabak1==1,"N",
ifelse(v1_con$v1_con$v1_tabalk_tabak1==2,"Y",
ifelse(v1_con$v1_tabalk_tabak1==3,"F",NA)))
v1_ever_smkd<-factor(c(v1_clin_ever_smkd,v1_con_ever_smkd))
descT(v1_ever_smkd)
## F N Y <NA>
## [1,] No. cases 208 527 657 151 1543
## [2,] Percent 13.5 34.2 42.6 9.8 100
The original item has three optional answers (age unknown, age or alternatively year in which smoking started). Here, we give age at which smoking started. In cases in which the year in which smoking started was given, we calculated this as follows: year in which smoking stated minus (year of interview minus age at interview). For people who never smoked, this question is coded as “-999”.
v1_clin_age_smk<-ifelse(v1_clin$v1_tabalk_ta1_jemals_ger==1, -999, ifelse(is.na(v1_clin$v1_tabalk_ta2_alter_jahre)==T,
(v1_clin$v1_tabalk_ta2_anf_jahr-(as.numeric(format(v1_interv_date,'%Y'))-v1_clin$v1_ageBL)),v1_clin$v1_tabalk_ta2_alter_jahre))
v1_con_age_smk<-ifelse(v1_con$v1_tabalk_tabak1, -999, ifelse(is.na(v1_con$v1_tabalk_tabak2_alter)==T,
(v1_con$v1_tabalk_tabak2_jahr-(as.numeric(format(interv_date,'%Y'))-v1_ageBL)),v1_con$v1_tabalk_ta2_alter_jahre))
v1_age_smk<-factor(c(v1_clin_age_smk,v1_con_age_smk))
summary(v1_age_smk)
## -999 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 662 2 2 2 1 9 4 10 35 51 109 118 167 58 83
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
## 27 41 23 10 11 6 11 2 3 5 5 11 2 2 1
## 35 36 38 40 44 45 48 53 57 61 NA's
## 4 1 1 1 1 1 1 1 1 1 57
In the original item, the number of cigarettes is to be entered by the investigator, however there are three options to which timeframe these cigarettes refer to: per day, per week or per month. Here, we have decided to give the cigarettes per year.
Please note that people who have stopped smoking but less than three months ago are still labeled as smokers, therefore zeros can occur. For people presently do not smoke this question is coded as “-999”.
v1_clin_no_cig<-ifelse(v1_clin$v1_tabalk_ta1_jemals_ger==1, -999,
ifelse(v1_clin$v1_tabalk_ta3_zig_pro_zeit==1, v1_clin$v1_tabalk_ta3_anz_zig*365,
ifelse(v1_clin$v1_tabalk_ta3_zig_pro_zeit==2, v1_clin$v1_tabalk_ta3_anz_zig*52,
ifelse(v1_clin$v1_tabalk_ta3_zig_pro_zeit==3, v1_clin$v1_tabalk_ta3_anz_zig*12,NA))))
v1_con_no_cig<-ifelse(v1_con$v1_tabalk_tabak1==1, -999,
ifelse(v1_con$v1_tabalk_tabak3_zeit==1, v1_con$v1_tabalk_ta3_anz_zig*365,
ifelse(v1_con$v1_tabalk_tabak3_zeit==2, v1_con$v1_tabalk_ta3_anz_zig*52,
ifelse(v1_con$v1_tabalk_tabak3_zeit==3, v1_con$v1_tabalk_ta3_anz_zig*12,NA))))
v1_no_cig<-c(v1_clin_no_cig,v1_con_no_cig)
summary(v1_no_cig)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -999 -999 1825 3384 7300 23725 380
This is and ordinal item. Optional answers are: “never”-1, “only on special occasions”-2, “once per month or less”-3, “two to four times per month”-4, “two to three times per week”-5, “four times per week or several times but not daily”-6, “daily”-7.
v1_alc_pst12_mths<-factor(c(v1_clin$v1_tabalk_ta9_alkkonsum,v1_con$v1_tabalk_alkohol9), ordered=T)
descT(v1_alc_pst12_mths)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 275 332 182 352 189 67 72 74 1543
## [2,] Percent 17.8 21.5 11.8 22.8 12.2 4.3 4.7 4.8 100
This is an ordinal item. Optional answers are: “never”-1, “once or twice”-2, “three to five times”-3, “six to eleven times”-4, “approximately once per month”-5, “two to three times per month”-6, “one to two times per week”-7, “three to four times per week”-8, “daily or almost daily”-9. Note that this item was skipped if participants chose answering alternatives 1, 2 or 3 in the previous question. In these cases, coding is -999.
v1_clin_alc_5orm<-ifelse((v1_clin$v1_tabalk_ta9_alkkonsum==1 | v1_clin$v1_tabalk_ta9_alkkonsum==2 | v1_clin$v1_tabalk_ta9_alkkonsum==3),
-999,ifelse(is.na(v1_clin$v1_tabalk_ta10_alk_haeufigk_m)==T,
v1_clin$v1_tabalk_ta11_alk_haeufigk_f,v1_clin$v1_tabalk_ta10_alk_haeufigk_m))
v1_con_alc_5orm<-ifelse((v1_con$v1_tabalk_alkohol9==1 | v1_con$v1_tabalk_alkohol9==2 | v1_con$v1_tabalk_alkohol9==3),
-999,ifelse(is.na(v1_con$v1_tabalk_alkohol10)==T,
v1_con$v1_tabalk_alkohol11,v1_con$v1_tabalk_alkohol10))
v1_alc_5orm<-factor(c(v1_clin_alc_5orm,v1_con_alc_5orm), ordered=T)
descT(v1_alc_5orm)
## -999 1 2 3 4 5 6 7 8 9 <NA>
## [1,] No. cases 789 213 98 93 64 61 70 43 17 14 81 1543
## [2,] Percent 51.1 13.8 6.4 6 4.1 4 4.5 2.8 1.1 0.9 5.2 100
The criteria for alcohol dependence are checked, resulting in a dichotomous assessment whether lifetime alcohol dependence is present.
v1_clin_lftm_alc_dep<-ifelse(v1_clin$v1_tabalk_ta12_alk_vorhanden==1,"N",ifelse(v1_clin$v1_tabalk_ta12_alk_vorhanden==3,"Y",NA))
v1_con_lftm_alc_dep<-ifelse(v1_con$v1_tabalk_alkohol_abhaengig==1,"N",ifelse(v1_con$v1_tabalk_alkohol_abhaengig==3,"Y",NA))
v1_lftm_alc_dep<-factor(c(v1_clin_lftm_alc_dep,v1_con_lftm_alc_dep))
descT(v1_lftm_alc_dep)
## N Y <NA>
## [1,] No. cases 1267 127 149 1543
## [2,] Percent 82.1 8.2 9.7 100
In the PsyCourse Study, much information on illigit drugs was collected. Specifically, at the first visit, it was assessed whether the participant ever consumed illicit drugs, and, if yes:
In the present dataset, only a few variables (see below and follow-up visits) are included if you want to undertake specific studies on illicit drugs, we can provide more specialized information.
Preparations for preparing data on illicit drugs
Check whether for each illicit drug, only one category is ticked (code and results not shown).
Clinical participants
Control participants
Recode several original items because they are wrongly coded in secuTrial exports (the graphical user interface and the exports do not match).
Assessment of frequency consumed when most frequently consumed
#clinical
#define function that recodes
v1_clin_mst_oft_recode <- function(drg_no) {
attach(v1_clin)
v1_clin_ill_mst_frq_oftn_mod<-ifelse(eval(as.name(paste("v1_drogen_s_dga_haeufigk_30043_",drg_no,sep="")))==5,1,
ifelse(eval(as.name(paste("v1_drogen_s_dga_haeufigk_30043_",drg_no,sep="")))==4,5,
ifelse(eval(as.name(paste("v1_drogen_s_dga_haeufigk_30043_",drg_no,sep="")))==3,4,
ifelse(eval(as.name(paste("v1_drogen_s_dga_haeufigk_30043_",drg_no,sep="")))==2,3,
ifelse(eval(as.name(paste("v1_drogen_s_dga_haeufigk_30043_",drg_no,sep="")))==1,2,NA)))))
detach(v1_clin)
assign(noquote(paste("v1_clin_drg_",drg_no,"_mst_frq_oftn",sep="")),v1_clin_ill_mst_frq_oftn_mod, envir=globalenv())
}
#apply function to all drugs (maximal number: 9)
for(no in c(1:9)){v1_clin_mst_oft_recode(no)}
#control
#define function that recodes
v1_con_mst_oft_recode <- function(drg_no) {
attach(v1_con)
v1_con_ill_mst_frq_oftn_mod<-ifelse(eval(as.name(paste("v1_drogen_droge_haeufig_117983_",drg_no,sep="")))==5,1,
ifelse(eval(as.name(paste("v1_drogen_droge_haeufig_117983_",drg_no,sep="")))==4,5,
ifelse(eval(as.name(paste("v1_drogen_droge_haeufig_117983_",drg_no,sep="")))==3,4,
ifelse(eval(as.name(paste("v1_drogen_droge_haeufig_117983_",drg_no,sep="")))==2,3,
ifelse(eval(as.name(paste("v1_drogen_droge_haeufig_117983_",drg_no,sep="")))==1,2,NA)))))
detach(v1_con)
assign(noquote(paste("v1_con_drg_",drg_no,"_mst_frq_oftn",sep="")),v1_con_ill_mst_frq_oftn_mod, envir=globalenv())
}
#apply function to all drugs (maximal number: 8)
for(no in c(1:8)){v1_con_mst_oft_recode(no)}
Assessment of frequency consumed in the past six months
v1_clin_pst_six_frq_recode <- function(drg_no) {
attach(v1_clin)
v1_clin_ill_pst_six_frq_mod<-ifelse(eval(as.name(paste("v1_drogen_s_dge_l6m_haeufig_30043_",drg_no,sep="")))==5,1,
ifelse(eval(as.name(paste("v1_drogen_s_dge_l6m_haeufig_30043_",drg_no,sep="")))==4,5,
ifelse(eval(as.name(paste("v1_drogen_s_dge_l6m_haeufig_30043_",drg_no,sep="")))==3,4,
ifelse(eval(as.name(paste("v1_drogen_s_dge_l6m_haeufig_30043_",drg_no,sep="")))==2,3,
ifelse(eval(as.name(paste("v1_drogen_s_dge_l6m_haeufig_30043_",drg_no,sep="")))==1,2,NA)))))
detach(v1_clin)
assign(noquote(paste("v1_clin_drg_",drg_no,"_pst_six_oftn",sep="")),v1_clin_ill_pst_six_frq_mod, envir=globalenv())
}
#apply function to all drugs (maximal number: 9)
for(no in c(1:9)){v1_clin_pst_six_frq_recode(no)}
v1_con_pst_six_frq_recode <- function(drg_no) {
attach(v1_con)
v1_con_ill_pst_six_frq_mod<-ifelse(eval(as.name(paste("v1_drogen_droge_letzte6m_117983_",drg_no,sep="")))==5,1,
ifelse(eval(as.name(paste("v1_drogen_droge_letzte6m_117983_",drg_no,sep="")))==4,5,
ifelse(eval(as.name(paste("v1_drogen_droge_letzte6m_117983_",drg_no,sep="")))==3,4,
ifelse(eval(as.name(paste("v1_drogen_droge_letzte6m_117983_",drg_no,sep="")))==2,3,
ifelse(eval(as.name(paste("v1_drogen_droge_letzte6m_117983_",drg_no,sep="")))==1,2,NA)))))
detach(v1_con)
assign(noquote(paste("v1_con_drg_",drg_no,"_pst_six_oftn",sep="")),v1_con_ill_pst_six_frq_mod, envir=globalenv())
}
#apply function to all drugs (maximal number: 8)
for(no in c(1:8)){v1_con_pst_six_frq_recode(no)}
Prepare the illicit drug items contained in this dataset
“Have you ever taken illicit drugs?” (dichotomous, v1_evr_ill_drg)
v1_clin_evr_ill_drg<-ifelse(v1_clin$v1_drogen_dg1_konsum==2, "Y", "N")
v1_con_evr_ill_drg<-ifelse(v1_con$v1_drogen_drogenkonsum==2, "Y", "N")
v1_evr_ill_drg<-factor(c(v1_clin_evr_ill_drg,v1_con_evr_ill_drg))
descT(v1_evr_ill_drg)
## N Y <NA>
## [1,] No. cases 818 659 66 1543
## [2,] Percent 53 42.7 4.3 100
Make datasets containing only information on illicit drugs
v1_drg_clin<-v1_clin[,881:1023]
v1_drg_con<-v1_con[,505:631]
Create vectors containg the different names of the different drug categories (and their dataframes; see below)
v1_drg_cat<-c("sti","can","opi","kok","hal","inh","tra","var")
v1_drg_cat_df_clin<-c("v1_sti_cli","v1_can_cli","v1_opi_cli","v1_kok_cli","v1_hal_cli","v1_inh_cli","v1_tra_cli","v1_var_cli")
v1_drg_cat_df_con<-c("v1_sti_con","v1_can_con","v1_opi_con","v1_kok_con","v1_hal_con","v1_inh_con","v1_tra_con","v1_var_con")
names(v1_drg_cat_df_clin)<-c(1:8)
names(v1_drg_cat_df_con)<-c(1:8)
The following variables are created below:
“Number of stimulants drugs ever consumed” (continuous, v1_sti)
“Number of cannabis drugs ever consumed” (continuous, v1_can)
“Number of opioid drugs ever consumed” (continuous, v1_opi)
“Number of cocaine drugs ever consumed” (continuous, v1_kok)
“Number of hallucinogenic drugs ever consumed” (continuous, v1_hal)
“Number of inhalant drugs ever consumed” (continuous, v1_inh)
“Number of tranquillizer drugs ever consumed” (continuous, v1_tra)
“Number of other drugs ever consumed” (continuous, v1_var)
The category of each drug is classified by checking a checkbox, corresponding to the category (e.g. stimulants). Here, for each individual drug ever taken, I select each checkbox corresponding to the same category, and sum across these, resulting in the number of drugs from the category (e.g. “stimulants”) that was ever taken. The same is done for all other categories.
Create dataframes, each for a different drug category, separately for clinical and control individuals. The last column of each of these dataframes contains the count across the rows of each dataframe.
for(i in c(1:8)){
assign(v1_drg_cat_df_clin[i],row_sums(v1_drg_clin[,grep(paste("v1_drogen_s_dg_drogekt",i,"_30043_",sep=""),names(v1_drg_clin))],var="v1_clin_evr",n=1))
assign(v1_drg_cat_df_con[i],row_sums(v1_drg_con[,grep(paste("v1_drogen_droge",i,"_117983_",sep=""),names(v1_drg_con))],var="v1_con_evr",n=1))
}
Bind each last column of the dataframes created above together. This results in a dataframe, in which the number of drugs from each category a participant has EVER TAKEN are listed.
Clinical participants: Combine into one dataframe
v1_drg_evr_cats_clin<-data.frame(v1_sti_cli[,dim(v1_sti_cli)[2]],
v1_can_cli[,dim(v1_can_cli)[2]],
v1_opi_cli[,dim(v1_opi_cli)[2]],
v1_kok_cli[,dim(v1_kok_cli)[2]],
v1_hal_cli[,dim(v1_hal_cli)[2]],
v1_inh_cli[,dim(v1_inh_cli)[2]],
v1_tra_cli[,dim(v1_tra_cli)[2]],
v1_var_cli[,dim(v1_var_cli)[2]])
names(v1_drg_evr_cats_clin)<-paste("v1_",v1_drg_cat,"_cat_evr",sep="")
Control participants: Combine into one dataframe
v1_drg_evr_cats_con<-data.frame(v1_sti_con[,dim(v1_sti_con)[2]],
v1_can_con[,dim(v1_can_con)[2]],
v1_opi_con[,dim(v1_opi_con)[2]],
v1_kok_con[,dim(v1_kok_con)[2]],
v1_hal_con[,dim(v1_hal_con)[2]],
v1_inh_con[,dim(v1_inh_con)[2]],
v1_tra_con[,dim(v1_tra_con)[2]],
v1_var_con[,dim(v1_var_con)[2]])
names(v1_drg_evr_cats_con)<-names(v1_drg_evr_cats_clin)
**Combine clinical and control drug datasets into dataset drg_evr_cats
drg_evr_cats<-rbind(v1_drg_evr_cats_clin,v1_drg_evr_cats_con)
**“Was the participant ever a HEAVY USER of ANY DRUG? (dichotomous, v1_evr_hvy_usr)**
clin_evr_hvy_usr<-ifelse(apply(data.frame(v1_clin_drg_1_mst_frq_oftn,
v1_clin_drg_2_mst_frq_oftn,
v1_clin_drg_3_mst_frq_oftn,
v1_clin_drg_4_mst_frq_oftn,
v1_clin_drg_5_mst_frq_oftn,
v1_clin_drg_6_mst_frq_oftn,
v1_clin_drg_7_mst_frq_oftn,
v1_clin_drg_8_mst_frq_oftn,
v1_clin_drg_9_mst_frq_oftn), 1, function(m) any(m %in% c(4,5))),"Y","N")
con_evr_hvy_usr<-ifelse(apply(data.frame(v1_con_drg_1_mst_frq_oftn,
v1_con_drg_2_mst_frq_oftn,
v1_con_drg_3_mst_frq_oftn,
v1_con_drg_4_mst_frq_oftn,
v1_con_drg_5_mst_frq_oftn,
v1_con_drg_6_mst_frq_oftn,
v1_con_drg_7_mst_frq_oftn,
v1_con_drg_8_mst_frq_oftn), 1, function(m) any(m %in% c(4,5))),"Y","N")
drg_evr_cats$evr_hvy_usr<-c(clin_evr_hvy_usr,con_evr_hvy_usr)
“During the past six months, did you take ANY illicit drugs?” (dichotomous, v1_pst6_ill_drg)
v1_clin_lst6_any<-ifelse(apply(v1_drg_clin[,grep("v1_drogen_s_dgd_letzte6m_30043_",names(v1_drg_clin))], 1, function(r) any(r %in% 1)),"Y","N")
v1_con_lst6_any<-ifelse(apply(v1_drg_con[,grep("v1_drogen_droge_letzte6m_117983_",names(v1_drg_con))], 1, function(r) any(r %in% 1)),"Y","N")
v1_pst6_ill_drg<-c(v1_clin_lst6_any,v1_con_lst6_any)
v1_pst6_ill_drg[is.na(v1_evr_ill_drg)]<-NA #make NA if this item was not assessed
IMPORTANT: Make all row in df drg_evr_cats NA in individuals in which the drug consumption section was NOT assessed.
drg_evr_cats[is.na(v1_evr_ill_drg),]<-NA
Create dataset
v1_subst<-data.frame(v1_ever_smkd,
v1_age_smk,
v1_no_cig,
v1_alc_pst12_mths,
v1_alc_5orm,
v1_lftm_alc_dep,
v1_evr_ill_drg,
drg_evr_cats,
v1_pst6_ill_drg)
Parts of the Structured Clinical Interview for DSM Disorders (SCID) were carried out (sections A Affective Syndromes, B Psychotic and Associated Symptoms, X Suicide attempts and suicidal ideation, and either section C (Differential diagnosis of Psychotic disorders) or section D (Differential diagnosis of Affective disorders). The most important variables of sections A, B, ans X are inclueded in this dataset, usually coded “Y”-yes, “N”-no and “U”-unknown.
Control participants have “-999” in every SCID variable.
We have included the DSM-IV diagnosis resulting from the combined efforts of a SCID interview and a screening of medical records (if available). Difficult cases were resolved by a discussion of experts.
v1_clin_scid_dsm_dx<-v1_clin$v1_skid_deckblatt_dsmiv_konsensusdiag_34407_1
v1_clin_scid_dsm_dx<-as.character(v1_clin_scid_dsm_dx)
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="295.3"]<-"295.30"
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="296.x"]<-"296.X"
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="269.89"]<-"296.89"
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="298.3"]<-"296.3"
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="296.33"]<-"296.3"
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="296.44"]<-"296.X"
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="296.43"]<-"296.X"
v1_clin_scid_dsm_dx[v1_clin_scid_dsm_dx=="296.40"]<-"296.X"
v1_con_scid_dsm_dx<-rep("-999",dim(v1_con)[1])
v1_scid_dsm_dx<-c(v1_clin_scid_dsm_dx,v1_con_scid_dsm_dx)
descT(v1_scid_dsm_dx)
## -999 295.10 295.20 295.30 295.40 295.60 295.70 295.90 296.3
## [1,] No. cases 320 14 10 436 12 4 101 12 91
## [2,] Percent 20.7 0.9 0.6 28.3 0.8 0.3 6.5 0.8 5.9
## 296.89 296.X 298.80
## [1,] 110 427 6 1543
## [2,] 7.1 27.7 0.4 100
DSM-IV diagnoses in human readable form for non-clinical researchers. Please note the following: schizophrenia and schizoaffective disorder are often grouped together under the label schizophrenia, although these are two different disorders. Schizophreniform disorder is diagnosed when symptoms of schizophrenia are not (yet) present for the full six months required for a proper schizophrenia diagnosis. Brief psychotic disorder is distinct from schizophrenia. Bipolar-I disorder is diagnosed when both manic and depressive phases are present in an individual; a distinct diagnosis is bipolar-II in which “only” hypomanic and depressive phases are present. Bipolar-I and bipolar-II are both proper bipolar disorders. Control subjects are labeled as “Control”.
v1_clin_scid_dsm_dx_cat<-rep("NA",dim(v1_clin)[1])
v1_con_scid_dsm_dx_cat<-rep("NA",dim(v1_con)[1])
v1_clin_scid_dsm_dx_cat[v1_clin_scid_dsm_dx %in% c("295.10", "295.20", "295.30", "295.60",
"295.90")]<-"Schizophrenia"
v1_clin_scid_dsm_dx_cat[v1_clin_scid_dsm_dx %in% c("295.70")]<-"Schizoaffective Disorder"
v1_clin_scid_dsm_dx_cat[v1_clin_scid_dsm_dx %in% c("295.40")]<-"Schizophreniform Disorder"
v1_clin_scid_dsm_dx_cat[v1_clin_scid_dsm_dx %in% c("298.80")]<-"Brief Psychotic Disorder"
v1_clin_scid_dsm_dx_cat[v1_clin_scid_dsm_dx %in% c("296.X")]<-"Bipolar-I Disorder"
v1_clin_scid_dsm_dx_cat[v1_clin_scid_dsm_dx %in% c("296.89")]<-"Bipolar-II Disorder"
v1_clin_scid_dsm_dx_cat[v1_clin_scid_dsm_dx %in% c("296.3")]<-"Depression"
v1_con_scid_dsm_dx_cat<-rep("Control",dim(v1_con)[1])
v1_scid_dsm_dx_cat<-c(v1_clin_scid_dsm_dx_cat,v1_con_scid_dsm_dx_cat)
descT(v1_scid_dsm_dx_cat)
## Bipolar-I Disorder Bipolar-II Disorder
## [1,] No. cases 427 110
## [2,] Percent 27.7 7.1
## Brief Psychotic Disorder Control Depression Schizoaffective Disorder
## [1,] 6 320 91 101
## [2,] 0.4 20.7 5.9 6.5
## Schizophrenia Schizophreniform Disorder
## [1,] 476 12 1543
## [2,] 30.8 0.8 100
The following items were assessed in clincal participants only!
Age at first MDD episode (continuous [years], v1_scid_age_MDE) This item includes all individuals that ever fulfilled MDD criteria. Also a person with e.g. schizophrenia can have a value on this item. If the individual ever fulfilled MDD criteria, the age at the first MDD episode is given. NA on this item means that age at first MDD episode is missing. Individuals that never experienced an MDD episode are coded as “-999”.
Control individiuals are coded as “-999”.
v1_clin_scid_age_MDE<-ifelse(is.na(v1_clin$v1_sna_21_mde1_a79_beurteilung),-999,
ifelse(v1_clin$v1_sna_21_mde1_a79_beurteilung==3, v1_clin$v1_sna_21_mde1_s_snx_alter_jahre_30038_1,
ifelse((v1_clin$v1_sna_21_mde1_a79_beurteilung==1 | v1_clin$v1_sna_21_mde1_a79_beurteilung==0), -999, NA)))
descT(v1_clin_scid_age_MDE)
## -999 2 4 6 7 8 9 10 11 12 13 14 15 16 17
## [1,] No. cases 355 1 1 3 4 1 4 8 10 12 13 26 21 39 39
## [2,] Percent 29 0.1 0.1 0.2 0.3 0.1 0.3 0.7 0.8 1 1.1 2.1 1.7 3.2 3.2
## 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
## [1,] 34 44 40 41 24 30 34 34 21 27 19 12 30 17 25 13 12 8
## [2,] 2.8 3.6 3.3 3.4 2 2.5 2.8 2.8 1.7 2.2 1.6 1 2.5 1.4 2 1.1 1 0.7
## 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
## [1,] 10 13 5 6 14 12 10 12 5 14 4 8 8 5 8 2 8 5
## [2,] 0.8 1.1 0.4 0.5 1.1 1 0.8 1 0.4 1.1 0.3 0.7 0.7 0.4 0.7 0.2 0.7 0.4
## 54 55 56 57 58 59 60 61 69 <NA>
## [1,] 3 2 2 1 1 1 3 1 1 57 1223
## [2,] 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 4.7 100
v1_scid_age_MDE<-c(v1_clin_scid_age_MDE,rep(-999,dim(v1_con)[1]))
descT(v1_scid_age_MDE)
## -999 2 4 6 7 8 9 10 11 12 13 14 15 16
## [1,] No. cases 675 1 1 3 4 1 4 8 10 12 13 26 21 39
## [2,] Percent 43.7 0.1 0.1 0.2 0.3 0.1 0.3 0.5 0.6 0.8 0.8 1.7 1.4 2.5
## 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
## [1,] 39 34 44 40 41 24 30 34 34 21 27 19 12 30 17 25 13
## [2,] 2.5 2.2 2.9 2.6 2.7 1.6 1.9 2.2 2.2 1.4 1.7 1.2 0.8 1.9 1.1 1.6 0.8
## 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## [1,] 12 8 10 13 5 6 14 12 10 12 5 14 4 8 8 5 8
## [2,] 0.8 0.5 0.6 0.8 0.3 0.4 0.9 0.8 0.6 0.8 0.3 0.9 0.3 0.5 0.5 0.3 0.5
## 51 52 53 54 55 56 57 58 59 60 61 69 <NA>
## [1,] 2 8 5 3 2 2 1 1 1 3 1 1 57 1543
## [2,] 0.1 0.5 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 3.7 100
Number of MDD episodes (continuous [number], v1_scid_no_MDE) In individuals that ever fulfilled MDD criteria, the number of MDD episodes is given. Please note the following:
v1_clin_scid_no_MDE<-ifelse(is.na(v1_clin$v1_sna_21_mde1_a79_beurteilung),-999,
ifelse(v1_clin$v1_sna_21_mde1_a79_beurteilung==3, v1_clin$v1_sna_21_mde1_a81_anzahl,
ifelse((v1_clin$v1_sna_21_mde1_a79_beurteilung==1 | v1_clin$v1_sna_21_mde1_a79_beurteilung==0), -999, NA)))
descT(v1_clin_scid_no_MDE)
## -999 1 2 3 4 5 6 7 8 9 10 11 12 13
## [1,] No. cases 355 71 93 90 79 60 34 17 32 9 38 7 14 3
## [2,] Percent 29 5.8 7.6 7.4 6.5 4.9 2.8 1.4 2.6 0.7 3.1 0.6 1.1 0.2
## 14 15 16 17 18 20 21 22 23 25 26 29 30 32 35 36 39
## [1,] 4 17 2 3 1 18 1 1 1 3 2 2 12 1 1 1 1
## [2,] 0.3 1.4 0.2 0.2 0.1 1.5 0.1 0.1 0.1 0.2 0.2 0.2 1 0.1 0.1 0.1 0.1
## 40 50 60 70 75 99 <NA>
## [1,] 2 3 2 1 1 188 53 1223
## [2,] 0.2 0.2 0.2 0.1 0.1 15.4 4.3 100
v1_scid_no_MDE<-c(v1_clin_scid_no_MDE,rep(-999,dim(v1_con)[1])) #add -999 for control individuals
descT(v1_scid_no_MDE)
## -999 1 2 3 4 5 6 7 8 9 10 11 12 13 14
## [1,] No. cases 675 71 93 90 79 60 34 17 32 9 38 7 14 3 4
## [2,] Percent 43.7 4.6 6 5.8 5.1 3.9 2.2 1.1 2.1 0.6 2.5 0.5 0.9 0.2 0.3
## 15 16 17 18 20 21 22 23 25 26 29 30 32 35 36 39 40
## [1,] 17 2 3 1 18 1 1 1 3 2 2 12 1 1 1 1 2
## [2,] 1.1 0.1 0.2 0.1 1.2 0.1 0.1 0.1 0.2 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1
## 50 60 70 75 99 <NA>
## [1,] 3 2 1 1 188 53 1543
## [2,] 0.2 0.1 0.1 0.1 12.2 3.4 100
Age at first manic episode (continuous, v1_scid_age_mania) This item includes all individuals that ever fulfilled mania criteria. Also a person with e.g. schizophrenia can have a value on this item. If the individual ever fulfilled mania criteria, the age at the first manic episode is given. NA on this item means that age at first mania episode is missing.
Individuals that never experienced a manic episode are coded as “-999”.
Control individiuals are coded as “-999”.
v1_clin_scid_age_mania<-ifelse(is.na(v1_clin$v1_sna_23_manie1_a142_beurteilung),-999,
ifelse(v1_clin$v1_sna_23_manie1_a142_beurteilung==3, v1_clin$v1_sna_24_hypomane1_a143_alter_jahre,
ifelse((v1_clin$v1_sna_23_manie1_a142_beurteilung==1 | v1_clin$v1_sna_23_manie1_a142_beurteilung==0), -999, NA)))
descT(v1_clin_scid_age_mania)
## -999 5 10 11 12 13 14 15 16 17 18 19 20 21 22
## [1,] No. cases 693 1 1 2 2 3 6 9 18 12 18 12 31 15 18
## [2,] Percent 56.7 0.1 0.1 0.2 0.2 0.2 0.5 0.7 1.5 1 1.5 1 2.5 1.2 1.5
## 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
## [1,] 21 21 31 16 17 15 9 12 7 6 9 17 5 8 8 8 5
## [2,] 1.7 1.7 2.5 1.3 1.4 1.2 0.7 1 0.6 0.5 0.7 1.4 0.4 0.7 0.7 0.7 0.4
## 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
## [1,] 14 14 8 6 6 9 5 3 2 4 4 4 2 4 3 2 3
## [2,] 1.1 1.1 0.7 0.5 0.5 0.7 0.4 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.2 0.2 0.2
## 57 59 60 61 65 <NA>
## [1,] 3 1 2 1 2 65 1223
## [2,] 0.2 0.1 0.2 0.1 0.2 5.3 100
v1_scid_age_mania<-c(v1_clin_scid_age_mania,rep(-999,dim(v1_con)[1])) #add -999 for control individuals
descT(v1_scid_age_mania)
## -999 5 10 11 12 13 14 15 16 17 18 19 20 21 22
## [1,] No. cases 1013 1 1 2 2 3 6 9 18 12 18 12 31 15 18
## [2,] Percent 65.7 0.1 0.1 0.1 0.1 0.2 0.4 0.6 1.2 0.8 1.2 0.8 2 1 1.2
## 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
## [1,] 21 21 31 16 17 15 9 12 7 6 9 17 5 8 8 8 5 14
## [2,] 1.4 1.4 2 1 1.1 1 0.6 0.8 0.5 0.4 0.6 1.1 0.3 0.5 0.5 0.5 0.3 0.9
## 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
## [1,] 14 8 6 6 9 5 3 2 4 4 4 2 4 3 2 3 3
## [2,] 0.9 0.5 0.4 0.4 0.6 0.3 0.2 0.1 0.3 0.3 0.3 0.1 0.3 0.2 0.1 0.2 0.2
## 59 60 61 65 <NA>
## [1,] 1 2 1 2 65 1543
## [2,] 0.1 0.1 0.1 0.1 4.2 100
Number of manic episodes (continuous [number], v1_scid_no_mania) In individuals that ever fulfilled criteria for mania, the number of mania episodes is given. Please note the following:
v1_clin_scid_no_mania<-ifelse(is.na(v1_clin$v1_sna_23_manie1_a142_beurteilung),-999,
ifelse(v1_clin$v1_sna_23_manie1_a142_beurteilung==3, v1_clin$v1_sna_24_hypomane1_a145_anzahl2,
ifelse((v1_clin$v1_sna_23_manie1_a142_beurteilung==1 | v1_clin$v1_sna_23_manie1_a142_beurteilung==0), -999, NA)))
descT(v1_clin_scid_no_mania)
## -999 1 2 3 4 5 6 7 8 10 11 12 13 14 15
## [1,] No. cases 693 83 68 54 35 34 19 12 14 24 2 4 1 2 3
## [2,] Percent 56.7 6.8 5.6 4.4 2.9 2.8 1.6 1 1.1 2 0.2 0.3 0.1 0.2 0.2
## 17 20 22 24 25 30 50 96 99 <NA>
## [1,] 1 12 1 1 1 4 1 1 47 106 1223
## [2,] 0.1 1 0.1 0.1 0.1 0.3 0.1 0.1 3.8 8.7 100
v1_scid_no_mania<-c(v1_clin_scid_no_mania,rep(-999,dim(v1_con)[1])) #add -999 for control individuals
descT(v1_scid_no_mania)
## -999 1 2 3 4 5 6 7 8 10 11 12 13 14
## [1,] No. cases 1013 83 68 54 35 34 19 12 14 24 2 4 1 2
## [2,] Percent 65.7 5.4 4.4 3.5 2.3 2.2 1.2 0.8 0.9 1.6 0.1 0.3 0.1 0.1
## 15 17 20 22 24 25 30 50 96 99 <NA>
## [1,] 3 1 12 1 1 1 4 1 1 47 106 1543
## [2,] 0.2 0.1 0.8 0.1 0.1 0.1 0.3 0.1 0.1 3 6.9 100
Age at first hypomanic episode (continuous, v1_scid_age_hypomania) This item includes all individuals that ever fulfilled criteria for hypomania, but never fullfilled criteria for mania. Also a person with e.g. schizophrenia can have a value on this item. If the individual ever fulfilled hypomania criteria (without ever fulfilling criteria of mania), the age at the first hypomanic episode is given. NA on this item means that age at first hypomanic episode is missing.
Individuals that never experienced a hypomanic episode, or had one or more mania episodes, are coded as “-999”.
Control individiuals are coded as “-999”.
v1_clin_scid_age_hypomania<-ifelse(is.na(v1_clin$v1_sna_24_hypomane1_a_160_beurteilung),-999,
ifelse(v1_clin$v1_sna_24_hypomane1_a_160_beurteilung==3, v1_clin$v1_sna_24_hypomane1_a160a_alter_jahre,
ifelse((v1_clin$v1_sna_24_hypomane1_a_160_beurteilung==1 | v1_clin$v1_sna_24_hypomane1_a_160_beurteilung==0), -999, NA)))
descT(v1_clin_scid_age_hypomania)
## -999 13 15 16 17 18 19 20 21 22 23 24 25 26
## [1,] No. cases 1101 2 5 4 1 3 7 4 6 5 7 1 4 3
## [2,] Percent 90 0.2 0.4 0.3 0.1 0.2 0.6 0.3 0.5 0.4 0.6 0.1 0.3 0.2
## 27 28 29 30 31 32 33 34 35 36 37 38 40 42 43 45 46
## [1,] 4 1 2 3 2 3 2 3 2 2 3 2 2 1 1 2 2
## [2,] 0.3 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2
## 47 48 50 51 53 54 55 65 <NA>
## [1,] 1 1 2 1 1 4 4 1 18 1223
## [2,] 0.1 0.1 0.2 0.1 0.1 0.3 0.3 0.1 1.5 100
v1_scid_age_hypomania<-c(v1_clin_scid_age_hypomania,rep(-999,dim(v1_con)[1])) #add -999 for control individuals
descT(v1_scid_age_hypomania)
## -999 13 15 16 17 18 19 20 21 22 23 24 25 26
## [1,] No. cases 1421 2 5 4 1 3 7 4 6 5 7 1 4 3
## [2,] Percent 92.1 0.1 0.3 0.3 0.1 0.2 0.5 0.3 0.4 0.3 0.5 0.1 0.3 0.2
## 27 28 29 30 31 32 33 34 35 36 37 38 40 42 43 45 46
## [1,] 4 1 2 3 2 3 2 3 2 2 3 2 2 1 1 2 2
## [2,] 0.3 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
## 47 48 50 51 53 54 55 65 <NA>
## [1,] 1 1 2 1 1 4 4 1 18 1543
## [2,] 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 1.2 100
Number of hypomanic episodes (continuous [number (but see below)], v1_scid_no_hypomania) In individuals that ever fulfilled criteria for hypomania, but never fullfilled criteria for mania, the number of hypomanic episodes is given. Please note the following:
v1_clin_scid_no_hypomania<-ifelse(is.na(v1_clin$v1_sna_24_hypomane1_a_160_beurteilung),-999,
ifelse(v1_clin$v1_sna_24_hypomane1_a_160_beurteilung==3, v1_clin$v1_sna_24_hypomane1_a161_anzahl,
ifelse((v1_clin$v1_sna_24_hypomane1_a_160_beurteilung==1 | v1_clin$v1_sna_24_hypomane1_a_160_beurteilung==0), -999, NA)))
descT(v1_clin_scid_no_hypomania)
## -999 1 2 3 4 5 6 7 8 10 12 14 15 18
## [1,] No. cases 1101 19 14 9 7 4 2 5 2 5 1 1 2 1
## [2,] Percent 90 1.6 1.1 0.7 0.6 0.3 0.2 0.4 0.2 0.4 0.1 0.1 0.2 0.1
## 20 30 50 70 75 99 <NA>
## [1,] 2 1 1 1 1 13 31 1223
## [2,] 0.2 0.1 0.1 0.1 0.1 1.1 2.5 100
v1_scid_no_hypomania<-c(v1_clin_scid_no_hypomania,rep(-999,dim(v1_con)[1])) #add -999 for control individuals
descT(v1_scid_no_hypomania)
## -999 1 2 3 4 5 6 7 8 10 12 14 15 18
## [1,] No. cases 1421 19 14 9 7 4 2 5 2 5 1 1 2 1
## [2,] Percent 92.1 1.2 0.9 0.6 0.5 0.3 0.1 0.3 0.1 0.3 0.1 0.1 0.1 0.1
## 20 30 50 70 75 99 <NA>
## [1,] 2 1 1 1 1 13 31 1543
## [2,] 0.1 0.1 0.1 0.1 0.1 0.8 2 100
This section was assessed in all study participants. If at least one item covering delusions (delusion item) or hallucinations (hallucination item) was answered in the affirmative this was coded “Y”, otherwise “N”. Please note that an individual was also coded as “N” if there was insufficient information (“0” on the original SCID item; occuring only in few individuals) or if the symptom was too mild to fulfill criteria (“2” on the original SCID item).
NA means that at least one question was not completed and all other completed questions were coded “N”.
v1_clin_scid_ever_delus<-ifelse((is.na(v1_clin$v1_snb_31_prodsymp1_b12_beeinflusswahn) &
is.na(v1_clin$v1_snb_31_prodsymp1_b13_gedankenentzug) &
is.na(v1_clin$v1_snb_31_prodsymp1_b14_gedankenueber) &
v1_clin$v1_snb_31_prodsymp1_b1_beziehungswahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b2_verfolgungswahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b3_groessenwahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b4_koerper_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b6_relig_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b7_schuld_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b8_eifer_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b9_liebe_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b10_nihilist_wahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b11_veram_wahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b12_sonstiger_wahn!=3), "N",
ifelse((v1_clin$v1_snb_31_prodsymp1_b12_beeinflusswahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b13_gedankenentzug!=3 &
v1_clin$v1_snb_31_prodsymp1_b14_gedankenueber!=3 &
v1_clin$v1_snb_31_prodsymp1_b1_beziehungswahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b2_verfolgungswahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b3_groessenwahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b4_koerper_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b6_relig_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b7_schuld_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b8_eifer_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b9_liebe_wahnideen!=3 &
v1_clin$v1_snb_31_prodsymp1_b10_nihilist_wahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b11_veram_wahn!=3 &
v1_clin$v1_snb_31_prodsymp1_b12_sonstiger_wahn!=3), "N",
ifelse((v1_clin$v1_snb_31_prodsymp1_b1_beziehungswahn==3 |
v1_clin$v1_snb_31_prodsymp1_b2_verfolgungswahn==3 |
v1_clin$v1_snb_31_prodsymp1_b3_groessenwahn==3 |
v1_clin$v1_snb_31_prodsymp1_b4_koerper_wahnideen==3 |
v1_clin$v1_snb_31_prodsymp1_b6_relig_wahnideen==3 |
v1_clin$v1_snb_31_prodsymp1_b7_schuld_wahnideen==3 |
v1_clin$v1_snb_31_prodsymp1_b8_eifer_wahnideen==3 |
v1_clin$v1_snb_31_prodsymp1_b9_liebe_wahnideen==3 |
v1_clin$v1_snb_31_prodsymp1_b10_nihilist_wahn==3 |
v1_clin$v1_snb_31_prodsymp1_b11_veram_wahn==3 |
v1_clin$v1_snb_31_prodsymp1_b12_sonstiger_wahn==3 |
v1_clin$v1_snb_31_prodsymp1_b12_beeinflusswahn==3 |
v1_clin$v1_snb_31_prodsymp1_b13_gedankenentzug==3 |
v1_clin$v1_snb_31_prodsymp1_b14_gedankenueber==3),"Y",NA)))
v1_scid_ever_delus<-factor(c(v1_clin_scid_ever_delus,rep(-999,dim(v1_con)[1])))
summary(v1_scid_ever_delus)
## -999 N Y NA's
## 320 302 862 59
v1_clin_scid_ever_halls<-ifelse(v1_clin$v1_snb_31_prodsymp1_b21_olfaktor_halluz==3 |
v1_clin$v1_snb_31_prodsymp1_b_21_gustator_halluz==3 |
v1_clin$v1_snb_31_prodsymp1_b20_taktil_halluz==3 |
v1_clin$v1_snb_31_prodsymp1_b19_opt_halluz==3 |
v1_clin$v1_snb_31_prodsymp1_b16_akust_halluz==3, "Y", "N")
v1_scid_ever_halls<-factor(c(v1_clin_scid_ever_halls,rep(-999,dim(v1_con)[1])))
summary(v1_scid_ever_halls)
## -999 N Y NA's
## 320 580 608 35
This item combines the two previous items. If ever delusional or ever hallucinations then yes. This is a crude operational definition of psychosis, as it takes into account only symptoms and not e.g. level of functioning or other aspects.
v1_clin_scid_ever_psyc<-ifelse(v1_clin_scid_ever_delus=="Y" | v1_clin_scid_ever_halls=="Y","Y","N")
v1_scid_ever_psyc<-factor(c(v1_clin_scid_ever_psyc,rep("-999",dim(v1_con)[1])))
summary(v1_scid_ever_psyc)
## -999 N Y NA's
## 320 276 884 63
Age at first occurence of psychotic symptoms (continuous [years], v1_scid_age_fst_psyc)
v1_clin_scid_age_fst_psy<-c(v1_clin$v1_snc_41_schizo4_c17_alter_jahre,rep(-999,dim(v1_con)[1]))
v1_scid_age_fst_psyc<-ifelse(v1_scid_ever_psyc=="Y",v1_clin_scid_age_fst_psy,-999)
summary(v1_scid_age_fst_psyc[v1_scid_age_fst_psyc>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 6.00 21.00 27.00 29.22 35.00 73.00 543
Year in which first psychotic symptoms occured (continuous [year], v1_scid_yr_fst_psyc)
v1_clin_scid_yr_fst_psyc<-c(v1_clin$v1_snc_41_schizo4_c17_psycho_jahr,rep(-999,dim(v1_con)[1]))
v1_scid_yr_fst_psyc<-ifelse(v1_scid_ever_psyc=="Y",v1_clin_scid_yr_fst_psyc,-999)
descT(v1_scid_yr_fst_psyc)
## -999 1950 1962 1965 1967 1969 1970 1971 1973 1974 1975 1976
## [1,] No. cases 596 1 1 1 1 1 1 2 3 2 1 1
## [2,] Percent 38.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1
## 1977 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
## [1,] 6 3 1 6 1 3 5 4 3 4 10 5 4 8
## [2,] 0.4 0.2 0.1 0.4 0.1 0.2 0.3 0.3 0.2 0.3 0.6 0.3 0.3 0.5
## 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
## [1,] 6 9 5 9 14 6 9 16 11 13 14 15 11 14
## [2,] 0.4 0.6 0.3 0.6 0.9 0.4 0.6 1 0.7 0.8 0.9 1 0.7 0.9
## 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 <NA>
## [1,] 17 21 12 10 17 20 12 13 7 4 584 1543
## [2,] 1.1 1.4 0.8 0.6 1.1 1.3 0.8 0.8 0.5 0.3 37.8 100
Please not that the following items on suicidal ideation were skipped (and coded -999) if this question was not answered positively. The answer “insufficient information” was coded as -999.
v1_scid_evr_suic_ide<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_scid_evr_suic_ide<-ifelse(c(v1_clin$v1_snx_112_suizged2_x7_suizid_gedanken,rep(-999,dim(v1_con)[1]))==0, -999,
ifelse(c(v1_clin$v1_snx_112_suizged2_x7_suizid_gedanken,rep(-999,dim(v1_con)[1]))==1, "N",
ifelse(c(v1_clin$v1_snx_112_suizged2_x7_suizid_gedanken,rep(-999,dim(v1_con)[1]))==3, "Y",
v1_scid_evr_suic_ide)))
descT(v1_scid_evr_suic_ide)
## -999 N Y <NA>
## [1,] No. cases 328 286 903 26 1543
## [2,] Percent 21.3 18.5 58.5 1.7 100
This is an ordinal item with the following gradation: “only fleeting thoughts”-1, “serious thoughts (details were elaborated)”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4. The item is coded “-999” if skipped (see above).
v1_scid_suic_ide<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_scid_suic_ide<-ifelse(v1_scid_evr_suic_ide!="Y", -999,
ifelse(c(v1_clin$v1_snx_112_suizged2_x8_suizged_inhalt,rep(-999,dim(v1_con)[1]))==1, 1,
ifelse(c(v1_clin$v1_snx_112_suizged2_x8_suizged_inhalt,rep(-999,dim(v1_con)[1]))==2, 2,
ifelse(c(v1_clin$v1_snx_112_suizged2_x8_suizged_inhalt,rep(-999,dim(v1_con)[1]))==3, 3,
ifelse(c(v1_clin$v1_snx_112_suizged2_x8_suizged_inhalt==4,rep(-999,dim(v1_con)[1])), 4, v1_scid_suic_ide)))))
v1_scid_suic_ide<-factor(v1_scid_suic_ide,ordered=T)
descT(v1_scid_suic_ide)
## -999 1 2 3 4 <NA>
## [1,] No. cases 614 291 123 128 330 57 1543
## [2,] Percent 39.8 18.9 8 8.3 21.4 3.7 100
This is an ordinal item with the following gradation: “no”-1, “yes, but no details”-2, “yes, including details”-3. The item is coded “-999” if skipped (see above).
v1_scid_suic_thght_mth<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_scid_suic_thght_mth<-ifelse(v1_scid_evr_suic_ide!="Y", -999,
ifelse(c(v1_clin$v1_snx_112_suizged2_x10_suiz_methoden,rep(-999,dim(v1_con)[1]))==1, 1,
ifelse(c(v1_clin$v1_snx_112_suizged2_x10_suiz_methoden,rep(-999,dim(v1_con)[1]))==2, 2,
ifelse(c(v1_clin$v1_snx_112_suizged2_x10_suiz_methoden,rep(-999,dim(v1_con)[1]))==3, 3,
v1_scid_suic_thght_mth))))
v1_scid_suic_thght_mth<-factor(v1_scid_suic_thght_mth,ordered=T)
descT(v1_scid_suic_thght_mth)
## -999 1 2 3 <NA>
## [1,] No. cases 614 264 276 316 73 1543
## [2,] Percent 39.8 17.1 17.9 20.5 4.7 100
This is on ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4. The item is coded “-999” if skipped (see above).
v1_scid_suic_note_thgts<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_scid_suic_note_thgts<-ifelse(v1_scid_evr_suic_ide!="Y", -999,
ifelse(c(v1_clin$v1_snx_112_suizged2_x11_best_erledigt,rep(-999,dim(v1_con)[1]))==1, 1,
ifelse(c(v1_clin$v1_snx_112_suizged2_x11_best_erledigt,rep(-999,dim(v1_con)[1]))==2, 2,
ifelse(c(v1_clin$v1_snx_112_suizged2_x11_best_erledigt,rep(-999,dim(v1_con)[1]))==3, 3,
ifelse(c(v1_clin$v1_snx_112_suizged2_x11_best_erledigt,rep(-999,dim(v1_con)[1]))==4, 4, v1_scid_suic_note_thgts)))))
v1_scid_suic_note_thgts<-factor(v1_scid_suic_note_thgts,ordered=T)
descT(v1_scid_suic_note_thgts)
## -999 1 2 3 4 <NA>
## [1,] No. cases 614 657 45 28 116 83 1543
## [2,] Percent 39.8 42.6 2.9 1.8 7.5 5.4 100
This is on ordinal item with the following gradation: “no”-1, “interruption of attempt”-2, “yes”-3. Please not that the following items on suicidal attempt were skipped if this question was answered with “no”.The answer “insufficient information was coded as -999.
v1_suic_attmpt<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_suic_attmpt<-ifelse(c(v1_clin$v1_snx_111_suizvrs2_x1_suiz_vers,rep(-999,dim(v1_con)[1]))==0, -999,
ifelse(c(v1_clin$v1_snx_111_suizvrs2_x1_suiz_vers,rep(-999,dim(v1_con)[1]))==1, 1,
ifelse(c(v1_clin$v1_snx_111_suizvrs2_x1_suiz_vers,rep(-999,dim(v1_con)[1]))==2, 2,
ifelse(c(v1_clin$v1_snx_111_suizvrs2_x1_suiz_vers,rep(-999,dim(v1_con)[1]))==3, 3,
v1_suic_attmpt))))
v1_suic_attmpt<-factor(v1_suic_attmpt,ordered=T)
descT(v1_suic_attmpt)
## -999 1 2 3 <NA>
## [1,] No. cases 330 777 51 354 31 1543
## [2,] Percent 21.4 50.4 3.3 22.9 2 100
This is on ordinal item with the following gradation: “1 time”-1, “2 times”-2, “3-times”-3, “4 times”-4, “5 times”-5, “6 or more times”-6. The item is coded “-999” if skipped (see above).
v1_scid_no_suic_attmpt<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_scid_no_suic_attmpt<-ifelse(v1_suic_attmpt==1, -999,
ifelse(v1_suic_attmpt>1, c(v1_clin$v1_snx_111_suizvrs2_x2_suiz_anz,rep(-999,dim(v1_con)[1])), v1_scid_no_suic_attmpt))
v1_scid_no_suic_attmpt<-factor(v1_scid_no_suic_attmpt,ordered=T)
descT(v1_scid_no_suic_attmpt)
## -999 1 2 3 <NA>
## [1,] No. cases 1097 221 93 79 53 1543
## [2,] Percent 71.1 14.3 6 5.1 3.4 100
This is an ordinal item with the following gradation: “no preparation (impulsive attempt)”-1, “little preparation”-2, “moderate preparation”-3, “Extensive, all details planned”-4. The item is coded “-999” if skipped (see above).
v1_prep_suic_attp_ord<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_prep_suic_attp_ord<-ifelse(v1_suic_attmpt==1, -999,
ifelse(v1_suic_attmpt>1 &
c(v1_clin$v1_snx_111_suizvrs2_x5_suiz_vorb,rep(-999,dim(v1_con)[1]))==1, 1,
ifelse(v1_suic_attmpt>1 &
c(v1_clin$v1_snx_111_suizvrs2_x5_suiz_vorb,rep(-999,dim(v1_con)[1]))==2, 2,
ifelse(v1_suic_attmpt>1 &
c(v1_clin$v1_snx_111_suizvrs2_x5_suiz_vorb,rep(-999,dim(v1_con)[1]))==3, 3,
ifelse(v1_suic_attmpt>1 &
c(v1_clin$v1_snx_111_suizvrs2_x5_suiz_vorb,rep(-999,dim(v1_con)[1]))==4, 4,
v1_prep_suic_attp_ord)))))
v1_prep_suic_attp_ord<-factor(v1_prep_suic_attp_ord,ordered=T)
descT(v1_prep_suic_attp_ord)
## -999 1 2 3 4 <NA>
## [1,] No. cases 1097 118 36 72 132 88 1543
## [2,] Percent 71.1 7.6 2.3 4.7 8.6 5.7 100
This is on ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4. The item is coded “-999” if skipped (see above).
v1_suic_note_attmpt<-c(rep(NA,dim(v1_clin)[1]),rep(-999,dim(v1_con)[1]))
v1_suic_note_attmpt<-ifelse(v1_suic_attmpt==1, -999,
ifelse(v1_suic_attmpt>1 & c(v1_clin$v1_snx_111_suizvrs2_x6_abschiedshdl
,rep(-999,dim(v1_con)[1]))==1, "1",
ifelse(v1_suic_attmpt>1 & c(v1_clin$v1_snx_111_suizvrs2_x6_abschiedshdl
,rep(-999,dim(v1_con)[1]))==2, "2",
ifelse(v1_suic_attmpt>1 & c(v1_clin$v1_snx_111_suizvrs2_x6_abschiedshdl
,rep(-999,dim(v1_con)[1]))==3, "3",
ifelse(v1_suic_attmpt>1 & c(v1_clin$v1_snx_111_suizvrs2_x6_abschiedshdl
,rep(-999,dim(v1_con)[1]))==4, "4",
v1_suic_note_attmpt)))))
v1_suic_note_attmpt<-factor(v1_suic_note_attmpt,ordered=T)
descT(v1_suic_note_attmpt)
## -999 1 2 3 4 <NA>
## [1,] No. cases 1097 250 17 17 90 72 1543
## [2,] Percent 71.1 16.2 1.1 1.1 5.8 4.7 100
Create dataset
v1_scid<-data.frame(v1_scid_dsm_dx,
v1_scid_dsm_dx_cat,
v1_scid_age_MDE,
v1_scid_no_MDE,
v1_scid_age_mania,
v1_scid_no_mania,
v1_scid_age_hypomania,
v1_scid_no_hypomania,
v1_scid_ever_halls,
v1_scid_ever_delus,
v1_scid_ever_psyc,
v1_scid_age_fst_psyc,
v1_scid_yr_fst_psyc,
v1_scid_evr_suic_ide,
v1_scid_suic_ide,
v1_scid_suic_thght_mth,
v1_scid_suic_note_thgts,
v1_suic_attmpt,
v1_scid_no_suic_attmpt,
v1_prep_suic_attp_ord,
v1_suic_note_attmpt)
The PANSS (Kay, Fiszbein, & Opler, 1987) is a rating scale measuring positive and negative symptoms in schizophrenia. It has three subscales: positive, negative and gereral psychopathology symptoms. Each item is rated on an ordinal scale from one to seven with the following gradation: “absent”-1, “minimal”-2, “mild”-3, “moderate”-4, “moderate severe”-5, “severe”-6, “extreme”-7. On all items, higher scores mean more severe symptoms. The ratings refer to the past seven days. Please find the items below.
P1 Delusions (ordinal [1,2,3,4,5,6,7], v1_panss_p1)
v1_panss_p1<-c(v1_clin$v1_panss_p_p1_wahnideen,v1_con$v1_panss_p_p1_wahnideen)
v1_panss_p1<-factor(v1_panss_p1, ordered=T)
descT(v1_panss_p1)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 983 96 144 110 60 49 101 1543
## [2,] Percent 63.7 6.2 9.3 7.1 3.9 3.2 6.5 100
P2 Conceptual disorganization (ordinal [1,2,3,4,5,6,7], v1_panss_p2)
v1_panss_p2<-c(v1_clin$v1_panss_p_p2_form_denkst,v1_con$v1_panss_p_p2_form_denkst)
v1_panss_p2<-factor(v1_panss_p2, ordered=T)
descT(v1_panss_p2)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 898 170 209 110 46 8 1 101 1543
## [2,] Percent 58.2 11 13.5 7.1 3 0.5 0.1 6.5 100
P3 Hallucinatory behavior (ordinal [1,2,3,4,5,6,7], v1_panss_p3)
v1_panss_p3<-c(v1_clin$v1_panss_p_p3_halluz,v1_con$v1_panss_p_p3_halluz)
v1_panss_p3<-factor(v1_panss_p3, ordered=T)
descT(v1_panss_p3)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 1188 76 66 56 40 15 1 101 1543
## [2,] Percent 77 4.9 4.3 3.6 2.6 1 0.1 6.5 100
P4 Excitement (ordinal [1,2,3,4,5,6,7], v1_panss_p4)
v1_panss_p4<-c(v1_clin$v1_panss_p_p4_erregung,v1_con$v1_panss_p_p4_erregung)
v1_panss_p4<-factor(v1_panss_p4, ordered=T)
descT(v1_panss_p4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 961 147 251 58 17 3 106 1543
## [2,] Percent 62.3 9.5 16.3 3.8 1.1 0.2 6.9 100
P5 Grandiosity (ordinal [1,2,3,4,5,6,7], v1_panss_p5)
v1_panss_p5<-c(v1_clin$v1_panss_p_p5_groessenideen,v1_con$v1_panss_p_p5_groessenideen)
v1_panss_p5<-factor(v1_panss_p5, ordered=T)
descT(v1_panss_p5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 1197 100 84 34 17 6 105 1543
## [2,] Percent 77.6 6.5 5.4 2.2 1.1 0.4 6.8 100
P6 Suspiciousness/persecution (ordinal [1,2,3,4,5,6,7], v1_panss_p6)
v1_panss_p6<-c(v1_clin$v1_panss_p_p6_misstr_verfolg,v1_con$v1_panss_p_p6_misstr_verfolg)
v1_panss_p6<-factor(v1_panss_p6, ordered=T)
descT(v1_panss_p6)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 1023 144 173 56 31 12 1 103 1543
## [2,] Percent 66.3 9.3 11.2 3.6 2 0.8 0.1 6.7 100
P7 Hostility (ordinal [1,2,3,4,5,6,7], v1_panss_p7)
v1_panss_p7<-c(v1_clin$v1_panss_p_p7_feindseligkeit,v1_con$v1_panss_p_p7_feindseligkeit)
v1_panss_p7<-factor(v1_panss_p7, ordered=T)
descT(v1_panss_p7)
## 1 2 3 4 5 <NA>
## [1,] No. cases 1245 96 76 16 4 106 1543
## [2,] Percent 80.7 6.2 4.9 1 0.3 6.9 100
PANSS Positive sum score (continuous [7-49], v1_panss_sum_pos)
v1_panss_sum_pos<-as.numeric.factor(v1_panss_p1)+
as.numeric.factor(v1_panss_p2)+
as.numeric.factor(v1_panss_p3)+
as.numeric.factor(v1_panss_p4)+
as.numeric.factor(v1_panss_p5)+
as.numeric.factor(v1_panss_p6)+
as.numeric.factor(v1_panss_p7)
summary(v1_panss_sum_pos)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.00 7.00 8.50 10.81 13.00 35.00 117
N1 Blunted affect (ordinal [1,2,3,4,5,6,7], v1_panss_n1)
v1_panss_n1<-c(v1_clin$v1_panss_n_n1_affektverflachung,v1_con$v1_panss_n_n1_affektverflachung)
v1_panss_n1<-factor(v1_panss_n1, ordered=T)
descT(v1_panss_n1)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 781 174 205 148 111 18 1 105 1543
## [2,] Percent 50.6 11.3 13.3 9.6 7.2 1.2 0.1 6.8 100
N2 Emotional withdrawal (ordinal [1,2,3,4,5,6,7], v1_panss_n2)
v1_panss_n2<-c(v1_clin$v1_panss_n_n2_emot_rueckzug,v1_con$v1_panss_n_n2_emot_rueckzug)
v1_panss_n2<-factor(v1_panss_n2, ordered=T)
descT(v1_panss_n2)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 866 165 188 172 34 10 1 107 1543
## [2,] Percent 56.1 10.7 12.2 11.1 2.2 0.6 0.1 6.9 100
N3 Poor rapport (ordinal [1,2,3,4,5,6,7], v1_panss_n3)
v1_panss_n3<-c(v1_clin$v1_panss_n_n3_mang_aff_rapp,v1_con$v1_panss_n_n3_mang_aff_rapp)
v1_panss_n3<-factor(v1_panss_n3, ordered=T)
descT(v1_panss_n3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 973 165 191 78 28 4 104 1543
## [2,] Percent 63.1 10.7 12.4 5.1 1.8 0.3 6.7 100
N4 Passive/apathetic social withdrawal (ordinal [1,2,3,4,5,6,7], v1_panss_n4)
v1_panss_n4<-c(v1_clin$v1_panss_n_n4_soz_pass_apath,v1_con$v1_panss_n_n4_soz_pass_apath)
v1_panss_n4<-factor(v1_panss_n4, ordered=T)
descT(v1_panss_n4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 881 141 252 109 45 9 106 1543
## [2,] Percent 57.1 9.1 16.3 7.1 2.9 0.6 6.9 100
N5 difficulty in abstract thinking (ordinal [1,2,3,4,5,6,7], v1_panss_n5)
v1_panss_n5<-c(v1_clin$v1_panss_n_n5_abstr_denken,v1_con$v1_panss_n_n5_abstr_denken)
v1_panss_n5<-factor(v1_panss_n5, ordered=T)
descT(v1_panss_n5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 875 160 244 95 36 16 117 1543
## [2,] Percent 56.7 10.4 15.8 6.2 2.3 1 7.6 100
N6 Lack of spontaneity and flow of conversation (ordinal [1,2,3,4,5,6,7], v1_panss_n6)
v1_panss_n6<-c(v1_clin$v1_panss_n_n6_spon_fl_sprache,v1_con$v1_panss_n_n6_spon_fl_sprache)
v1_panss_n6<-factor(v1_panss_n6, ordered=T)
descT(v1_panss_n6)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 1060 136 132 72 33 3 107 1543
## [2,] Percent 68.7 8.8 8.6 4.7 2.1 0.2 6.9 100
N7 Stereotyped thinking (ordinal [1,2,3,4,5,6,7], v1_panss_n7)
v1_panss_n7<-c(v1_clin$v1_panss_n_n7_stereotyp_ged,v1_con$v1_panss_n_n7_stereotyp_ged)
v1_panss_n7<-factor(v1_panss_n7, ordered=T)
descT(v1_panss_n7)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 1096 138 144 42 11 5 107 1543
## [2,] Percent 71 8.9 9.3 2.7 0.7 0.3 6.9 100
PANSS Negative sum score (continuous [7-49], v1_panss_sum_neg)
v1_panss_sum_neg<-as.numeric.factor(v1_panss_n1)+
as.numeric.factor(v1_panss_n2)+
as.numeric.factor(v1_panss_n3)+
as.numeric.factor(v1_panss_n4)+
as.numeric.factor(v1_panss_n5)+
as.numeric.factor(v1_panss_n6)+
as.numeric.factor(v1_panss_n7)
summary(v1_panss_sum_neg)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.00 7.00 10.00 12.22 16.00 38.00 136
G1 Somatic concerns (ordinal [1,2,3,4,5,6,7], v1_panss_g1)
v1_panss_g1<-c(v1_clin$v1_panss_g_g1_sorge_gesundh,v1_con$v1_panss_g_g1_sorge_gesundh)
v1_panss_g1<-factor(v1_panss_g1, ordered=T)
descT(v1_panss_g1)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 954 176 177 83 34 9 3 107 1543
## [2,] Percent 61.8 11.4 11.5 5.4 2.2 0.6 0.2 6.9 100
G2 Anxiety (ordinal [1,2,3,4,5,6,7], v1_panss_g2)
v1_panss_g2<-c(v1_clin$v1_panss_g_g2_angst,v1_con$v1_panss_g_g2_angst)
v1_panss_g2<-factor(v1_panss_g2, ordered=T)
descT(v1_panss_g2)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 828 149 283 123 45 6 1 108 1543
## [2,] Percent 53.7 9.7 18.3 8 2.9 0.4 0.1 7 100
G3 Guilt feelings (ordinal [1,2,3,4,5,6,7], v1_panss_g3)
v1_panss_g3<-c(v1_clin$v1_panss_g_g3_schuldgefuehle,v1_con$v1_panss_g_g3_schuldgefuehle)
v1_panss_g3<-factor(v1_panss_g3, ordered=T)
descT(v1_panss_g3)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 960 156 176 111 29 5 1 105 1543
## [2,] Percent 62.2 10.1 11.4 7.2 1.9 0.3 0.1 6.8 100
G4 Tension (ordinal [1,2,3,4,5,6,7], v1_panss_g4)
v1_panss_g4<-c(v1_clin$v1_panss_g_g4_anspannung,v1_con$v1_panss_g_g4_anspannung)
v1_panss_g4<-factor(v1_panss_g4, ordered=T)
descT(v1_panss_g4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 815 213 266 115 22 6 106 1543
## [2,] Percent 52.8 13.8 17.2 7.5 1.4 0.4 6.9 100
G5 Mannerisms & posturing (ordinal [1,2,3,4,5,6,7], v1_panss_g5)
v1_panss_g5<-c(v1_clin$v1_panss_g_g5_manier_koerperh,v1_con$v1_panss_g_g5_manier_koerperh)
v1_panss_g5<-factor(v1_panss_g5, ordered=T)
descT(v1_panss_g5)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 1221 111 71 20 6 8 1 105 1543
## [2,] Percent 79.1 7.2 4.6 1.3 0.4 0.5 0.1 6.8 100
G6 Depression (ordinal [1,2,3,4,5,6,7], v1_panss_g6)
v1_panss_g6<-c(v1_clin$v1_panss_g_g6_depression,v1_con$v1_panss_g_g6_depression)
v1_panss_g6<-factor(v1_panss_g6, ordered=T)
descT(v1_panss_g6)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 722 154 251 185 106 16 4 105 1543
## [2,] Percent 46.8 10 16.3 12 6.9 1 0.3 6.8 100
G7 Motor retardation (ordinal [1,2,3,4,5,6,7], v1_panss_g7)
v1_panss_g7<-c(v1_clin$v1_panss_g_g7_mot_verlangs,v1_con$v1_panss_g_g7_mot_verlangs)
v1_panss_g7<-factor(v1_panss_g7, ordered=T)
descT(v1_panss_g7)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 896 175 237 102 23 5 105 1543
## [2,] Percent 58.1 11.3 15.4 6.6 1.5 0.3 6.8 100
G8 Uncooperativeness (ordinal [1,2,3,4,5,6,7], v1_panss_g8)
v1_panss_g8<-c(v1_clin$v1_panss_g_g8_unkoop_verh,v1_con$v1_panss_g_g8_unkoop_verh)
v1_panss_g8<-factor(v1_panss_g8, ordered=T)
descT(v1_panss_g8)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 1296 75 50 12 3 2 105 1543
## [2,] Percent 84 4.9 3.2 0.8 0.2 0.1 6.8 100
G9 Unusual thought content (ordinal [1,2,3,4,5,6,7], v1_panss_g9)
v1_panss_g9<-c(v1_clin$v1_panss_g_g9_ungew_denkinh,v1_con$v1_panss_g_g9_ungew_denkinh)
v1_panss_g9<-factor(v1_panss_g9, ordered=T)
descT(v1_panss_g9)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 1056 91 163 74 44 12 1 102 1543
## [2,] Percent 68.4 5.9 10.6 4.8 2.9 0.8 0.1 6.6 100
G10 Disorientation (ordinal [1,2,3,4,5,6,7], v1_panss_g10)
v1_panss_g10<-c(v1_clin$v1_panss_g_g10_desorient,v1_con$v1_panss_g_g10_desorient)
v1_panss_g10<-factor(v1_panss_g10, ordered=T)
descT(v1_panss_g10)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 1269 99 61 4 4 2 104 1543
## [2,] Percent 82.2 6.4 4 0.3 0.3 0.1 6.7 100
G11 Poor attention (ordinal [1,2,3,4,5,6,7], v1_panss_g11)
v1_panss_g11<-c(v1_clin$v1_panss_g_g11_mang_aufmerks,v1_con$v1_panss_g_g11_mang_aufmerks)
v1_panss_g11<-factor(v1_panss_g11, ordered=T)
descT(v1_panss_g11)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 775 172 332 125 27 3 109 1543
## [2,] Percent 50.2 11.1 21.5 8.1 1.7 0.2 7.1 100
G12 Lack of judgement & insight (ordinal [1,2,3,4,5,6,7], v1_panss_g12)
v1_panss_g12<-c(v1_clin$v1_panss_g_g12_mang_urt_einsi,v1_con$v1_panss_g_g12_mang_urt_einsi)
v1_panss_g12<-factor(v1_panss_g12, ordered=T)
descT(v1_panss_g12)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 1116 132 101 66 15 7 1 105 1543
## [2,] Percent 72.3 8.6 6.5 4.3 1 0.5 0.1 6.8 100
G13 Disturbance of volition (ordinal [1,2,3,4,5,6,7], v1_panss_g13)
v1_panss_g13<-c(v1_clin$v1_panss_g_g13_willensschwae,v1_con$v1_panss_g_g13_willensschwae)
v1_panss_g13<-factor(v1_panss_g13, ordered=T)
descT(v1_panss_g13)
## 1 2 3 4 5 <NA>
## [1,] No. cases 1173 111 112 37 2 108 1543
## [2,] Percent 76 7.2 7.3 2.4 0.1 7 100
G14 Poor impulse control (ordinal [1,2,3,4,5,6,7], v1_panss_g14)
v1_panss_g14<-c(v1_clin$v1_panss_g_g14_mang_impulsk,v1_con$v1_panss_g_g14_mang_impulsk)
v1_panss_g14<-factor(v1_panss_g14, ordered=T)
descT(v1_panss_g14)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 1173 102 136 20 1 2 109 1543
## [2,] Percent 76 6.6 8.8 1.3 0.1 0.1 7.1 100
G15 Preoccupation (ordinal [1,2,3,4,5,6,7], v1_panss_g15)
v1_panss_g15<-c(v1_clin$v1_panss_g_g15_selbstbezog,v1_con$v1_panss_g_g15_selbstbezog)
v1_panss_g15<-factor(v1_panss_g15, ordered=T)
descT(v1_panss_g15)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 1180 110 100 40 8 1 104 1543
## [2,] Percent 76.5 7.1 6.5 2.6 0.5 0.1 6.7 100
G16 Active social avoidance (ordinal [1,2,3,4,5,6,7], v1_panss_g16)
v1_panss_g16<-c(v1_clin$v1_panss_g_g16_aktsoz_vermeid,v1_con$v1_panss_g_g16_aktsoz_vermeid)
v1_panss_g16<-factor(v1_panss_g16, ordered=T)
descT(v1_panss_g16)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 991 141 203 65 30 6 107 1543
## [2,] Percent 64.2 9.1 13.2 4.2 1.9 0.4 6.9 100
PANSS General Psychopathology sum score (continuous [16-112], v1_panss_sum_gen)
v1_panss_sum_gen<-as.numeric.factor(v1_panss_g1)+
as.numeric.factor(v1_panss_g2)+
as.numeric.factor(v1_panss_g3)+
as.numeric.factor(v1_panss_g4)+
as.numeric.factor(v1_panss_g5)+
as.numeric.factor(v1_panss_g6)+
as.numeric.factor(v1_panss_g7)+
as.numeric.factor(v1_panss_g8)+
as.numeric.factor(v1_panss_g9)+
as.numeric.factor(v1_panss_g10)+
as.numeric.factor(v1_panss_g11)+
as.numeric.factor(v1_panss_g12)+
as.numeric.factor(v1_panss_g13)+
as.numeric.factor(v1_panss_g14)+
as.numeric.factor(v1_panss_g15)+
as.numeric.factor(v1_panss_g16)
summary(v1_panss_sum_gen)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 16.00 18.00 23.00 25.31 31.00 74.00 147
Create PANSS Total score (continuous [30-210], v1_panss_sum_tot)
v1_panss_sum_tot<-v1_panss_sum_pos+v1_panss_sum_neg+v1_panss_sum_gen
summary(v1_panss_sum_tot)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 30.00 33.00 44.00 48.39 58.00 141.00 188
Create dataset
v1_symp_panss<-data.frame(v1_panss_p1,v1_panss_p2,v1_panss_p3,v1_panss_p4,v1_panss_p5,v1_panss_p6,v1_panss_p7,
v1_panss_n1,v1_panss_n2,v1_panss_n3,v1_panss_n4,v1_panss_n5,v1_panss_n6,v1_panss_n7,
v1_panss_g1,v1_panss_g2,v1_panss_g3,v1_panss_g4,v1_panss_g5,v1_panss_g6,v1_panss_g7,
v1_panss_g8,v1_panss_g9,v1_panss_g10,v1_panss_g11,v1_panss_g12,v1_panss_g13,v1_panss_g14,
v1_panss_g15,v1_panss_g16,v1_panss_sum_pos,v1_panss_sum_neg,v1_panss_sum_gen,
v1_panss_sum_tot)
The IDS-C30 is is a 30-item rating scale used to assess the severity of depressive symptoms. Each item is rated on an ordinal scale from zero to three with zero indicating absence of the respective symptom. One item, #9, has additional information. The ratings refer to the past seven days. On all items, higher scores indicate more severe symptoms. Please find the items below.
Item 1 Sleep onset insomnia (ordinal [0,1,2,3], v1_idsc_itm1)
v1_idsc_itm1<-c(v1_clin$v1_ids_c_s1_ids1_einschlafschw,v1_con$v1_ids_c_s1_ids1_einschlafschw)
v1_idsc_itm1<-factor(v1_idsc_itm1, ordered=T)
descT(v1_idsc_itm1)
## 0 1 2 3 <NA>
## [1,] No. cases 996 218 111 102 116 1543
## [2,] Percent 64.5 14.1 7.2 6.6 7.5 100
Item 2 Mid-nocturnal insomnia (ordinal [0,1,2,3], v1_idsc_itm2)
v1_idsc_itm2<-c(v1_clin$v1_ids_c_s1_ids2_naechtl_aufw,v1_con$v1_ids_c_s1_ids2_naechtl_aufw)
v1_idsc_itm2<-factor(v1_idsc_itm2, ordered=T)
descT(v1_idsc_itm2)
## 0 1 2 3 <NA>
## [1,] No. cases 880 224 173 148 118 1543
## [2,] Percent 57 14.5 11.2 9.6 7.6 100
Item 3 Early morning insomnia (ordinal [0,1,2,3], v1_idsc_itm3)
v1_idsc_itm3<-c(v1_clin$v1_ids_c_s1_ids3_frueh_aufw,v1_con$v1_ids_c_s1_ids3_frueh_aufw)
v1_idsc_itm3<-factor(v1_idsc_itm3, ordered=T)
descT(v1_idsc_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 1133 101 97 92 120 1543
## [2,] Percent 73.4 6.5 6.3 6 7.8 100
Item 4 Hypersomnia (ordinal [0,1,2,3], v1_idsc_itm4)
v1_idsc_itm4<-c(v1_clin$v1_ids_c_s1_ids4_hypersomnie,v1_con$v1_ids_c_s1_ids4_hypersomnie)
v1_idsc_itm4<-factor(v1_idsc_itm4, ordered=T)
descT(v1_idsc_itm4)
## 0 1 2 3 <NA>
## [1,] No. cases 947 305 138 28 125 1543
## [2,] Percent 61.4 19.8 8.9 1.8 8.1 100
Item 5 Mood (sad) (ordinal [0,1,2,3], v1_idsc_itm5)
v1_idsc_itm5<-c(v1_clin$v1_ids_c_s1_ids5_stimmung_trgk,v1_con$v1_ids_c_s1_ids5_stimmung_trgk)
v1_idsc_itm5<-factor(v1_idsc_itm5, ordered=T)
descT(v1_idsc_itm5)
## 0 1 2 3 <NA>
## [1,] No. cases 807 397 133 84 122 1543
## [2,] Percent 52.3 25.7 8.6 5.4 7.9 100
Item 6 Mood (irritable) (ordinal [0,1,2,3], v1_idsc_itm6)
v1_idsc_itm6<-c(v1_clin$v1_ids_c_s1_ids6_stimmung_grzt,v1_con$v1_ids_c_s1_ids6_stimmung_grzt)
v1_idsc_itm6<-factor(v1_idsc_itm6, ordered=T)
descT(v1_idsc_itm6)
## 0 1 2 3 <NA>
## [1,] No. cases 1042 292 55 35 119 1543
## [2,] Percent 67.5 18.9 3.6 2.3 7.7 100
Item 7 Mood (anxious) (ordinal [0,1,2,3], v1_idsc_itm7)
v1_idsc_itm7<-c(v1_clin$v1_ids_c_s1_ids7_stimmung_agst,v1_con$v1_ids_c_s1_ids7_stimmung_agst)
v1_idsc_itm7<-factor(v1_idsc_itm7, ordered=T)
descT(v1_idsc_itm7)
## 0 1 2 3 <NA>
## [1,] No. cases 909 308 131 72 123 1543
## [2,] Percent 58.9 20 8.5 4.7 8 100
Item 8 Reactivity of mood (ordinal [0,1,2,3], v1_idsc_itm8)
v1_idsc_itm8<-c(v1_clin$v1_ids_c_s1_ids8_reakt_stimmung,v1_con$v1_ids_c_s1_ids8_reakt_stimmung)
v1_idsc_itm8<-factor(v1_idsc_itm8, ordered=T)
descT(v1_idsc_itm8)
## 0 1 2 3 <NA>
## [1,] No. cases 1126 181 74 42 120 1543
## [2,] Percent 73 11.7 4.8 2.7 7.8 100
Item 9 Mood Variation (ordinal [0,1,2,3], v1_idsc_itm9)
v1_idsc_itm9<-c(v1_clin$v1_ids_c_s1_ids9_stimmungsschw,v1_con$v1_ids_c_s1_ids9_stimmungsschw)
v1_idsc_itm9<-factor(v1_idsc_itm9, ordered=T)
descT(v1_idsc_itm9)
## 0 1 2 3 <NA>
## [1,] No. cases 1057 128 82 149 127 1543
## [2,] Percent 68.5 8.3 5.3 9.7 8.2 100
Item 9A (categorical [M, A, N], v1_idsc_itm9a)
Additional information if the answer on item 9 was 1,2 or 3: “When was the mood usually worse?” (“M”-morning, “A”-afternoon, “N”-night).
v1_idsc_itm9a_pre<-c(v1_clin$v1_ids_c_s1_ids9a_stimmungsschw,v1_con$v1_ids_c_s1_ids9a_stimmungsschw)
v1_idsc_itm9a<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_idsc_itm9a<-ifelse(v1_idsc_itm9!=0 & v1_idsc_itm9a_pre==1, "M", ifelse(v1_idsc_itm9==0, -999, v1_idsc_itm9a))
v1_idsc_itm9a<-ifelse(v1_idsc_itm9!=0 & v1_idsc_itm9a_pre==2, "A", ifelse(v1_idsc_itm9==0, -999, v1_idsc_itm9a))
v1_idsc_itm9a<-ifelse(v1_idsc_itm9!=0 & v1_idsc_itm9a_pre==3, "N", ifelse(v1_idsc_itm9==0, -999, v1_idsc_itm9a))
v1_idsc_itm9a<-factor(v1_idsc_itm9a, ordered=F)
descT(v1_idsc_itm9a)
## -999 A M N <NA>
## [1,] No. cases 1057 15 160 64 247 1543
## [2,] Percent 68.5 1 10.4 4.1 16 100
Item 9B (dichotomous, v1_idsc_itm9b) Additional information if the answer on item 9 was 1,2 or 3: “Is mood variation attributed to environment by the patient?”.
v1_idsc_itm9b_pre<-c(v1_clin$v1_ids_c_s1_ids9b_stimmungsschw,v1_con$v1_ids_c_s1_ids9b_stimmungsschw)
v1_idsc_itm9b<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_idsc_itm9b<-ifelse(v1_idsc_itm9!=0 & v1_idsc_itm9b_pre==0, "N", ifelse(v1_idsc_itm9==0, -999, v1_idsc_itm9b))
v1_idsc_itm9b<-ifelse(v1_idsc_itm9!=0 & v1_idsc_itm9b_pre==1, "Y", ifelse(v1_idsc_itm9==0, -999, v1_idsc_itm9b))
v1_idsc_itm9b<-factor(v1_idsc_itm9b, ordered=F)
descT(v1_idsc_itm9b)
## -999 N Y <NA>
## [1,] No. cases 1057 107 84 295 1543
## [2,] Percent 68.5 6.9 5.4 19.1 100
Item 10 Quality of mood (ordinal [0,1,2,3], v1_idsc_itm10)
v1_idsc_itm10<-c(v1_clin$v1_ids_c_s1_ids10_quali_stimmung,v1_con$v1_ids_c_s1_ids10_quali_stimmung)
v1_idsc_itm10<-factor(v1_idsc_itm10, ordered=T)
descT(v1_idsc_itm10)
## 0 1 2 3 <NA>
## [1,] No. cases 1108 103 61 135 136 1543
## [2,] Percent 71.8 6.7 4 8.7 8.8 100
Items 11-14 Appetite and weight
Please not that item 11 assesses decreased appetite and item 13 assesses weight loss during the past two weeks. Item 12 assesses increased appetite and item 14 weight gain during the past two weeks.
The interviewer is supposed to rate either items 11 and 13 or items 12 and 14.
Item 11 (ordinal [0,1,2,3], v1_idsc_itm11)
v1_idsc_app_verm<-c(v1_clin$v1_ids_c_s2_ids11_appetit_verm,v1_con$v1_ids_c_s2_ids11_appetit_verm)
v1_idsc_app_gest<-c(v1_clin$v1_ids_c_s2_ids12_appetit_steig,v1_con$v1_ids_c_s2_ids12_appetit_steig)
v1_idsc_itm11<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_idsc_itm11<-ifelse(is.na(v1_idsc_app_verm)==T & is.na(v1_idsc_app_gest)==T, NA,
ifelse(is.na(v1_idsc_app_verm)==T & is.na(v1_idsc_app_gest)==F, -999,
ifelse(is.na(v1_idsc_app_verm)==F & is.na(v1_idsc_app_gest)==T,
v1_idsc_app_verm,
ifelse(is.na(v1_idsc_app_verm)==F & is.na(v1_idsc_app_gest)==F & (v1_idsc_app_verm>v1_idsc_app_gest), v1_idsc_app_verm,
ifelse(is.na(v1_idsc_app_verm)==F & is.na(v1_idsc_app_gest)==F & (v1_idsc_app_gest>=v1_idsc_app_verm),-999,v1_idsc_itm11)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v1_idsc_itm11)
## -999 0 1 2 3 <NA>
## [1,] No. cases 416 838 133 24 11 121 1543
## [2,] Percent 27 54.3 8.6 1.6 0.7 7.8 100
Item 12 (ordinal [0,1,2,3], v1_idsc_itm12)
v1_idsc_itm12<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_idsc_itm12<-ifelse(is.na(v1_idsc_app_verm)==T & is.na(v1_idsc_app_gest)==T, NA,
ifelse(is.na(v1_idsc_app_verm)==T & is.na(v1_idsc_app_gest)==F,
v1_idsc_app_gest,
ifelse(is.na(v1_idsc_app_verm)==F & is.na(v1_idsc_app_gest)==T,
-999,
ifelse(is.na(v1_idsc_app_verm)==F & is.na(v1_idsc_app_gest)==F & (v1_idsc_app_verm>v1_idsc_app_gest), -999,
ifelse(is.na(v1_idsc_app_verm)==F & is.na(v1_idsc_app_gest)==F & (v1_idsc_app_gest>=v1_idsc_app_verm), v1_idsc_app_gest,v1_idsc_itm12)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v1_idsc_itm12)
## -999 0 1 2 3 <NA>
## [1,] No. cases 1006 132 174 66 44 121 1543
## [2,] Percent 65.2 8.6 11.3 4.3 2.9 7.8 100
Item 13 (ordinal [0,1,2,3], v1_idsc_itm13)
v1_idsc_gew_abn<-c(v1_clin$v1_ids_c_s2_ids13_gewichtsabn,v1_con$v1_ids_c_s2_ids13_gewichtsabn)
v1_idsc_gew_zun<-c(v1_clin$v1_ids_c_s2_ids14_gewichtszun,v1_con$v1_ids_c_s2_ids14_gewichtszun)
v1_idsc_itm13<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_idsc_itm13<-ifelse(is.na(v1_idsc_gew_abn)==T & is.na(v1_idsc_gew_zun)==T, NA,
ifelse(is.na(v1_idsc_gew_abn)==T & is.na(v1_idsc_gew_zun)==F, -999,
ifelse(is.na(v1_idsc_gew_abn)==F & is.na(v1_idsc_gew_zun)==T, v1_idsc_gew_abn,
ifelse(is.na(v1_idsc_gew_abn)==F & is.na(v1_idsc_gew_zun)==F & (v1_idsc_gew_abn>v1_idsc_gew_zun), v1_idsc_gew_abn, ifelse(is.na(v1_idsc_gew_abn)==F & is.na(v1_idsc_gew_zun)==F & (v1_idsc_gew_zun >= v1_idsc_gew_abn),-999,v1_idsc_itm13)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v1_idsc_itm13)
## -999 0 1 2 3 <NA>
## [1,] No. cases 447 791 70 70 36 129 1543
## [2,] Percent 29 51.3 4.5 4.5 2.3 8.4 100
Item 14 (ordinal [0,1,2,3], v1_idsc_itm14)
v1_idsc_itm14<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_idsc_itm14<-ifelse(is.na(v1_idsc_gew_abn)==T & is.na(v1_idsc_gew_zun)==T, NA,
ifelse(is.na(v1_idsc_gew_abn)==T & is.na(v1_idsc_gew_zun)==F,
v1_idsc_gew_zun,
ifelse(is.na(v1_idsc_gew_abn)==F & is.na(v1_idsc_gew_zun)==T, -999,
ifelse(is.na(v1_idsc_gew_abn)==F & is.na(v1_idsc_gew_zun)==F & (v1_idsc_gew_abn>v1_idsc_gew_zun), -999,
ifelse(is.na(v1_idsc_gew_abn)==F & is.na(v1_idsc_gew_zun)==F & (v1_idsc_gew_zun>=v1_idsc_gew_abn), v1_idsc_gew_zun,v1_idsc_itm14)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v1_idsc_itm14)
## -999 0 1 2 3 <NA>
## [1,] No. cases 967 185 107 88 67 129 1543
## [2,] Percent 62.7 12 6.9 5.7 4.3 8.4 100
Item 15 Concentration/decision making (ordinal [0,1,2,3], v1_idsc_itm15)
v1_idsc_itm15<-c(v1_clin$v1_ids_c_s2_ids15_konz_entscheid,v1_con$v1_ids_c_s2_ids15_konz_entscheid)
v1_idsc_itm15<-factor(v1_idsc_itm15, ordered=T)
descT(v1_idsc_itm15)
## 0 1 2 3 <NA>
## [1,] No. cases 755 339 261 62 126 1543
## [2,] Percent 48.9 22 16.9 4 8.2 100
Item 16 Outlook (self) (ordinal [0,1,2,3], v1_idsc_itm16)
v1_idsc_itm16<-c(v1_clin$v1_ids_c_s2_ids16_selbstbild,v1_con$v1_ids_c_s2_ids16_selbstbild)
v1_idsc_itm16<-factor(v1_idsc_itm16, ordered=T)
descT(v1_idsc_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 1004 222 93 103 121 1543
## [2,] Percent 65.1 14.4 6 6.7 7.8 100
Item 17 Outlook (future) (ordinal [0,1,2,3], v1_idsc_itm17)
v1_idsc_itm17<-c(v1_clin$v1_ids_c_s2_ids17_zukunftssicht,v1_con$v1_ids_c_s2_ids17_zukunftssicht)
v1_idsc_itm17<-factor(v1_idsc_itm17, ordered=T)
descT(v1_idsc_itm17)
## 0 1 2 3 <NA>
## [1,] No. cases 877 373 142 27 124 1543
## [2,] Percent 56.8 24.2 9.2 1.7 8 100
Item 18 Suicidal ideation (ordinal [0,1,2,3], v1_idsc_itm18)
v1_idsc_itm18<-c(v1_clin$v1_ids_c_s2_ids18_selbstmordged,v1_con$v1_ids_c_s2_ids18_selbstmordged)
v1_idsc_itm18<-factor(v1_idsc_itm18, ordered=T)
descT(v1_idsc_itm18)
## 0 1 2 3 <NA>
## [1,] No. cases 1271 85 61 9 117 1543
## [2,] Percent 82.4 5.5 4 0.6 7.6 100
Item 19 Involvement (ordinal [0,1,2,3], v1_idsc_itm19)
v1_idsc_itm19<-c(v1_clin$v1_ids_c_s2_ids19_interess_aktiv,v1_con$v1_ids_c_s2_ids19_interess_aktiv)
v1_idsc_itm19<-factor(v1_idsc_itm19, ordered=T)
descT(v1_idsc_itm19)
## 0 1 2 3 <NA>
## [1,] No. cases 1075 257 50 41 120 1543
## [2,] Percent 69.7 16.7 3.2 2.7 7.8 100
Item 20 Energy/fatigability (ordinal [0,1,2,3], v1_idsc_itm20)
v1_idsc_itm20<-c(v1_clin$v1_ids_c_s2_ids20_energ_ermued,v1_con$v1_ids_c_s2_ids20_energ_ermued)
v1_idsc_itm20<-factor(v1_idsc_itm20, ordered=T)
descT(v1_idsc_itm20)
## 0 1 2 3 <NA>
## [1,] No. cases 856 359 170 40 118 1543
## [2,] Percent 55.5 23.3 11 2.6 7.6 100
Item 21 Pleasure/enjoyment (exclude sexual activities) (ordinal [0,1,2,3], v1_idsc_itm21)
v1_idsc_itm21<-c(v1_clin$v1_ids_c_s3_ids21_vergn_genuss,v1_con$v1_ids_c_s3_ids21_vergn_genuss)
v1_idsc_itm21<-factor(v1_idsc_itm21, ordered=T)
descT(v1_idsc_itm21)
## 0 1 2 3 <NA>
## [1,] No. cases 1106 224 68 22 123 1543
## [2,] Percent 71.7 14.5 4.4 1.4 8 100
Item 22 Sexual interest (ordinal [0,1,2,3], v1_idsc_itm22)
v1_idsc_itm22<-c(v1_clin$v1_ids_c_s3_ids22_sex_interesse,v1_con$v1_ids_c_s3_ids22_sex_interesse)
v1_idsc_itm22<-factor(v1_idsc_itm22, ordered=T)
descT(v1_idsc_itm22)
## 0 1 2 3 <NA>
## [1,] No. cases 987 99 189 140 128 1543
## [2,] Percent 64 6.4 12.2 9.1 8.3 100
Item 23 Psychomotor slowing (ordinal [0,1,2,3], v1_idsc_itm23)
v1_idsc_itm23<-c(v1_clin$v1_ids_c_s3_ids23_psymo_hemm,v1_con$v1_ids_c_s3_ids23_psymo_hemm)
v1_idsc_itm23<-factor(v1_idsc_itm23, ordered=T)
descT(v1_idsc_itm23)
## 0 1 2 3 <NA>
## [1,] No. cases 1076 273 62 8 124 1543
## [2,] Percent 69.7 17.7 4 0.5 8 100
Item 24 Psychomotor agitation (ordinal [0,1,2,3], v1_idsc_itm24)
v1_idsc_itm24<-c(v1_clin$v1_ids_c_s3_ids24_psymo_agitht,v1_con$v1_ids_c_s3_ids24_psymo_agitht)
v1_idsc_itm24<-factor(v1_idsc_itm24, ordered=T)
descT(v1_idsc_itm24)
## 0 1 2 3 <NA>
## [1,] No. cases 1123 199 79 16 126 1543
## [2,] Percent 72.8 12.9 5.1 1 8.2 100
Item 25 Somatic complaints (ordinal [0,1,2,3], v1_idsc_itm25)
v1_idsc_itm25<-c(v1_clin$v1_ids_c_s3_ids25_som_beschw,v1_con$v1_ids_c_s3_ids25_som_beschw)
v1_idsc_itm25<-factor(v1_idsc_itm25, ordered=T)
descT(v1_idsc_itm25)
## 0 1 2 3 <NA>
## [1,] No. cases 989 327 72 27 128 1543
## [2,] Percent 64.1 21.2 4.7 1.7 8.3 100
Item 26 Sympathetic arousal (ordinal [0,1,2,3], v1_idsc_itm26)
v1_idsc_itm26<-c(v1_clin$v1_ids_c_s3_ids26_veg_erreg,v1_con$v1_ids_c_s3_ids26_veg_erreg)
v1_idsc_itm26<-factor(v1_idsc_itm26, ordered=T)
descT(v1_idsc_itm26)
## 0 1 2 3 <NA>
## [1,] No. cases 1025 297 79 20 122 1543
## [2,] Percent 66.4 19.2 5.1 1.3 7.9 100
Item 27 Panic/phobic symptoms (ordinal [0,1,2,3], v1_idsc_itm27)
v1_idsc_itm27<-c(v1_clin$v1_ids_c_s3_ids27_panik_phob,v1_con$v1_ids_c_s3_ids27_panik_phob)
v1_idsc_itm27<-factor(v1_idsc_itm27, ordered=T)
descT(v1_idsc_itm27)
## 0 1 2 3 <NA>
## [1,] No. cases 1210 142 46 23 122 1543
## [2,] Percent 78.4 9.2 3 1.5 7.9 100
Item 28 Gastrointestinal (ordinal [0,1,2,3], v1_idsc_itm28)
v1_idsc_itm28<-c(v1_clin$v1_ids_c_s3_ids28_verdauung,v1_con$v1_ids_c_s3_ids28_verdauung)
v1_idsc_itm28<-factor(v1_idsc_itm28, ordered=T)
descT(v1_idsc_itm28)
## 0 1 2 3 <NA>
## [1,] No. cases 1178 143 68 31 123 1543
## [2,] Percent 76.3 9.3 4.4 2 8 100
Item 29 Interpersonal sensitivity (ordinal [0,1,2,3], v1_idsc_itm29)
v1_idsc_itm29<-c(v1_clin$v1_ids_c_s3_ids29_pers_bezieh,v1_con$v1_ids_c_s3_ids29_pers_bezieh)
v1_idsc_itm29<-factor(v1_idsc_itm29, ordered=T)
descT(v1_idsc_itm29)
## 0 1 2 3 <NA>
## [1,] No. cases 1119 199 73 31 121 1543
## [2,] Percent 72.5 12.9 4.7 2 7.8 100
Item 30 Leaden paralysis/physical energy (ordinal [0,1,2,3], v1_idsc_itm30)
v1_idsc_itm30<-c(v1_clin$v1_ids_c_s3_ids30_schwgf_k_energ,v1_con$v1_ids_c_s3_ids30_schwgf_k_energ)
v1_idsc_itm30<-factor(v1_idsc_itm30, ordered=T)
descT(v1_idsc_itm30)
## 0 1 2 3 <NA>
## [1,] No. cases 1104 202 78 31 128 1543
## [2,] Percent 71.5 13.1 5.1 2 8.3 100
Create IDS-C30 total score (continuous [0-84], v1_idsc_sum) Please note that calculation of the sum score involves selecting either item 11 or item 12 and selecting either item 13 or item 14. If both items are coded, the higher one is taken, according to the official rating instructions.
v1_idsc_sum<-as.numeric.factor(v1_idsc_itm1)+
as.numeric.factor(v1_idsc_itm2)+
as.numeric.factor(v1_idsc_itm3)+
as.numeric.factor(v1_idsc_itm4)+
as.numeric.factor(v1_idsc_itm5)+
as.numeric.factor(v1_idsc_itm6)+
as.numeric.factor(v1_idsc_itm7)+
as.numeric.factor(v1_idsc_itm8)+
as.numeric.factor(v1_idsc_itm9)+
as.numeric.factor(v1_idsc_itm10)+
ifelse(is.na(v1_idsc_itm11)==T & is.na(v1_idsc_itm12)==T, NA,
ifelse((v1_idsc_itm11==-999 & v1_idsc_itm12!=-999), v1_idsc_itm12,
ifelse((v1_idsc_itm11!=-999 & v1_idsc_itm12==-999),v1_idsc_itm11, NA)))+
ifelse(is.na(v1_idsc_itm13)==T & is.na(v1_idsc_itm14)==T, NA,
ifelse((v1_idsc_itm13==-999 & v1_idsc_itm14!=-999), v1_idsc_itm14,
ifelse((v1_idsc_itm13!=-999 & v1_idsc_itm14==-999),v1_idsc_itm13, NA)))+
as.numeric.factor(v1_idsc_itm15)+
as.numeric.factor(v1_idsc_itm16)+
as.numeric.factor(v1_idsc_itm17)+
as.numeric.factor(v1_idsc_itm18)+
as.numeric.factor(v1_idsc_itm19)+
as.numeric.factor(v1_idsc_itm20)+
as.numeric.factor(v1_idsc_itm21)+
as.numeric.factor(v1_idsc_itm22)+
as.numeric.factor(v1_idsc_itm23)+
as.numeric.factor(v1_idsc_itm24)+
as.numeric.factor(v1_idsc_itm25)+
as.numeric.factor(v1_idsc_itm26)+
as.numeric.factor(v1_idsc_itm27)+
as.numeric.factor(v1_idsc_itm28)+
as.numeric.factor(v1_idsc_itm29)+
as.numeric.factor(v1_idsc_itm30)
summary(v1_idsc_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 3.00 8.50 12.12 18.00 63.00 263
Code itm 11, 12, 13 and 14 as factors (omitted before due to ifelse condition)
v1_idsc_itm11<-factor(v1_idsc_itm11,ordered=T)
v1_idsc_itm12<-factor(v1_idsc_itm12,ordered=T)
v1_idsc_itm13<-factor(v1_idsc_itm13,ordered=T)
v1_idsc_itm14<-factor(v1_idsc_itm14,ordered=T)
Create dataset
v1_symp_ids_c<-data.frame(v1_idsc_itm1,v1_idsc_itm2,v1_idsc_itm3,v1_idsc_itm4,v1_idsc_itm5,v1_idsc_itm6,v1_idsc_itm7,
v1_idsc_itm8,v1_idsc_itm9,v1_idsc_itm9a,v1_idsc_itm9b,v1_idsc_itm10,v1_idsc_itm11,v1_idsc_itm12,
v1_idsc_itm13,v1_idsc_itm14,v1_idsc_itm15,v1_idsc_itm16,v1_idsc_itm17,v1_idsc_itm18,v1_idsc_itm19,
v1_idsc_itm20,v1_idsc_itm21,v1_idsc_itm22,v1_idsc_itm23,v1_idsc_itm24,v1_idsc_itm25,v1_idsc_itm26,
v1_idsc_itm27,v1_idsc_itm28,v1_idsc_itm29,v1_idsc_itm30,v1_idsc_sum)
The YMRS (R. C. Young, Biggs, Ziegler, & Meyer, 1978) is an 11-item rating scale used to assess the severity of mania symptoms. Each item is rated on an ordinal scale, either from zero to four or from zero to eight with zero indicating absence of the respective symptom. The ratings refer to the past fourty-eight hours. On all items, higher scores mean more severe symptoms. Please find the items below.
Item 1 Elevated mood (ordinal [0,1,2,3,4], v1_ymrs_itm1)
v1_ymrs_itm1<-c(v1_clin$v1_ymrs_ymrs1_gehob_stimm,v1_con$v1_ymrs_ymrs1_gehob_stimm)
v1_ymrs_itm1<-factor(v1_ymrs_itm1, ordered=T)
descT(v1_ymrs_itm1)
## 0 1 2 3 4 <NA>
## [1,] No. cases 1164 155 83 22 5 114 1543
## [2,] Percent 75.4 10 5.4 1.4 0.3 7.4 100
Item 2 Increased motor activity or energy (ordinal [0,1,2,3,4], v1_ymrs_itm2)
v1_ymrs_itm2<-c(v1_clin$v1_ymrs_ymrs2_gest_aktiv,v1_con$v1_ymrs_ymrs2_gest_aktiv)
v1_ymrs_itm2<-factor(v1_ymrs_itm2, ordered=T)
descT(v1_ymrs_itm2)
## 0 1 2 3 4 <NA>
## [1,] No. cases 1195 133 67 28 3 117 1543
## [2,] Percent 77.4 8.6 4.3 1.8 0.2 7.6 100
Item 3 Sexual interest (ordinal [0,1,2,3,4], v1_ymrs_itm3)
v1_ymrs_itm3<-c(v1_clin$v1_ymrs_ymrs3_sex_interesse,v1_con$v1_ymrs_ymrs3_sex_interesse)
v1_ymrs_itm3<-factor(v1_ymrs_itm3, ordered=T)
descT(v1_ymrs_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 1324 60 30 10 119 1543
## [2,] Percent 85.8 3.9 1.9 0.6 7.7 100
Item 4 Sleep (ordinal [0,1,2,3,4], v1_ymrs_itm4)
v1_ymrs_itm4<-c(v1_clin$v1_ymrs_ymrs4_schlaf,v1_con$v1_ymrs_ymrs4_schlaf)
v1_ymrs_itm4<-factor(v1_ymrs_itm4, ordered=T)
descT(v1_ymrs_itm4)
## 0 1 2 3 4 <NA>
## [1,] No. cases 1263 81 41 41 2 115 1543
## [2,] Percent 81.9 5.2 2.7 2.7 0.1 7.5 100
Item 5 Irritability (ordinal [0,2,4,6,8], v1_ymrs_itm5)
v1_ymrs_itm5<-c(v1_clin$v1_ymrs_ymrs5_reizbarkeit,v1_con$v1_ymrs_ymrs5_reizbarkeit)
v1_ymrs_itm5<-factor(v1_ymrs_itm5, ordered=T)
descT(v1_ymrs_itm5)
## 0 2 4 6 <NA>
## [1,] No. cases 1197 186 43 3 114 1543
## [2,] Percent 77.6 12.1 2.8 0.2 7.4 100
Item 6 Speech: rate & amount (ordinal [0,2,4,6,8], v1_ymrs_itm6)
v1_ymrs_itm6<-c(v1_clin$v1_ymrs_ymrs6_sprechweise,v1_con$v1_ymrs_ymrs6_sprechweise)
v1_ymrs_itm6<-factor(v1_ymrs_itm6, ordered=T)
descT(v1_ymrs_itm6)
## 0 2 4 6 8 <NA>
## [1,] No. cases 1199 106 82 39 3 114 1543
## [2,] Percent 77.7 6.9 5.3 2.5 0.2 7.4 100
Item 7 Language: thought disorder (ordinal [0,1,2,3,4], v1_ymrs_itm7)
v1_ymrs_itm7<-c(v1_clin$v1_ymrs_ymrs7_sprachstoer,v1_con$v1_ymrs_ymrs7_sprachstoer)
v1_ymrs_itm7<-factor(v1_ymrs_itm7, ordered=T)
descT(v1_ymrs_itm7)
## 0 1 2 3 <NA>
## [1,] No. cases 1198 158 61 9 117 1543
## [2,] Percent 77.6 10.2 4 0.6 7.6 100
Item 8 Content (ordinal [0,2,4,6,8], v1_ymrs_itm8)
v1_ymrs_itm8<-c(v1_clin$v1_ymrs_ymrs8_inhalte,v1_con$v1_ymrs_ymrs8_inhalte)
v1_ymrs_itm8<-factor(v1_ymrs_itm8, ordered=T)
descT(v1_ymrs_itm8)
## 0 2 4 6 8 <NA>
## [1,] No. cases 1297 72 15 20 21 118 1543
## [2,] Percent 84.1 4.7 1 1.3 1.4 7.6 100
Item 9 Disruptive or aggressive behavior (ordinal [0,2,4,6,8], v1_ymrs_itm9)
v1_ymrs_itm9<-c(v1_clin$v1_ymrs_ymrs9_exp_aggr_verh,v1_con$v1_ymrs_ymrs9_exp_aggr_verh)
v1_ymrs_itm9<-factor(v1_ymrs_itm9, ordered=T)
descT(v1_ymrs_itm9)
## 0 2 4 <NA>
## [1,] No. cases 1351 67 5 120 1543
## [2,] Percent 87.6 4.3 0.3 7.8 100
Item 10 Appearance (ordinal [0,1,2,3,4], v1_ymrs_itm10)
v1_ymrs_itm10<-c(v1_clin$v1_ymrs_ymrs10_erscheinung,v1_con$v1_ymrs_ymrs10_erscheinung)
v1_ymrs_itm10<-factor(v1_ymrs_itm10, ordered=T)
descT(v1_ymrs_itm10)
## 0 1 2 3 <NA>
## [1,] No. cases 1274 129 21 3 116 1543
## [2,] Percent 82.6 8.4 1.4 0.2 7.5 100
Item 11 Insight (ordinal [0,1,2,3,4], v1_ymrs_itm11)
v1_ymrs_itm11<-c(v1_clin$v1_ymrs_ymrs11_krkh_einsicht,v1_con$v1_ymrs_ymrs11_krkh_einsicht)
v1_ymrs_itm11<-factor(v1_ymrs_itm11, ordered=T)
descT(v1_ymrs_itm11)
## 0 1 2 3 4 <NA>
## [1,] No. cases 1321 52 27 11 8 124 1543
## [2,] Percent 85.6 3.4 1.7 0.7 0.5 8 100
Create YMRS total score (continuous [0-60], v1_ymrs_sum)
v1_ymrs_sum<-(as.numeric.factor(v1_ymrs_itm1)+
as.numeric.factor(v1_ymrs_itm2)+
as.numeric.factor(v1_ymrs_itm3)+
as.numeric.factor(v1_ymrs_itm4)+
as.numeric.factor(v1_ymrs_itm5)+
as.numeric.factor(v1_ymrs_itm6)+
as.numeric.factor(v1_ymrs_itm7)+
as.numeric.factor(v1_ymrs_itm8)+
as.numeric.factor(v1_ymrs_itm9)+
as.numeric.factor(v1_ymrs_itm10)+
as.numeric.factor(v1_ymrs_itm11))
summary(v1_ymrs_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 2.705 3.000 39.000 149
Create dataset
v1_symp_ymrs<-data.frame(v1_ymrs_itm1,
v1_ymrs_itm2,
v1_ymrs_itm3,
v1_ymrs_itm4,
v1_ymrs_itm5,
v1_ymrs_itm6,
v1_ymrs_itm7,
v1_ymrs_itm8,
v1_ymrs_itm9,
v1_ymrs_itm10,
v1_ymrs_itm11,
v1_ymrs_sum)
The CGI (see e.g. Busner & Targum, 2007) measures illness severity. The degree of impairment is to be quantified on a scale from zero to seven. A patient should be rated 0 if not conclusively assessable, so here zero is repaced with “-999” and the remaining seven gradations are on an ordinal scale. These range from “normal, not at all ill”-1 to “extremely ill”-7. Please note that in all other study visits, the improvement scale (whether or not there was improvement compared to the last study visit) is also assessed. All control subjects also have -999 in this variable.
v1_cgi_s<-c(v1_clin$v1_cgi_cgi1_schweregrad,rep(-999,dim(v1_con)[1]))
v1_cgi_s[v1_cgi_s==0]<- -999
v1_cgi_s<-factor(v1_cgi_s, ordered=T)
descT(v1_cgi_s)
## -999 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 322 17 53 285 351 419 68 5 23 1543
## [2,] Percent 20.9 1.1 3.4 18.5 22.7 27.2 4.4 0.3 1.5 100
The GAF scale is a rating scale that is used to measure an individual’s psychosocial functioning. The GAF was initially developed by Luborsky (1962) as Health-Sickness Rating Scale, revised by Endicott et al. (1976) under the name GAS of which a modified version was included in the DSM-III-R and, with minimal changes, also in the DSM-IV as GAF scale (Axis V). The scale is continuous and ranges from one to 100. Values of zero indicate lack of information. Such values were therefore set to “-999”. The following rating instructions are given:
“No symptoms. Superior functioning in a wide range of activities, life’s problems never seem to get out of hand, is sought out by others because of his or her many positive qualities.”: 91-100
“Absent or minimal symptoms (e.g., mild anxiety before an exam), good functioning in all areas, interested and involved in a wide range of activities, socially effective, generally satisfied with life, no more than everyday problems or concerns.”: 81-90
“If symptoms are present, they are transient and expectable reactions to psychosocial stressors (e.g., difficulty concentrating after family argument); no more than slight impairment in social, occupational, or school functioning (e.g., temporarily falling behind in schoolwork).”: 71-80,
“Some mild symptoms (e.g., depressed mood and mild insomnia) or some difficulty in social, occupational, or school functioning (e.g., occasional truancy, or theft within the household), but generally functioning pretty well, has some meaningful interpersonal relationships.”: 61-70
“Moderate symptoms (e.g., flat affect and circumlocutory speech, occasional panic attacks) or moderate difficulty in social, occupational, or school functioning (e.g., few friends, conflicts with peers or co-workers)”: 51-60
“Serious symptoms (e.g., suicidal ideation, severe obsessional rituals, frequent shoplifting) or any serious impairment in social, occupational, or school functioning (e.g., no friends, unable to keep a job, cannot work).”: 41-50
“Some impairment in reality testing or communication (e.g., speech is at times illogical, obscure, or irrelevant) or major impairment in several areas, such as work or school, family relations, judgment, thinking, or mood (e.g., depressed adult avoids friends, neglects family, and is unable to work; child frequently beats up younger children, is defiant at home, and is failing at school).”: 31-40
“Behavior is considerably influenced by delusions or hallucinations or serious impairment, in communication or judgment (e.g., sometimes incoherent, acts grossly inappropriately, suicidal preoccupation) or inability to function in almost all areas (e.g., stays in bed all day, no job, home, or friends)”: 21-30
“Some danger of hurting self or others (e.g., suicide attempts without clear expectation of death; frequently violent; manic excitement) or occasionally fails to maintain minimal personal hygiene (e.g., smears feces) or gross impairment in communication (e.g., largely incoherent or mute).”: 11-20
“Persistent danger of severely hurting self or others (e.g., recurrent violence) or persistent inability to maintain minimal personal hygiene or serious suicidal act with clear expectation of death.”: 1-10
According to the Endicott et al. (1976), “[m]ost outpatients will be rated 31 to 70, and most inpatients between 1 and 40.”. The scale is continuous but, in the opinion of most experienced raters, rather has ordinal scale level.
v1_gaf<-c(v1_clin$v1_gaf_gaf_code,v1_con$v1_gaf_gaf_code)
v1_gaf[v1_gaf==0]<- -999
summary(v1_gaf[v1_gaf>0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 50.00 60.00 61.37 72.00 99.00 106
Boxplot of GAF scores of both CLINICAL and CONTROL study participants
boxplot(v1_gaf[v1_gaf>0 & v1_stat=="CLINICAL"], v1_gaf[v1_gaf>0 & v1_stat=="CONTROL"],ylab="GAF score",ylim=c(0,100),names=c("Clinical","Control"))
Create dataset
v1_ill_sev<-data.frame(v1_cgi_s, v1_gaf)
During the first study visit, the following neuropsychological tests are completed by the participant: Trail-Making-Test (parts A and B), Digit-Symbol-Test (taken fron HAWIE-R), Verbal Digit-span (forward and backward; “Zahlennachsprechen”, also from HAWIE-R), Multiple-Choice Vocabulary Intelligence Test (MWT-B). All are paper-and-pencil tests and are briefly explained below.
Please note: We have now also included test results from only partially completed tests
General comments on the testing (character [free text], v1_nrpsy_com) If there were no comments, this item was coded -999.
Language proficiency of the participant (ordinal [“mother tongue”,“good”,“sufficient”,“not sufficient”], v1_nrpsy_lng)
v1_nrpsy_lng_pre<-c(v1_clin$v1_npu_np_sprach,v1_con$v1_npu_np_sprach)
v1_nrpsy_lng<-ifelse(v1_nrpsy_lng_pre==0, "mother tongue",
ifelse(v1_nrpsy_lng_pre==1, "good",
ifelse(v1_nrpsy_lng_pre==2, "sufficient",
ifelse(v1_nrpsy_lng_pre==3, "not sufficient", NA))))
v1_nrpsy_lng<-factor(v1_nrpsy_lng, ordered=T, levels=c("mother tongue","good",
"sufficient","not sufficient"))
descT(v1_nrpsy_lng)
## mother tongue good sufficient not sufficient <NA>
## [1,] No. cases 1355 110 25 2 51 1543
## [2,] Percent 87.8 7.1 1.6 0.1 3.3 100
Motivation of the participant (ordinal [“poor”,“average”,“good”], v1_nrpsy_mtv)
v1_nrpsy_mtv_pre<-c(v1_clin$v1_npu_np_mot,v1_con$v1_npu_np_mot)
v1_nrpsy_mtv<-ifelse(v1_nrpsy_mtv_pre==0, "poor",
ifelse(v1_nrpsy_mtv_pre==1, "average",
ifelse(v1_nrpsy_mtv_pre==2, "good", NA)))
v1_nrpsy_mtv<-factor(v1_nrpsy_mtv, ordered=T, levels=c("poor","average","good"))
descT(v1_nrpsy_mtv)
## poor average good <NA>
## [1,] No. cases 27 140 1306 70 1543
## [2,] Percent 1.7 9.1 84.6 4.5 100
Using a pen, the participant is required to connect digits in increasing order (“1-2-3-4…”; part A) or connect digits and symbols alternately (“1-A-2-B-3-C…”; part B). The time taken to complete each part of the test is measured. While part A assesses psychomotor speed of the participant, part B assesses switching between two automated tasks (counting and reciting the alphabet). The time taken to complete the A form may be subtracted from the time taken to complete the B form to arrive at an estimate of the switching process. This test measures multiple cognitive domains which are difficult to disentangle (e.g. visual search etc.), but is a good estimator of executive function. The errors the participant made are also recorded (during the test, the participant is required by the interviewer to correct errors immediately). However, these errors are usually not evaluated separately, as any error the participant makes is supposed to be reflected in the time taken to complete the test.
TMT Part A, time (continuous [seconds], v1_nrpsy_tmt_A_rt)
v1_nrpsy_tmt_A_rt<-c(v1_clin$v1_npu_tmt_001,v1_con$v1_npu_np_tmt_001)
summary(v1_nrpsy_tmt_A_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 9.00 24.00 32.00 35.48 42.00 180.00 71
TMT Part A, errors (continuous [number of errors], v1_nrpsy_tmt_A_err) We did not impose any cut-off value to errors (see above)
v1_nrpsy_tmt_A_err<-c(v1_clin$v1_npu_tmt_af_001,v1_con$v1_npu_np_tmtfehler_001)
summary(v1_nrpsy_tmt_A_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.1406 0.0000 5.0000 85
TMT Part B, time (continuous [seconds], v1_nrpsy_tmt_B_rt) As recommended by Strauss (2006), paricipants with a time >300s were set to 300s. We checked for values <10s, but there were none present.
v1_nrpsy_tmt_B_rt<-c(v1_clin$v1_npu_tmt_002,v1_con$v1_npu_np_tmt_002)
v1_nrpsy_tmt_B_rt[v1_nrpsy_tmt_B_rt>300]<-300
summary(v1_nrpsy_tmt_B_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 25.00 53.00 71.00 80.97 97.00 300.00 141
TMT Part B, errors (continuous [number of errors], v1_nrpsy_tmt_B_err) We did not impose any cut-off value to errors (see above)
v1_nrpsy_tmt_B_err<-c(v1_clin$v1_npu_tmt_af_002,v1_con$v1_npu_np_tmtfehler_002)
summary(v1_nrpsy_tmt_B_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.6007 1.0000 17.0000 148
This test assesses short-term (forward digit-span) and working memory (backward digit-span). In the short-term memory task, the participant is asked to repeat strings of digits verbally presented by the interviewer. The initial length of the string is two items (“1-7”). If the participant is able to repeat two different strings of numbers of the same length (“1-7” and “6-3”, each assessed separately), the interviewer moves to a longer string, (“5-8-2”), which is also assessed two times separately (using different strings). For each correctly repeated string of digits, the subject receives one point. The test is repeated until the participant fails to repeat two presented strings of the same length. All points are added up in the end to receive the final score. The working memory task works exactly the same way, only that the subject has to repeat the string of digits presented by the interviewer in backward order. Briefly, the difference between short-term and working memory is that the latter involves mental manipulation.
Forward (continuous [number of items], v1_nrpsy_dgt_sp_frw)
v1_nrpsy_dgt_sp_frw<-c(v1_clin$v1_npu_zns_001,v1_con$v1_npu_np_wie_001)
summary(v1_nrpsy_dgt_sp_frw)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 3.000 8.000 9.000 9.382 11.000 16.000 112
Histogram
hist(v1_nrpsy_dgt_sp_frw,breaks=c(1:16), main="Digit-span forward", xlab="Score",ylab="Number of Individuals")
Backward (continuous [number of items], v1_nrpsy_dgt_sp_bck)
v1_nrpsy_dgt_sp_bck<-c(v1_clin$v1_npu_zns_002,v1_con$v1_npu_np_wie_002)
summary(v1_nrpsy_dgt_sp_bck)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.00 5.00 6.00 6.19 8.00 14.00 115
Histogram
hist(v1_nrpsy_dgt_sp_bck, breaks=c(1:14), xlim=c(7,37), main="Digit-span backward", xlab="Score",ylab="Number of Individuals")
This test measures processing speed. The participant is presented with rows of numbers and an empty space below each number. In these empty spaces, the participant is asked to fill in symbols that match the number above it. The respective number-symbole association is given at the top of the test sheet. It is measured how many correct symbols the participant can fill in during a 120 second period. Participants that only partially completed the test were excluded and are coded as -999.
v1_introcheck3<-c(v1_clin$v1_npu_np_introcheck3,v1_con$v1_npu_np_hawier)
v1_nrpsy_dg_sym_pre<-c(v1_clin$v1_npu_zst_001,v1_con$v1_npu_np_hawier_001)
v1_nrpsy_dg_sym<-ifelse(v1_introcheck3==1, v1_nrpsy_dg_sym_pre,
ifelse(v1_introcheck3==9,-999,
ifelse(v1_introcheck3==0,NA,NA)))
summary(v1_nrpsy_dg_sym[v1_nrpsy_dg_sym>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 13.00 49.00 61.00 62.43 75.00 124.00 125
Histogram
hist(v1_nrpsy_dg_sym[v1_nrpsy_dg_sym>=0], breaks=c(1:133), main="Digit-Symbol-Test", xlab="Number of correct symbols")
This test assesses crystallized IQ. Crystallized IQ rises with advancing age. In this test, subjects are presented with 37 sets of five words each. Four “words” of each set are artificial (i.e. do not exist in the German language), one word really exists. They are instructed that they may be familiar with one word in each set, and asked to cross out that word. The known words start with easy ones and their difficulty increases. The sum score of correctly identified real words is the final score.
Important: only persons with German as a native language and who completed the test are included in the present dataset, those who were excluded due to these criteria are coded -999.
v1_introcheck4<-c(v1_clin$v1_npu_np_introcheck4,v1_con$v1_npu_np_mwtb)
v1_nrpsy_mwtb_pre<-c(v1_clin$v1_npu_mwt_001,v1_con$v1_npu_np_mwtb_001)
v1_nrpsy_mwtb<-ifelse((v1_introcheck4=="1" & v1_nrpsy_lng=="mother tongue"),v1_nrpsy_mwtb_pre,-999)
#Set one participant with zero recognized words to NA - this person either misunderstood the instructions or
#gave wrong answers on purpose
v1_nrpsy_mwtb[v1_nrpsy_mwtb==0]<-NA
summary(v1_nrpsy_mwtb[v1_nrpsy_mwtb>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 10.00 26.00 29.00 28.47 32.00 37.00 58
Histogram
hist(v1_nrpsy_mwtb[v1_nrpsy_mwtb>=0], breaks=c(0:37), main="Multiple-Choice Vocabulary Intelligence Test", xlab="Score")
Create dataset
v1_nrpsy<-data.frame(v1_nrpsy_com,
v1_nrpsy_lng,
v1_nrpsy_mtv,
v1_nrpsy_tmt_A_rt,
v1_nrpsy_tmt_A_err,
v1_nrpsy_tmt_B_rt,
v1_nrpsy_tmt_B_err,
v1_nrpsy_dgt_sp_frw,
v1_nrpsy_dgt_sp_bck,
v1_nrpsy_dg_sym,
v1_nrpsy_mwtb)
All participants were asked to fill out questionnaires on the following topics: religious beliefs, current depressive symptoms (BDI-II), current manic symptoms (ASRM and MSS), life events in the past six months, current quality of life (WHOQOL-BREF) and personality (big five). Additionally, control participants completed the CAPE-42 questionnaire (Community Assessment of Psycic Experiences) and the Short Form Health Survey (SF-12). Medication adherence (compliance) was only assessed in clinical participants. All questionnaires are briefly explained below. Importantly, there are items in our database assessing whether a questionnaire was filled out correctly. Questionnaires considered unusable are NOT included in this dataset (i.e. are NA).
The CAPE-42 was developed by Jim van Os, Hélène Verdoux and Manon Hanssen. It is based on the PDI-21 and PDI-40 developed by Emmanuelle Peters et al (2004). It asesses psychotic-like experiences and was only assessed in control subjects. All items have a part A (“Never”,“Sometimes”,“Often”,“Nearly always”; coded 0-3, repectively) and a part B, which is to be answered if the answer to the corresponding part A item was not “Never” and asks how distressed the participant was by this experience (“Not distressed”,“A bit distressed”,“Quite distressed” or “Very distressed”; coded 0-3, repectively).
“Do you ever feel sad?” (ordinal [0,1,2,3], v1_cape_itm1A)
v1_cape_recode(v1_con$v1_cape_cape_hsjtraugefa1,"v1_cape_itm1A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 4 207 25 1 83 1543
## [2,] Percent 79.3 0.3 13.4 1.6 0.1 5.4 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm1B)
v1_cape_recode(v1_con$v1_cape_cape_hsjtraugefb1,"v1_cape_itm1B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 97 118 19 1 85 1543
## [2,] Percent 79.3 6.3 7.6 1.2 0.1 5.5 100
“Do you ever feel as if people seem to drop hints about you or say things with a double meaning?” (ordinal [0,1,2,3], v1_cape_itm2A)
v1_cape_recode(v1_con$v1_cape_cape_anspapersa1,"v1_cape_itm2A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 76 148 13 2 81 1543
## [2,] Percent 79.3 4.9 9.6 0.8 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm2B)
v1_cape_recode(v1_con$v1_cape_cape_anspapersb1,"v1_cape_itm2B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 50 87 21 5 157 1543
## [2,] Percent 79.3 3.2 5.6 1.4 0.3 10.2 100
“Do you ever feel that you are not a very animated person?” (ordinal [0,1,2,3], v1_cape_itm3A)
v1_cape_recode(v1_con$v1_cape_cape_nlebha1,"v1_cape_itm3A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 148 80 9 2 81 1543
## [2,] Percent 79.3 9.6 5.2 0.6 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm3B)
v1_cape_recode(v1_con$v1_cape_cape_nlebhb1,"v1_cape_itm3B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 48 37 5 230 1543
## [2,] Percent 79.3 3.1 2.4 0.3 14.9 100
“Do you ever feel that you are not much of a talker when you are conversing with other people?” (ordinal [0,1,2,3], v1_cape_itm4A)
v1_cape_recode(v1_con$v1_cape_cape_nsaga1,"v1_cape_itm4A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 104 111 20 3 82 1543
## [2,] Percent 79.3 6.7 7.2 1.3 0.2 5.3 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm4B)
v1_cape_recode(v1_con$v1_cape_cape_nsagb1,"v1_cape_itm4B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 65 63 6 186 1543
## [2,] Percent 79.3 4.2 4.1 0.4 12.1 100
“Do you ever feel as if things in magazines or on TV were written especially for you?” (ordinal [0,1,2,3], v1_cape_itm5A)
v1_cape_recode(v1_con$v1_cape_cape_auszeita1,"v1_cape_itm5A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 202 31 5 1 81 1543
## [2,] Percent 79.3 13.1 2 0.3 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm5B)
v1_cape_recode(v1_con$v1_cape_cape_auszeitb1,"v1_cape_itm5B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 28 7 2 283 1543
## [2,] Percent 79.3 1.8 0.5 0.1 18.3 100
“Do you ever feel as if some people are not what they seem to be?” (ordinal [0,1,2,3], v1_cape_itm6A)
v1_cape_recode(v1_con$v1_cape_cape_geflnswsea1,"v1_cape_itm6A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 31 143 59 6 81 1543
## [2,] Percent 79.3 2 9.3 3.8 0.4 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm6B)
v1_cape_recode(v1_con$v1_cape_cape_geflnswseb1,"v1_cape_itm6B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 81 109 14 3 113 1543
## [2,] Percent 79.3 5.2 7.1 0.9 0.2 7.3 100
“Do you ever feel as if you are being persecuted in some way?” (ordinal [0,1,2,3], v1_cape_itm7A)
v1_cape_recode(v1_con$v1_cape_cape_verfa1,"v1_cape_itm7A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 207 30 2 81 1543
## [2,] Percent 79.3 13.4 1.9 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm7B)
v1_cape_recode(v1_con$v1_cape_cape_verfb1,"v1_cape_itm7B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 17 10 5 288 1543
## [2,] Percent 79.3 1.1 0.6 0.3 18.7 100
“Do you ever feel that you experience few or no emotions at important events?” (ordinal [0,1,2,3], v1_cape_itm8A)
v1_cape_recode(v1_con$v1_cape_cape_kgefa1,"v1_cape_itm8A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 154 75 8 2 81 1543
## [2,] Percent 79.3 10 4.9 0.5 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm8B)
v1_cape_recode(v1_con$v1_cape_cape_kgefb1,"v1_cape_itm8B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 46 34 4 1 235 1543
## [2,] Percent 79.3 3 2.2 0.3 0.1 15.2 100
“Do you ever feel pessimistic about everything?” (ordinal [0,1,2,3], v1_cape_itm9A)
v1_cape_recode(v1_con$v1_cape_cape_negseha1,"v1_cape_itm9A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 155 78 6 81 1543
## [2,] Percent 79.3 10 5.1 0.4 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm9B)
v1_cape_recode(v1_con$v1_cape_cape_negsehb1,"v1_cape_itm9B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 16 52 11 5 236 1543
## [2,] Percent 79.3 1 3.4 0.7 0.3 15.3 100
“Do you ever feel as if there is a conspiracy against you?” (ordinal [0,1,2,3], v1_cape_itm10A)
v1_cape_recode(v1_con$v1_cape_cape_kompla1,"v1_cape_itm10A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 204 32 1 1 82 1543
## [2,] Percent 79.3 13.2 2.1 0.1 0.1 5.3 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm10B)
v1_cape_recode(v1_con$v1_cape_cape_komplb1,"v1_cape_itm10B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 5 21 6 2 286 1543
## [2,] Percent 79.3 0.3 1.4 0.4 0.1 18.5 100
“Do you ever feel as if you are destined to be someone very important?” (ordinal [0,1,2,3], v1_cape_itm11A)
v1_cape_recode(v1_con$v1_cape_cape_bestwpa1,"v1_cape_itm11A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 178 53 7 1 81 1543
## [2,] Percent 79.3 11.5 3.4 0.5 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm11B)
v1_cape_recode(v1_con$v1_cape_cape_bestwpb1,"v1_cape_itm11B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 54 5 1 1 259 1543
## [2,] Percent 79.3 3.5 0.3 0.1 0.1 16.8 100
“Do you ever feel as if there is no future for you?” (ordinal [0,1,2,3], v1_cape_itm12A)
v1_cape_recode(v1_con$v1_cape_cape_keinza1,"v1_cape_itm12A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 192 44 3 81 1543
## [2,] Percent 79.3 12.4 2.9 0.2 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm12B)
v1_cape_recode(v1_con$v1_cape_cape_keinzb1,"v1_cape_itm12B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 8 26 9 4 273 1543
## [2,] Percent 79.3 0.5 1.7 0.6 0.3 17.7 100
“Do you ever feel that you are a very special or unusual person?” (ordinal [0,1,2,3], v1_cape_itm13A)
v1_cape_recode(v1_con$v1_cape_cape_gefaupersa1,"v1_cape_itm13A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 131 79 25 4 81 1543
## [2,] Percent 79.3 8.5 5.1 1.6 0.3 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm13B)
v1_cape_recode(v1_con$v1_cape_cape_gefaupersb1,"v1_cape_itm13B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 88 14 3 1 214 1543
## [2,] Percent 79.3 5.7 0.9 0.2 0.1 13.9 100
“Do you ever feel as if you do not want to live anymore?” (ordinal [0,1,2,3], v1_cape_itm14A)
v1_cape_recode(v1_con$v1_cape_cape_nileba1,"v1_cape_itm14A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 181 56 1 82 1543
## [2,] Percent 79.3 11.7 3.6 0.1 5.3 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm14B)
v1_cape_recode(v1_con$v1_cape_cape_nileba1,"v1_cape_itm14B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 181 56 1 82 1543
## [2,] Percent 79.3 11.7 3.6 0.1 5.3 100
“Do you ever think that people can communicate telepathically?” (ordinal [0,1,2,3], v1_cape_itm15A)
v1_cape_recode(v1_con$v1_cape_cape_telea1,"v1_cape_itm15A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 170 56 11 2 81 1543
## [2,] Percent 79.3 11 3.6 0.7 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm15B)
v1_cape_recode(v1_con$v1_cape_cape_teleb1,"v1_cape_itm15B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 63 4 1 1 251 1543
## [2,] Percent 79.3 4.1 0.3 0.1 0.1 16.3 100
“Do you ever feel that you have no interest to be with other people?” (ordinal [0,1,2,3], v1_cape_itm16A)
v1_cape_recode(v1_con$v1_cape_cape_kbedgesa1,"v1_cape_itm16A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 84 136 18 1 81 1543
## [2,] Percent 79.3 5.4 8.8 1.2 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm16B)
v1_cape_recode(v1_con$v1_cape_cape_kbedgesb1,"v1_cape_itm16B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 133 18 4 165 1543
## [2,] Percent 79.3 8.6 1.2 0.3 10.7 100
“Do you ever feel as if electrical devices such as computers can influence the way you think?” (ordinal [0,1,2,3], v1_cape_itm17A)
v1_cape_recode(v1_con$v1_cape_cape_elegeggeda1,"v1_cape_itm17A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 221 13 4 1 81 1543
## [2,] Percent 79.3 14.3 0.8 0.3 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm17B)
v1_cape_recode(v1_con$v1_cape_cape_elegeggedb1,"v1_cape_itm17B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 7 9 2 302 1543
## [2,] Percent 79.3 0.5 0.6 0.1 19.6 100
“Do you ever feel that you are lacking in motivation to do things?” (ordinal [0,1,2,3], v1_cape_itm18A)
v1_cape_recode(v1_con$v1_cape_cape_motfehla1,"v1_cape_itm18A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 46 161 26 6 81 1543
## [2,] Percent 79.3 3 10.4 1.7 0.4 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm18B)
v1_cape_recode(v1_con$v1_cape_cape_motfehlb1,"v1_cape_itm18B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 53 99 30 11 127 1543
## [2,] Percent 79.3 3.4 6.4 1.9 0.7 8.2 100
“Do you ever cry about nothing?” (ordinal [0,1,2,3], v1_cape_itm19A)
v1_cape_recode(v1_con$v1_cape_cape_ougewa1,"v1_cape_itm19A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 190 48 1 81 1543
## [2,] Percent 79.3 12.3 3.1 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm19B)
v1_cape_recode(v1_con$v1_cape_cape_ougewb1,"v1_cape_itm19B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 27 16 6 271 1543
## [2,] Percent 79.3 1.7 1 0.4 17.6 100
“Do you believe in the power of witchcraft, voodoo or the occult?” (ordinal [0,1,2,3], v1_cape_itm20A)
v1_cape_recode(v1_con$v1_cape_cape_hexvoa1,"v1_cape_itm20A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 193 34 6 6 81 1543
## [2,] Percent 79.3 12.5 2.2 0.4 0.4 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm20B)
v1_cape_recode(v1_con$v1_cape_cape_hexvob1,"v1_cape_itm20B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 38 5 1 1 275 1543
## [2,] Percent 79.3 2.5 0.3 0.1 0.1 17.8 100
“Do you ever feel that you are lacking in energy?” (ordinal [0,1,2,3], v1_cape_itm21A)
v1_cape_recode(v1_con$v1_cape_cape_energiela1,"v1_cape_itm21A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 59 161 17 2 81 1543
## [2,] Percent 79.3 3.8 10.4 1.1 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm21B)
v1_cape_recode(v1_con$v1_cape_cape_energielb1,"v1_cape_itm21B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 59 86 26 9 140 1543
## [2,] Percent 79.3 3.8 5.6 1.7 0.6 9.1 100
“Do you ever feel that people look at you oddly because of your appearance?” (ordinal [0,1,2,3], v1_cape_itm22A)
v1_cape_recode(v1_con$v1_cape_cape_sonda1,"v1_cape_itm22A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 129 93 16 1 81 1543
## [2,] Percent 79.3 8.4 6 1 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm22B)
v1_cape_recode(v1_con$v1_cape_cape_sondb1,"v1_cape_itm22B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 56 45 7 1 211 1543
## [2,] Percent 79.3 3.6 2.9 0.5 0.1 13.7 100
“Do you ever feel that your mind is empty?” (ordinal [0,1,2,3], v1_cape_itm23A)
v1_cape_recode(v1_con$v1_cape_cape_kopfleera1,"v1_cape_itm23A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 134 100 4 82 1543
## [2,] Percent 79.3 8.7 6.5 0.3 5.3 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm23B)
v1_cape_recode(v1_con$v1_cape_cape_kopfleerb1,"v1_cape_itm23B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 47 44 7 5 217 1543
## [2,] Percent 79.3 3 2.9 0.5 0.3 14.1 100
“Do you ever feel as if the thoughts in your head are being taken away from you?” (ordinal [0,1,2,3], v1_cape_itm24A)
v1_cape_recode(v1_con$v1_cape_cape_gedaka1,"v1_cape_itm24A")
## -999 0 1 <NA>
## [1,] No. cases 1223 229 10 81 1543
## [2,] Percent 79.3 14.8 0.6 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm24B)
v1_cape_recode(v1_con$v1_cape_cape_gedakb1,"v1_cape_itm24B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 5 4 1 310 1543
## [2,] Percent 79.3 0.3 0.3 0.1 20.1 100
“Do you ever feel that you are spending all your days doing nothing?” (ordinal [0,1,2,3], v1_cape_itm25A)
v1_cape_recode(v1_con$v1_cape_cape_tagoetuna1,"v1_cape_itm25A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 113 110 14 2 81 1543
## [2,] Percent 79.3 7.3 7.1 0.9 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm25B)
v1_cape_recode(v1_con$v1_cape_cape_tagoetunb1,"v1_cape_itm25B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 49 47 25 5 194 1543
## [2,] Percent 79.3 3.2 3 1.6 0.3 12.6 100
“Do you ever feel as if the thoughts in your head are not your own?” (ordinal [0,1,2,3], v1_cape_itm26A)
v1_cape_recode(v1_con$v1_cape_cape_gedneiga1,"v1_cape_itm26A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 221 15 1 83 1543
## [2,] Percent 79.3 14.3 1 0.1 5.4 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm26B)
v1_cape_recode(v1_con$v1_cape_cape_gedneigb1,"v1_cape_itm26B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 6 4 4 2 304 1543
## [2,] Percent 79.3 0.4 0.3 0.3 0.1 19.7 100
" Do you ever feel that your feelings are lacking in intensity?" (ordinal [0,1,2,3], v1_cape_itm27A)
v1_cape_recode(v1_con$v1_cape_cape_gefinta1,"v1_cape_itm27A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 162 71 5 1 81 1543
## [2,] Percent 79.3 10.5 4.6 0.3 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm27B)
v1_cape_recode(v1_con$v1_cape_cape_gefintb1,"v1_cape_itm27B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 32 33 10 2 243 1543
## [2,] Percent 79.3 2.1 2.1 0.6 0.1 15.7 100
“Have your thoughts ever been so vivid that you were worried other people would hear them?” (ordinal [0,1,2,3], v1_cape_itm28A)
v1_cape_recode(v1_con$v1_cape_cape_lebhfa1,"v1_cape_itm28A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 223 12 2 1 82 1543
## [2,] Percent 79.3 14.5 0.8 0.1 0.1 5.3 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm28B)
v1_cape_recode(v1_con$v1_cape_cape_lebhfb1,"v1_cape_itm28B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 10 4 1 305 1543
## [2,] Percent 79.3 0.6 0.3 0.1 19.8 100
“Do you ever feel that you are lacking in spontaneity?” (ordinal [0,1,2,3], v1_cape_itm29A)
v1_cape_recode(v1_con$v1_cape_cape_sponfehla1,"v1_cape_itm29A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 123 102 13 1 81 1543
## [2,] Percent 79.3 8 6.6 0.8 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm29B)
v1_cape_recode(v1_con$v1_cape_cape_sponfehlb1,"v1_cape_itm29B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 42 60 11 2 205 1543
## [2,] Percent 79.3 2.7 3.9 0.7 0.1 13.3 100
“Do you ever hear your own thoughts being echoed back to you?” (ordinal [0,1,2,3], v1_cape_itm30A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa1,"v1_cape_itm30A")
## -999 0 1 <NA>
## [1,] No. cases 1223 224 15 81 1543
## [2,] Percent 79.3 14.5 1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm30B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob1,"v1_cape_itm30B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 10 4 1 305 1543
## [2,] Percent 79.3 0.6 0.3 0.1 19.8 100
“Do you ever feel as if you are under the control of some force or power other than yourself?” (ordinal [0,1,2,3], v1_cape_itm31A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa2,"v1_cape_itm31A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 226 11 2 81 1543
## [2,] Percent 79.3 14.6 0.7 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm31B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob2,"v1_cape_itm31B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 5 4 3 1 307 1543
## [2,] Percent 79.3 0.3 0.3 0.2 0.1 19.9 100
“Do you ever feel that your emotions are blunted?” (ordinal [0,1,2,3], v1_cape_itm32A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa3,"v1_cape_itm32A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 161 70 4 3 82 1543
## [2,] Percent 79.3 10.4 4.5 0.3 0.2 5.3 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm32B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob3,"v1_cape_itm32B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 36 30 7 3 244 1543
## [2,] Percent 79.3 2.3 1.9 0.5 0.2 15.8 100
“Do you ever hear voices when you are alone?” (ordinal [0,1,2,3], v1_cape_itm33A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa4,"v1_cape_itm33A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 234 4 1 81 1543
## [2,] Percent 79.3 15.2 0.3 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm33B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob4,"v1_cape_itm33B")
## -999 0 1 3 <NA>
## [1,] No. cases 1223 3 1 1 315 1543
## [2,] Percent 79.3 0.2 0.1 0.1 20.4 100
“Do you ever hear voices talking to each other when you are alone?” (ordinal [0,1,2,3], v1_cape_itm34A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa5,"v1_cape_itm34A")
## -999 0 <NA>
## [1,] No. cases 1223 239 81 1543
## [2,] Percent 79.3 15.5 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm34B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob5,"v1_cape_itm34B")
## -999 <NA>
## [1,] No. cases 1223 320 1543
## [2,] Percent 79.3 20.7 100
“Do you ever feel that you are neglecting your appearance or personal hygiene?” (ordinal [0,1,2,3], v1_cape_itm35A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa6,"v1_cape_itm35A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 187 46 6 81 1543
## [2,] Percent 79.3 12.1 3 0.4 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm35B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob6,"v1_cape_itm35B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 22 21 7 2 268 1543
## [2,] Percent 79.3 1.4 1.4 0.5 0.1 17.4 100
“Do you ever feel that you can never get things done?” (ordinal [0,1,2,3], v1_cape_itm36A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa7,"v1_cape_itm36A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 112 110 14 3 81 1543
## [2,] Percent 79.3 7.3 7.1 0.9 0.2 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm36B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob7,"v1_cape_itm36B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 24 64 24 15 193 1543
## [2,] Percent 79.3 1.6 4.1 1.6 1 12.5 100
“Do you ever feel that you have only few hobbies or interests?” (ordinal [0,1,2,3], v1_cape_itm37A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa8,"v1_cape_itm37A")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 178 59 2 81 1543
## [2,] Percent 79.3 11.5 3.8 0.1 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm37B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob8,"v1_cape_itm37B")
## -999 0 1 2 <NA>
## [1,] No. cases 1223 28 29 4 259 1543
## [2,] Percent 79.3 1.8 1.9 0.3 16.8 100
“Do you ever feel guilty?” (ordinal [0,1,2,3], v1_cape_itm38A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa9,"v1_cape_itm38A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 39 175 20 5 81 1543
## [2,] Percent 79.3 2.5 11.3 1.3 0.3 5.2 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm38B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob9,"v1_cape_itm38B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 40 107 35 18 120 1543
## [2,] Percent 79.3 2.6 6.9 2.3 1.2 7.8 100
“Do you ever feel like a failure?” (ordinal [0,1,2,3], v1_cape_itm39A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa10,"v1_cape_itm39A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 114 110 12 2 82 1543
## [2,] Percent 79.3 7.4 7.1 0.8 0.1 5.3 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm39B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob10,"v1_cape_itm39B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 27 62 20 15 196 1543
## [2,] Percent 79.3 1.7 4 1.3 1 12.7 100
“Do you ever feel tense?” (ordinal [0,1,2,3], v1_cape_itm40A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa11,"v1_cape_itm40A")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 51 153 31 2 83 1543
## [2,] Percent 79.3 3.3 9.9 2 0.1 5.4 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm40B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob11,"v1_cape_itm40B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1223 89 77 16 3 135 1543
## [2,] Percent 79.3 5.8 5 1 0.2 8.7 100
“Do you ever feel as if a double has taken the place of a family member, friend or acquaintance?” (ordinal [0,1,2,3], v1_cape_itm41A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa12,"v1_cape_itm41A")
## -999 0 1 <NA>
## [1,] No. cases 1223 235 1 84 1543
## [2,] Percent 79.3 15.2 0.1 5.4 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm41B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob12,"v1_cape_itm41B")
## -999 0 2 <NA>
## [1,] No. cases 1223 1 1 318 1543
## [2,] Percent 79.3 0.1 0.1 20.6 100
“Do you ever see objects, people or animals that other people cannot see?” (ordinal [0,1,2,3], v1_cape_itm42A)
v1_cape_recode(v1_con$v1_cape_cape_gedechoa13,"v1_cape_itm42A")
## -999 0 1 3 <NA>
## [1,] No. cases 1223 230 6 1 83 1543
## [2,] Percent 79.3 14.9 0.4 0.1 5.4 100
“Please indicate how distressed you are by this experience” (ordinal [0,1,2,3], v1_cape_itm42B)
v1_cape_recode(v1_con$v1_cape_cape_gedechob13,"v1_cape_itm42B")
## -999 0 <NA>
## [1,] No. cases 1223 8 312 1543
## [2,] Percent 79.3 0.5 20.2 100
Create dataset
v1_cape<-data.frame(v1_cape_itm1A,v1_cape_itm1B,
v1_cape_itm2A,v1_cape_itm2B,
v1_cape_itm3A,v1_cape_itm3B,
v1_cape_itm4A,v1_cape_itm4B,
v1_cape_itm5A,v1_cape_itm5B,
v1_cape_itm6A,v1_cape_itm6B,
v1_cape_itm7A,v1_cape_itm7B,
v1_cape_itm8A,v1_cape_itm8B,
v1_cape_itm9A,v1_cape_itm9B,
v1_cape_itm10A,v1_cape_itm10B,
v1_cape_itm11A,v1_cape_itm11B,
v1_cape_itm12A,v1_cape_itm12B,
v1_cape_itm13A,v1_cape_itm13B,
v1_cape_itm14A,v1_cape_itm14B,
v1_cape_itm15A,v1_cape_itm15B,
v1_cape_itm16A,v1_cape_itm16B,
v1_cape_itm17A,v1_cape_itm17B,
v1_cape_itm18A,v1_cape_itm18B,
v1_cape_itm19A,v1_cape_itm19B,
v1_cape_itm20A,v1_cape_itm20B,
v1_cape_itm21A,v1_cape_itm21B,
v1_cape_itm22A,v1_cape_itm22B,
v1_cape_itm23A,v1_cape_itm23B,
v1_cape_itm24A,v1_cape_itm24B,
v1_cape_itm25A,v1_cape_itm25B,
v1_cape_itm26A,v1_cape_itm26B,
v1_cape_itm27A,v1_cape_itm27B,
v1_cape_itm28A,v1_cape_itm28B,
v1_cape_itm29A,v1_cape_itm29B,
v1_cape_itm30A,v1_cape_itm30B,
v1_cape_itm31A,v1_cape_itm31B,
v1_cape_itm32A,v1_cape_itm32B,
v1_cape_itm33A,v1_cape_itm33B,
v1_cape_itm34A,v1_cape_itm34B,
v1_cape_itm35A,v1_cape_itm35B,
v1_cape_itm36A,v1_cape_itm36B,
v1_cape_itm37A,v1_cape_itm37B,
v1_cape_itm38A,v1_cape_itm38B,
v1_cape_itm39A,v1_cape_itm39B,
v1_cape_itm40A,v1_cape_itm40B,
v1_cape_itm41A,v1_cape_itm41B,
v1_cape_itm42A,v1_cape_itm42B)
The SF-12 is a short instrument to assess health-related quality of life.
“How satisfied are you currently with your overall life” (ordinal [1,2,3,4,5,6,7,8,9,10], v1_sf12_itm0) Answering alternatives are the following: “Very dissatisfied”-1 to “Completely satisfied”-10.
v1_sf12_recode(v1_con$v1_sf12_sf_allgemein,"v1_sf12_itm0")
## -999 2 3 4 5 6 7 8 9 10 <NA>
## [1,] No. cases 1223 2 3 11 10 11 43 98 91 44 7 1543
## [2,] Percent 79.3 0.1 0.2 0.7 0.6 0.7 2.8 6.4 5.9 2.9 0.5 100
“In general, would you say your health is…” (ordinal [1,2,3,4,5], v1_sf12_itm1) Answering alternatives are the following: “Excellent”-1, “Very Good”-2, “Good”-3, “Fair”-4, “Poor”-5.
v1_sf12_recode(v1_con$v1_sf12_sf1,"v1_sf12_itm1")
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 1223 59 160 88 11 1 1 1543
## [2,] Percent 79.3 3.8 10.4 5.7 0.7 0.1 0.1 100
“The following questions are about activities you might do during a typical day. Does YOUR HEALTH NOW LIMIT YOU in these activities? If so, how much?”
“MODERATE ACTIVITIES, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf” (ordinal [1,2,3], v1_sf12_itm2) Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v1_sf12_recode(v1_con$v1_sf12_sf2,"v1_sf12_itm2")
## -999 1 2 3 <NA>
## [1,] No. cases 1223 1 27 291 1 1543
## [2,] Percent 79.3 0.1 1.7 18.9 0.1 100
“Climbing SEVERAL flights of stairs” (ordinal [1,2,3], v1_sf12_itm3) Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v1_sf12_recode(v1_con$v1_sf12_sf3,"v1_sf12_itm3")
## -999 1 2 3 <NA>
## [1,] No. cases 1223 3 42 274 1 1543
## [2,] Percent 79.3 0.2 2.7 17.8 0.1 100
During the PAST 4 WEEKS have you had any of the following problems with your work or other regular activities AS A RESULT OF YOUR PHYSICAL HEALTH?
“ACCOMPLISHED LESS than you would like” (dichotomous [1,2], v1_sf12_itm4) Answering alternatives are the following: “Yes”-1, “No”-2.
v1_sf12_recode(v1_con$v1_sf12_sf4,"v1_sf12_itm4")
## -999 1 2 <NA>
## [1,] No. cases 1223 37 280 3 1543
## [2,] Percent 79.3 2.4 18.1 0.2 100
“Didn’t do work or other activities as carefully as usual” (dichotomous [1,2], v1_sf12_itm5) Answering alternatives are the following: “Yes”-1, “No”-2.
v1_sf12_recode(v1_con$v1_sf12_sf5,"v1_sf12_itm5")
## -999 1 2 <NA>
## [1,] No. cases 1223 21 291 8 1543
## [2,] Percent 79.3 1.4 18.9 0.5 100
During the PAST 4 WEEKS, were you limited in the kind of work you do or other regular activities AS A RESULT OF ANY EMOTIONAL PROBLEMS (such as feeling depressed or anxious)?
“ACCOMPLISHED LESS than you would like:” (dichotomous [1,2], v1_sf12_itm6) Answering alternatives are the following: “Yes”-1, “No”-2.
v1_sf12_recode(v1_con$v1_sf12_sf6,"v1_sf12_itm6")
## -999 1 2 <NA>
## [1,] No. cases 1223 18 299 3 1543
## [2,] Percent 79.3 1.2 19.4 0.2 100
“Didn’t do work or other activities as CAREFULLY as usual” (dichotomous [1,2], v1_sf12_itm7) Answering alternatives are the following: “Yes”-1, “No”-2.
v1_sf12_recode(v1_con$v1_sf12_sf7,"v1_sf12_itm7")
## -999 1 2 <NA>
## [1,] No. cases 1223 10 307 3 1543
## [2,] Percent 79.3 0.6 19.9 0.2 100
“During the PAST 4 WEEKS, how much did PAIN interfere with your normal work (including both work outside the home and housework)?” (ordinal [1,2,3], v1_sf12_itm8) Answering alternatives are the following: “None”-1 to “Extremely”-6.
v1_sf12_recode(v1_con$v1_sf12_st8,"v1_sf12_itm8")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 175 64 41 26 9 1 4 1543
## [2,] Percent 79.3 11.3 4.1 2.7 1.7 0.6 0.1 0.3 100
The next three questions are about how you feel and how things have been DURING THE PAST 4 WEEKS. For each question, please give the one answer that comes closest to the way you have been feeling. How much of the time during the PAST 4 WEEKS
Answering alternatives are the following: “All of the Time”-1, “Most of the Time”-2, “A Good Bit of the Time”-3, “Some of the Time”-4, “A Little of the Time”-5, “None of the Time”-6.
“Have you felt calm and peaceful?” (ordinal [1,2,3,4,5,6], v1_sf12_itm9)
v1_sf12_recode(v1_con$v1_sf12_st9,"v1_sf12_itm9")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 23 194 71 25 3 2 2 1543
## [2,] Percent 79.3 1.5 12.6 4.6 1.6 0.2 0.1 0.1 100
“Did you have a lot of energy?” (ordinal [1,2,3,4,5,6], v1_sf12_itm10)
v1_sf12_recode(v1_con$v1_sf12_st10,"v1_sf12_itm10")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 18 119 105 57 15 2 4 1543
## [2,] Percent 79.3 1.2 7.7 6.8 3.7 1 0.1 0.3 100
“Have you felt downhearted and blue?” (ordinal [1,2,3,4,5,6], v1_sf12_itm11)
v1_sf12_recode(v1_con$v1_sf12_st11,"v1_sf12_itm11")
## -999 3 4 5 6 <NA>
## [1,] No. cases 1223 7 44 163 102 4 1543
## [2,] Percent 79.3 0.5 2.9 10.6 6.6 0.3 100
“During the PAST 4 WEEKS, how much of the time has your PHYSICAL HEALTH OR EMOTIONAL PROBLEMS interfered with your social activities (like visiting with friends, relatives, etc.)?” (ordinal [1,2,3,4,5], v1_sf12_itm12) Answering alternatives are the following: “All of the Time”-1 to “None of the Time”-5.
ATTENTION: there appears to be something wrong with the coding of this item, i.e. the export of the item and the display in the GUI of the database are inconsistent. NOT CONTAINED IN DATASET FOR NOW
v1_sf12_recode(v1_con$v1_sf12_st12,"v1_sf12_itm12")
Create dataset
v1_sf12<-data.frame(v1_sf12_itm0,
v1_sf12_itm1,
v1_sf12_itm2,
v1_sf12_itm3,
v1_sf12_itm4,
v1_sf12_itm5,
v1_sf12_itm6,
v1_sf12_itm7,
v1_sf12_itm8,
v1_sf12_itm9,
v1_sf12_itm10,
v1_sf12_itm11)
#INCLUDE v2_sf12_itm12 when issues are settled
This self-created questionnaire asks about whether the participant belongs to a certain belief system and how actively she or he practices this belief. The first two questions are about Christianity and Islam. In a third question, other belief systems such are Judaism, Hinduism, Buddhism, Other (specify) and No religious denomination are assessed. There are also mode fine-grained distinctions concerning Christianity and Islan, but these are not included in the present dataset. The second item assesses how actively the belief is practiced. Because this questionnaire was introduced after data collection started, it is included in Visit 4 as well for those participants that were not assessed in Visit 1. In control participants, the questionnaire is assessed in Visit 1.
Religion Christianity (dichotomous, v1_rel_chr)
v1_rel_chris<-c(v1_clin$v1_religion_christ,v1_con$v1_religion_christ_jn)
v1_rel_chr<-ifelse(v1_rel_chris==1, "Y","N")
descT(v1_rel_chr)
## N Y <NA>
## [1,] No. cases 38 677 828 1543
## [2,] Percent 2.5 43.9 53.7 100
Religion Islam (dichotomous, v1_rel_isl)
v1_rel_islam<-c(v1_clin$v1_religion_islam_jn,v1_con$v1_religion_islam_jn)
v1_rel_isl<-ifelse(v1_rel_islam==1, "Y","N")
descT(v1_rel_isl)
## N Y <NA>
## [1,] No. cases 121 21 1401 1543
## [2,] Percent 7.8 1.4 90.8 100
Other religion (categorical,[v1_rel_oth])
v1_rel_var<-c(v1_clin$v1_religion_religion,v1_con$v1_religion_religion)
v1_rel_oth<-ifelse(v1_rel_var==1, "Judaism",
ifelse(v1_rel_var==2, "Hinduism",
ifelse(v1_rel_var==3, "Buddhism",
ifelse(v1_rel_var==4, "Other",
ifelse(v1_rel_var==5, "No denomination",NA)))))
descT(v1_rel_oth)
## Buddhism Judaism No denomination Other <NA>
## [1,] No. cases 14 1 249 3 1276 1543
## [2,] Percent 0.9 0.1 16.1 0.2 82.7 100
“How actively do you practice your belief?” (ordinal [1,2,3,4,5], v1_rel_act)
This is an ordinal item with the following answer possibilities and the assigned gradation: “not at all”-1,“little active”-2,“moderately active”-3,“rather active”-4,“very actively”-5.
v1_rel_act<-c(v1_clin$v1_religion_religion_aktiv,v1_con$v1_religion_aktiv)
descT(v1_rel_act)
## 1 2 3 4 5 <NA>
## [1,] No. cases 324 269 161 79 48 662 1543
## [2,] Percent 21 17.4 10.4 5.1 3.1 42.9 100
Create dataset
v1_rlgn<-data.frame(v1_rel_chr,v1_rel_isl,v1_rel_oth,v1_rel_act)
This questionnaire asks whether psychopharmacological medication was taken as prescribed. The past seven days and the past six months are assessed. Both items have the following gradation: “everyday, exactly as prescribed”-1, “everyday, but not always as prescribed”-2, “regularly, but not every day”-3, “sometimes, but not regularly”-4, “seldom”-5, “not at all”-6. Control participants are coded -999.
Past seven days (ordinal [1,2,3,4,5,6], v1_med_pst_wk)
v1_med_chk<-c(v1_clin$v1_compl_verwer_fragebogen,rep(1,dim(v1_con)[1]))
v1_med_pst_wk_pre<-c(v1_clin$v1_compl_psychopharm_7_tag,rep(-999,dim(v1_con)[1]))
v1_med_pst_wk<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_med_pst_wk<-ifelse((is.na(v1_med_chk) | v1_med_chk!=2),
v1_med_pst_wk_pre, v1_med_pst_wk)
descT(v1_med_pst_wk)
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 320 955 82 21 5 3 13 144 1543
## [2,] Percent 20.7 61.9 5.3 1.4 0.3 0.2 0.8 9.3 100
Past six months (ordinal [1,2,3,4,5,6], v1_med_pst_sx_mths)
v1_med_pre<-c(v1_clin$v1_compl_psychopharm_6_mon,rep(-999,dim(v1_con)[1]))
v1_med_pst_sx_mths<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_med_pst_sx_mths<-ifelse((is.na(v1_med_chk) | v1_med_chk!=2),
v1_med_pre, v1_med_pst_sx_mths)
descT(v1_med_pst_sx_mths)
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 320 700 145 103 42 23 49 161 1543
## [2,] Percent 20.7 45.4 9.4 6.7 2.7 1.5 3.2 10.4 100
Create dataset
v1_med_adh<-data.frame(v1_med_pst_wk,v1_med_pst_sx_mths)
The German translation of the BDI-II (Hautzinger, Keller, & Kühner, 2006) asesses depressive symptoms. Patients are supposed to pick the answer that best describes how they have been feeling during the past two weeks. Each item is rated from zero to three, except item 16 (sleep) and item 18 (apppetite), for which seven alternatives exist (described below). With all items, higher scores mean more depressive symptomatology. For clinically meaningful threshold values see sum score calculation at the end of thhis section.
1. Sadness (ordinal [0,1,2,3], v1_bdi2_itm1)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi1_traurigkeit,v1_con$v1_bdi2_s1_bdi1,"v1_bdi2_itm1")
## 0 1 2 3 <NA>
## [1,] No. cases 885 444 59 28 127 1543
## [2,] Percent 57.4 28.8 3.8 1.8 8.2 100
2. Pessimism (ordinal [0,1,2,3], v1_bdi2_itm2)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi2_pessimismus,v1_con$v1_bdi2_s1_bdi2,"v1_bdi2_itm2")
## 0 1 2 3 <NA>
## [1,] No. cases 965 298 109 41 130 1543
## [2,] Percent 62.5 19.3 7.1 2.7 8.4 100
3. Past failure (ordinal [0,1,2,3], v1_bdi2_itm3)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi3_versagensgef,v1_con$v1_bdi2_s1_bdi3,"v1_bdi2_itm3")
## 0 1 2 3 <NA>
## [1,] No. cases 842 300 220 54 127 1543
## [2,] Percent 54.6 19.4 14.3 3.5 8.2 100
4. Loss of pleasure (ordinal [0,1,2,3], v1_bdi2_itm4)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi4_verlust_freude,v1_con$v1_bdi2_s1_bdi4,"v1_bdi2_itm4")
## 0 1 2 3 <NA>
## [1,] No. cases 758 456 146 54 129 1543
## [2,] Percent 49.1 29.6 9.5 3.5 8.4 100
5. Guilty feelings (ordinal [0,1,2,3], v1_bdi2_itm5)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi5_schuldgef,v1_con$v1_bdi2_s1_bdi5,"v1_bdi2_itm5")
## 0 1 2 3 <NA>
## [1,] No. cases 904 411 61 41 126 1543
## [2,] Percent 58.6 26.6 4 2.7 8.2 100
6. Punishment feelings (ordinal [0,1,2,3], v1_bdi2_itm6)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi6_bestrafungsgef,v1_con$v1_bdi2_s1_bdi6,"v1_bdi2_itm6")
## 0 1 2 3 <NA>
## [1,] No. cases 1056 213 35 110 129 1543
## [2,] Percent 68.4 13.8 2.3 7.1 8.4 100
7. Self-dislike (ordinal [0,1,2,3], v1_bdi2_itm7)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi7_selbstablehnung,v1_con$v1_bdi2_s1_bdi7,"v1_bdi2_itm7")
## 0 1 2 3 <NA>
## [1,] No. cases 980 257 138 38 130 1543
## [2,] Percent 63.5 16.7 8.9 2.5 8.4 100
8. Self-criticalness (ordinal [0,1,2,3], v1_bdi2_itm8)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi8_selbstvorwuerfe,v1_con$v1_bdi2_s1_bdi8,"v1_bdi2_itm8")
## 0 1 2 3 <NA>
## [1,] No. cases 808 411 145 47 132 1543
## [2,] Percent 52.4 26.6 9.4 3 8.6 100
9. Suicidal thoughts or wishes (ordinal [0,1,2,3], v1_bdi2_itm9)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi9_selbstmordged,v1_con$v1_bdi2_s1_bdi9,"v1_bdi2_itm9")
## 0 1 2 3 <NA>
## [1,] No. cases 1112 269 22 12 128 1543
## [2,] Percent 72.1 17.4 1.4 0.8 8.3 100
10. Crying (ordinal [0,1,2,3], v1_bdi2_itm10)
v1_bdi2_recode(v1_clin$v1_bdi2_s1_bdi10_weinen,v1_con$v1_bdi2_s1_bdi10,"v1_bdi2_itm10")
## 0 1 2 3 <NA>
## [1,] No. cases 999 208 64 141 131 1543
## [2,] Percent 64.7 13.5 4.1 9.1 8.5 100
11. Agitation (ordinal [0,1,2,3], v1_bdi2_itm11)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi11_unruhe,v1_con$v1_bdi2_s2_bdi11,"v1_bdi2_itm11")
## 0 1 2 3 <NA>
## [1,] No. cases 894 376 77 50 146 1543
## [2,] Percent 57.9 24.4 5 3.2 9.5 100
12. Loss of interest (ordinal [0,1,2,3], v1_bdi2_itm12)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi12_interessverl,v1_con$v1_bdi2_s2_bdi12,"v1_bdi2_itm12")
## 0 1 2 3 <NA>
## [1,] No. cases 906 320 102 70 145 1543
## [2,] Percent 58.7 20.7 6.6 4.5 9.4 100
13. Indecisiveness (ordinal [0,1,2,3], v1_bdi2_itm13)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi13_entschlussunf,v1_con$v1_bdi2_s2_bdi13,"v1_bdi2_itm13")
## 0 1 2 3 <NA>
## [1,] No. cases 836 366 115 83 143 1543
## [2,] Percent 54.2 23.7 7.5 5.4 9.3 100
14. Worthlessness (ordinal [0,1,2,3], v1_bdi2_itm14)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi14_wertlosigkeit,v1_con$v1_bdi2_s2_bdi14,"v1_bdi2_itm14")
## 0 1 2 3 <NA>
## [1,] No. cases 968 228 159 41 147 1543
## [2,] Percent 62.7 14.8 10.3 2.7 9.5 100
15. Loss of energy (ordinal [0,1,2,3], v1_bdi2_itm15)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi15_energieverlust,v1_con$v1_bdi2_s2_bdi15,"v1_bdi2_itm15")
## 0 1 2 3 <NA>
## [1,] No. cases 658 537 172 26 150 1543
## [2,] Percent 42.6 34.8 11.1 1.7 9.7 100
16. Changes in sleeping pattern (ordinal [0,1,2,3], v1_bdi2_itm16) Here, there are seven answer alternatives: “I have not experienced changes in sleeping patterns”, “I sleep somewhat less than usual”,“I sleep somewhat more than usual”, “I sleep a lot less than usual”, “I sleep a lot more than usual”, “I sleep most of the day”, I wake up 1-2 hours early and can’t get back to sleep“. There is a thus a distinction between sleeping more and sleeping less. We have coded the questionaire so that sleep difficulties (sleeping more or slepping less) receive the same points. The distinction between whether somebody slept more or less is therefore lost.
v1_itm_bdi2_chk<-c(v1_clin$v1_bdi2_s1_verwer_fragebogen,v1_con$v1_bdi2_s1_bdi_korrekt)
v1_itm_bdi2_itm16_clin_con<-c(v1_clin$v1_bdi2_s2_bdi16_schlafgewohn,v1_con$v1_bdi2_s2_bdi16)
v1_bdi2_itm16<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_bdi2_itm16<-ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) & v1_itm_bdi2_itm16_clin_con==0, 0,
ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) &
(v1_itm_bdi2_itm16_clin_con==1 | v1_itm_bdi2_itm16_clin_con==100), 1,
ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) &
(v1_itm_bdi2_itm16_clin_con==2 | v1_itm_bdi2_itm16_clin_con==200), 2,
ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) &
(v1_itm_bdi2_itm16_clin_con==3 | v1_itm_bdi2_itm16_clin_con==300), 3, v1_bdi2_itm16))))
v1_bdi2_itm16<-factor(v1_bdi2_itm16,ordered=T)
descT(v1_bdi2_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 604 516 170 107 146 1543
## [2,] Percent 39.1 33.4 11 6.9 9.5 100
17. Irritability (ordinal [0,1,2,3], v1_bdi2_itm17)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi17_reizbarkeit,v1_con$v1_bdi2_s2_bdi17,"v1_bdi2_itm17")
## 0 1 2 3 <NA>
## [1,] No. cases 1033 298 47 21 144 1543
## [2,] Percent 66.9 19.3 3 1.4 9.3 100
18. Change in appetite (ordinal [0,1,2,3], v1_bdi2_itm18)
As above (item 16), there are several answer alternatives: “I have not experienced any change in my appetite”, “My appetite is somewhat less than usual”, “My appetite is somewhat more than usual”, “My appetite is much less than before”, “My appetite is much more than before”, “I have no appetite at all”, “I crave food all the time”. More explicity, there is a distinction between more and less appetite. We have coded the questionaire so that changes in appetite receive the same points. The distinction between whether somebody had more or less appetite is therefore lost.
v1_itm_bdi2_itm18_clin_con<-c(v1_clin$v1_bdi2_s2_bdi18_appetit,v1_con$v1_bdi2_s2_bdi18)
v1_bdi2_itm18<-rep(NA,dim(v1_clin)[1]+dim(v1_con)[1])
v1_bdi2_itm18<-ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) & v1_itm_bdi2_itm18_clin_con==0, 0,
ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) &
(v1_itm_bdi2_itm18_clin_con==1 | v1_itm_bdi2_itm18_clin_con==100), 1,
ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) &
(v1_itm_bdi2_itm18_clin_con==2 | v1_itm_bdi2_itm18_clin_con==200), 2,
ifelse((is.na(v1_itm_bdi2_chk) | v1_itm_bdi2_chk!=2) &
(v1_itm_bdi2_itm18_clin_con==3 | v1_itm_bdi2_itm18_clin_con==300), 3, v1_bdi2_itm18))))
v1_bdi2_itm18<-factor(v1_bdi2_itm18,ordered=T)
descT(v1_bdi2_itm18)
## 0 1 2 3 <NA>
## [1,] No. cases 808 435 99 52 149 1543
## [2,] Percent 52.4 28.2 6.4 3.4 9.7 100
19. Concentration difficulty (ordinal [0,1,2,3], v1_bdi2_itm19)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi19_konzschw,v1_con$v1_bdi2_s2_bdi19,"v1_bdi2_itm19")
## 0 1 2 3 <NA>
## [1,] No. cases 729 399 239 30 146 1543
## [2,] Percent 47.2 25.9 15.5 1.9 9.5 100
20. Tiredness or fatigue (ordinal [0,1,2,3], v1_bdi2_itm20)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi20_ermued_ersch,v1_con$v1_bdi2_s2_bdi20,"v1_bdi2_itm20")
## 0 1 2 3 <NA>
## [1,] No. cases 705 512 145 37 144 1543
## [2,] Percent 45.7 33.2 9.4 2.4 9.3 100
21. Loss of interest in sex (ordinal [0,1,2,3], v1_bdi2_itm21)
v1_bdi2_recode(v1_clin$v1_bdi2_s2_bdi21_sex_interess,v1_con$v1_bdi2_s2_bdi21,"v1_bdi2_itm21")
## 0 1 2 3 <NA>
## [1,] No. cases 836 279 137 138 153 1543
## [2,] Percent 54.2 18.1 8.9 8.9 9.9 100
BDI-II sum score calculation (continuous [0-63], v1_bdi2_sum) The following cut-off values are generally considered to be meaningful:
Please note that if one or more of BDI-II items are missing, this will result in the sum score to become NA.
v1_bdi2_sum<-as.numeric.factor(v1_bdi2_itm1)+
as.numeric.factor(v1_bdi2_itm2)+
as.numeric.factor(v1_bdi2_itm3)+
as.numeric.factor(v1_bdi2_itm4)+
as.numeric.factor(v1_bdi2_itm5)+
as.numeric.factor(v1_bdi2_itm6)+
as.numeric.factor(v1_bdi2_itm7)+
as.numeric.factor(v1_bdi2_itm8)+
as.numeric.factor(v1_bdi2_itm9)+
as.numeric.factor(v1_bdi2_itm10)+
as.numeric.factor(v1_bdi2_itm11)+
as.numeric.factor(v1_bdi2_itm12)+
as.numeric.factor(v1_bdi2_itm13)+
as.numeric.factor(v1_bdi2_itm14)+
as.numeric.factor(v1_bdi2_itm15)+
as.numeric.factor(v1_bdi2_itm16)+
as.numeric.factor(v1_bdi2_itm17)+
as.numeric.factor(v1_bdi2_itm18)+
as.numeric.factor(v1_bdi2_itm19)+
as.numeric.factor(v1_bdi2_itm20)+
as.numeric.factor(v1_bdi2_itm21)
summary(v1_bdi2_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 2.00 8.00 11.36 18.00 59.00 219
Create dataset
v1_bdi2<-data.frame(v1_bdi2_itm1,v1_bdi2_itm2,v1_bdi2_itm3,v1_bdi2_itm4,v1_bdi2_itm5,
v1_bdi2_itm6,v1_bdi2_itm7,v1_bdi2_itm8,v1_bdi2_itm9,v1_bdi2_itm10,
v1_bdi2_itm11,v1_bdi2_itm12,v1_bdi2_itm13,v1_bdi2_itm14,
v1_bdi2_itm15,v1_bdi2_itm16,v1_bdi2_itm17,v1_bdi2_itm18,
v1_bdi2_itm19,v1_bdi2_itm20,v1_bdi2_itm21,v1_bdi2_sum)
The ASRM (Altman, Hedeker, Peterson, & Davis, 1997) assesses symptoms of mania during the past week. All items are scored from zero to four with higher scores indicating more mania symptoms.
1. Positive Mood (ordinal [0,1,2,3,4], v1_asrm_itm1)
v1_asrm_recode(v1_clin$v1_asrm_asrm1_gluecklich,v1_con$v1_asrm_asrm1,"v1_asrm_itm1")
## 0 1 2 3 4 <NA>
## [1,] No. cases 928 340 81 49 12 133 1543
## [2,] Percent 60.1 22 5.2 3.2 0.8 8.6 100
2 Self-Confidence (ordinal [0,1,2,3,4], v1_asrm_itm2)
v1_asrm_recode(v1_clin$v1_asrm_asrm2_selbstbewusst,v1_con$v1_asrm_asrm2,"v1_asrm_itm2")
## 0 1 2 3 4 <NA>
## [1,] No. cases 954 299 93 46 18 133 1543
## [2,] Percent 61.8 19.4 6 3 1.2 8.6 100
3. Sleep (ordinal [0,1,2,3,4], v1_asrm_itm3)
v1_asrm_recode(v1_clin$v1_asrm_asrm3_schlaf,v1_con$v1_asrm_asrm3,"v1_asrm_itm3")
## 0 1 2 3 4 <NA>
## [1,] No. cases 1083 222 53 35 16 134 1543
## [2,] Percent 70.2 14.4 3.4 2.3 1 8.7 100
4. Speech (ordinal [0,1,2,3,4], v1_asrm_itm4)
v1_asrm_recode(v1_clin$v1_asrm_asrm4_reden,v1_con$v1_asrm_asrm4,"v1_asrm_itm4")
## 0 1 2 3 4 <NA>
## [1,] No. cases 998 295 70 36 14 130 1543
## [2,] Percent 64.7 19.1 4.5 2.3 0.9 8.4 100
5. Activity Level (ordinal [0,1,2,3,4], v1_asrm_itm5)
v1_asrm_recode(v1_clin$v1_asrm_asrm5_aktiv,v1_con$v1_asrm_asrm5,"v1_asrm_itm5")
## 0 1 2 3 4 <NA>
## [1,] No. cases 951 320 83 36 24 129 1543
## [2,] Percent 61.6 20.7 5.4 2.3 1.6 8.4 100
Create ASRM sum scoresum score (continuous [0-20],v1_asrm_sum)
v1_asrm_sum<-as.numeric.factor(v1_asrm_itm1)+
as.numeric.factor(v1_asrm_itm2)+
as.numeric.factor(v1_asrm_itm3)+
as.numeric.factor(v1_asrm_itm4)+
as.numeric.factor(v1_asrm_itm5)
summary(v1_asrm_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 1.000 2.241 3.000 20.000 142
Create dataset
v1_asrm<-data.frame(v1_asrm_itm1,v1_asrm_itm2,v1_asrm_itm3,v1_asrm_itm4,v1_asrm_itm5,v1_asrm_sum)
Forty-eight statements, each of which asks for a mania symtom and should to be answered “Yes” or No" (Shugar, Schertzer, Toner, & Di Gasbarro, 1992). Measures mania symptoms during the past month. All questions have the same direction, “Yes” indicating mania symptom present.
1. “I had more energy” (dichotomous, v1_mss_itm1)
v1_mss_recode(v1_clin$v1_mss_s1_mss1_energie,v1_con$v1_mss_s1_mss1,"v1_mss_itm1")
## N Y <NA>
## [1,] No. cases 1040 359 144 1543
## [2,] Percent 67.4 23.3 9.3 100
2. “I had trouble sitting still” (dichotomous, v1_mss_itm2)
v1_mss_recode(v1_clin$v1_mss_s1_mss2_ruhig_sitzen,v1_con$v1_mss_s1_mss2,"v1_mss_itm2")
## N Y <NA>
## [1,] No. cases 1078 317 148 1543
## [2,] Percent 69.9 20.5 9.6 100
3. “I drove faster” (dichotomous, v1_mss_itm3)
v1_mss_recode(v1_clin$v1_mss_s1_mss3_auto_fahren,v1_con$v1_mss_s1_mss3,"v1_mss_itm3")
## N Y <NA>
## [1,] No. cases 1250 71 222 1543
## [2,] Percent 81 4.6 14.4 100
4. “I drank more alcoholic beverages” (dichotomous, v1_mss_itm4)
v1_mss_recode(v1_clin$v1_mss_s1_mss4_alkohol,v1_con$v1_mss_s1_mss4,"v1_mss_itm4")
## N Y <NA>
## [1,] No. cases 1253 126 164 1543
## [2,] Percent 81.2 8.2 10.6 100
5. “I changed clothes several times a day” (dichotomous, v1_mss_itm5)
v1_mss_recode(v1_clin$v1_mss_s1_mss5_umziehen, v1_con$v1_mss_s1_mss5,"v1_mss_itm5")
## N Y <NA>
## [1,] No. cases 1224 169 150 1543
## [2,] Percent 79.3 11 9.7 100
6. “I wore brighter clothes/make-up” (dichotomous, v1_mss_itm6)
v1_mss_recode(v1_clin$v1_mss_s1_mss6_bunter,v1_con$v1_mss_s1_mss6,"v1_mss_itm6")
## N Y <NA>
## [1,] No. cases 1278 113 152 1543
## [2,] Percent 82.8 7.3 9.9 100
7. “I played music louder” (dichotomous, v1_mss_itm7)
v1_mss_recode(v1_clin$v1_mss_s1_mss7_musik_lauter,v1_con$v1_mss_s1_mss7,"v1_mss_itm7")
## N Y <NA>
## [1,] No. cases 1128 270 145 1543
## [2,] Percent 73.1 17.5 9.4 100
8. “I ate faster than usual” (dichotomous, v1_mss_itm8)
v1_mss_recode(v1_clin$v1_mss_s1_mss8_hastiger_essen,v1_con$v1_mss_s1_mss8,"v1_mss_itm8")
## N Y <NA>
## [1,] No. cases 1169 231 143 1543
## [2,] Percent 75.8 15 9.3 100
9. “I ate more than usual” (dichotomous, v1_mss_itm9)
v1_mss_recode(v1_clin$v1_mss_s1_mss9_mehr_essen,v1_con$v1_mss_s1_mss9,"v1_mss_itm9")
## N Y <NA>
## [1,] No. cases 1043 356 144 1543
## [2,] Percent 67.6 23.1 9.3 100
10. “I slept fewer hours than usual” (dichotomous, v1_mss_itm10)
v1_mss_recode(v1_clin$v1_mss_s1_mss10_weniger_schlaf,v1_con$v1_mss_s1_mss10,"v1_mss_itm10")
## N Y <NA>
## [1,] No. cases 1152 241 150 1543
## [2,] Percent 74.7 15.6 9.7 100
11. “I started things that I didn’t finish” (dichotomous, v1_mss_itm11)
v1_mss_recode(v1_clin$v1_mss_s1_mss11_unbeendet,v1_con$v1_mss_s1_mss11,"v1_mss_itm11")
## N Y <NA>
## [1,] No. cases 1014 386 143 1543
## [2,] Percent 65.7 25 9.3 100
12. “I gave away my own possessions” (dichotomous, v1_mss_itm12)
v1_mss_recode(v1_clin$v1_mss_s1_mss12_weggeben,v1_con$v1_mss_s1_mss12,"v1_mss_itm12")
## N Y <NA>
## [1,] No. cases 1193 206 144 1543
## [2,] Percent 77.3 13.4 9.3 100
13. “I bought gifts for people” (dichotomous, v1_mss_itm13)
v1_mss_recode(v1_clin$v1_mss_s1_mss13_geschenke,v1_con$v1_mss_s1_mss13,"v1_mss_itm13")
## N Y <NA>
## [1,] No. cases 1229 169 145 1543
## [2,] Percent 79.7 11 9.4 100
14. “I spent money more freely” (dichotomous, v1_mss_itm14)
v1_mss_recode(v1_clin$v1_mss_s1_mss14_mehr_geld,v1_con$v1_mss_s1_mss14,"v1_mss_itm14")
## N Y <NA>
## [1,] No. cases 1032 368 143 1543
## [2,] Percent 66.9 23.8 9.3 100
15. “I accumulated debts” (dichotomous, v1_mss_itm15)
v1_mss_recode(v1_clin$v1_mss_s1_mss15_schulden,v1_con$v1_mss_s1_mss15,"v1_mss_itm15")
## N Y <NA>
## [1,] No. cases 1276 124 143 1543
## [2,] Percent 82.7 8 9.3 100
16. “I made unwise business decisions” (dichotomous, v1_mss_itm16)
v1_mss_recode(v1_clin$v1_mss_s1_mss16_unkluge_entsch,v1_con$v1_mss_s1_mss16,"v1_mss_itm16")
## N Y <NA>
## [1,] No. cases 1323 74 146 1543
## [2,] Percent 85.7 4.8 9.5 100
17. “I partied more” (dichotomous, v1_mss_itm17)
v1_mss_recode(v1_clin$v1_mss_s1_mss17_parties,v1_con$v1_mss_s1_mss17,"v1_mss_itm17")
## N Y <NA>
## [1,] No. cases 1296 101 146 1543
## [2,] Percent 84 6.5 9.5 100
18. “I enjoyed flirting” (dichotomous, v1_mss_itm18)
v1_mss_recode(v1_clin$v1_mss_s1_mss18_flirten,v1_con$v1_mss_s1_mss18,"v1_mss_itm18")
## N Y <NA>
## [1,] No. cases 1244 158 141 1543
## [2,] Percent 80.6 10.2 9.1 100
19. “I masturbated more often” (dichotomous, v1_mss_itm19)
v1_mss_recode(v1_clin$v1_mss_s2_mss19_selbstbefried,v1_con$v1_mss_s2_mss19,"v1_mss_itm19")
## N Y <NA>
## [1,] No. cases 1265 108 170 1543
## [2,] Percent 82 7 11 100
20. “I was more interested in sex than usual” (dichotomous, v1_mss_itm20)
v1_mss_recode(v1_clin$v1_mss_s2_mss20_sex_interess,v1_con$v1_mss_s2_mss20,"v1_mss_itm20")
## N Y <NA>
## [1,] No. cases 1209 165 169 1543
## [2,] Percent 78.4 10.7 11 100
21. “I had sex with people that I usually wouldn’t have sex with” (dichotomous, v1_mss_itm21)
v1_mss_recode(v1_clin$v1_mss_s2_mss21_sexpartner,v1_con$v1_mss_s2_mss21,"v1_mss_itm21")
## N Y <NA>
## [1,] No. cases 1328 45 170 1543
## [2,] Percent 86.1 2.9 11 100
22. “I spent more time on the phone” (dichotomous, v1_mss_itm22)
v1_mss_recode(v1_clin$v1_mss_s2_mss22_mehr_telefon,v1_con$v1_mss_s2_mss22,"v1_mss_itm22")
## N Y <NA>
## [1,] No. cases 1117 266 160 1543
## [2,] Percent 72.4 17.2 10.4 100
23. “I spoke louder than usual” (dichotomous, v1_mss_itm23)
v1_mss_recode(v1_clin$v1_mss_s2_mss23_sprache_lauter,v1_con$v1_mss_s2_mss23,"v1_mss_itm23")
## N Y <NA>
## [1,] No. cases 1193 190 160 1543
## [2,] Percent 77.3 12.3 10.4 100
24. “I spoke so fast that people said they couldn’t understand me” (dichotomous, v1_mss_itm24)
v1_mss_recode(v1_clin$v1_mss_s2_mss24_spr_schneller,v1_con$v1_mss_s2_mss24,"v1_mss_itm24")
## N Y <NA>
## [1,] No. cases 1220 160 163 1543
## [2,] Percent 79.1 10.4 10.6 100
25. “1 enjoyed punning or rhyming” (dichotomous, v1_mss_itm25)
v1_mss_recode(v1_clin$v1_mss_s2_mss25_witze,v1_con$v1_mss_s2_mss25,"v1_mss_itm25")
## N Y <NA>
## [1,] No. cases 1197 185 161 1543
## [2,] Percent 77.6 12 10.4 100
26. “I butted into conversations” (dichotomous, v1_mss_itm26)
v1_mss_recode(v1_clin$v1_mss_s2_mss26_einmischen,v1_con$v1_mss_s2_mss26,"v1_mss_itm26")
## N Y <NA>
## [1,] No. cases 1237 146 160 1543
## [2,] Percent 80.2 9.5 10.4 100
27. “I spoke on and on and couldn’t be interrupted” (dichotomous, v1_mss_itm27)
v1_mss_recode(v1_clin$v1_mss_s2_mss27_red_pausenlos,v1_con$v1_mss_s2_mss27,"v1_mss_itm27")
## N Y <NA>
## [1,] No. cases 1298 83 162 1543
## [2,] Percent 84.1 5.4 10.5 100
28. “I enjoyed being the centre of attention” (dichotomous, v1_mss_itm28)
v1_mss_recode(v1_clin$v1_mss_s2_mss28_mittelpunkt,v1_con$v1_mss_s2_mss28,"v1_mss_itm28")
## N Y <NA>
## [1,] No. cases 1235 146 162 1543
## [2,] Percent 80 9.5 10.5 100
29. “I liked to joke and laugh” (dichotomous, v1_mss_itm29)
v1_mss_recode(v1_clin$v1_mss_s2_mss29_herumalbern,v1_con$v1_mss_s2_mss29,"v1_mss_itm29")
## N Y <NA>
## [1,] No. cases 1128 253 162 1543
## [2,] Percent 73.1 16.4 10.5 100
30. “People found me entertaining” (dichotomous, v1_mss_itm30)
v1_mss_recode(v1_clin$v1_mss_s2_mss30_unterhaltsamer,v1_con$v1_mss_s2_mss30,"v1_mss_itm30")
## N Y <NA>
## [1,] No. cases 1182 190 171 1543
## [2,] Percent 76.6 12.3 11.1 100
31. “I felt as if I was on top of the world” (dichotomous, v1_mss_itm31)
v1_mss_recode(v1_clin$v1_mss_s2_mss31_obenauf,v1_con$v1_mss_s2_mss31,"v1_mss_itm31")
## N Y <NA>
## [1,] No. cases 1210 170 163 1543
## [2,] Percent 78.4 11 10.6 100
32. “I was more cheerful than my usual self” (dichotomous, v1_mss_itm32)
v1_mss_recode(v1_clin$v1_mss_s2_mss32_froehlicher,v1_con$v1_mss_s2_mss32,"v1_mss_itm32")
## N Y <NA>
## [1,] No. cases 1068 313 162 1543
## [2,] Percent 69.2 20.3 10.5 100
33. “Other people got on my nerves” (dichotomous, v1_mss_itm33)
v1_mss_recode(v1_clin$v1_mss_s2_mss33_ungeduldiger,v1_con$v1_mss_s2_mss33,"v1_mss_itm33")
## N Y <NA>
## [1,] No. cases 976 405 162 1543
## [2,] Percent 63.3 26.2 10.5 100
34. “I was getting into arguments” (dichotomous, v1_mss_itm34)
v1_mss_recode(v1_clin$v1_mss_s2_mss34_streiten,v1_con$v1_mss_s2_mss34,"v1_mss_itm34")
## N Y <NA>
## [1,] No. cases 1191 185 167 1543
## [2,] Percent 77.2 12 10.8 100
35. “I had so many ideas that I couldn’t get around to doing them all” (dichotomous, v1_mss_itm35)
v1_mss_recode(v1_clin$v1_mss_s2_mss35_ideen,v1_con$v1_mss_s2_mss35,"v1_mss_itm35")
## N Y <NA>
## [1,] No. cases 1051 330 162 1543
## [2,] Percent 68.1 21.4 10.5 100
36. “My thoughts raced through my mind” (dichotomous, v1_mss_itm36)
v1_mss_recode(v1_clin$v1_mss_s2_mss36_gedanken,v1_con$v1_mss_s2_mss36,"v1_mss_itm36")
## N Y <NA>
## [1,] No. cases 914 466 163 1543
## [2,] Percent 59.2 30.2 10.6 100
37. “I couldn’t concentrate on a single topic for longer than a minute” (dichotomous, v1_mss_itm37)
v1_mss_recode(v1_clin$v1_mss_s2_mss37_konzentration,v1_con$v1_mss_s2_mss37,"v1_mss_itm37")
## N Y <NA>
## [1,] No. cases 1093 284 166 1543
## [2,] Percent 70.8 18.4 10.8 100
38. “I thought I was an especially important person” (dichotomous, v1_mss_itm38)
v1_mss_recode(v1_clin$v1_mss_s2_mss38_etw_besonderes,v1_con$v1_mss_s2_mss38,"v1_mss_itm38")
## N Y <NA>
## [1,] No. cases 1227 157 159 1543
## [2,] Percent 79.5 10.2 10.3 100
39. “I thought I could change the world” (dichotomous, v1_mss_itm39)
v1_mss_recode(v1_clin$v1_mss_s2_mss39_welt_veraender,v1_con$v1_mss_s2_mss39,"v1_mss_itm39")
## N Y <NA>
## [1,] No. cases 1245 135 163 1543
## [2,] Percent 80.7 8.7 10.6 100
40. “I thought I was right most of the time” (dichotomous, v1_mss_itm40)
v1_mss_recode(v1_clin$v1_mss_s2_mss40_recht_haben,v1_con$v1_mss_s2_mss40,"v1_mss_itm40")
## N Y <NA>
## [1,] No. cases 1258 123 162 1543
## [2,] Percent 81.5 8 10.5 100
41. “I thought I was superior to others” (dichotomous, v1_mss_itm41)
v1_mss_recode(v1_clin$v1_mss_s3_mss41_ueberlegen,v1_con$v1_mss_s3_mss41,"v1_mss_itm41")
## N Y <NA>
## [1,] No. cases 1281 90 172 1543
## [2,] Percent 83 5.8 11.1 100
42. “I wanted to take on jobs that I was not trained to handle” (dichotomous, v1_mss_itm42)
v1_mss_recode(v1_clin$v1_mss_s3_mss42_uebermut,v1_con$v1_mss_s3_mss42,"v1_mss_itm42")
## N Y <NA>
## [1,] No. cases 1215 155 173 1543
## [2,] Percent 78.7 10 11.2 100
43. “I thought I knew what other people were thinking” (dichotomous, v1_mss_itm43)
v1_mss_recode(v1_clin$v1_mss_s3_mss43_ged_lesen_akt,v1_con$v1_mss_s3_mss43,"v1_mss_itm43")
## N Y <NA>
## [1,] No. cases 1201 169 173 1543
## [2,] Percent 77.8 11 11.2 100
44. “I thought other people knew what I was thinking” (dichotomous, v1_mss_itm44)
v1_mss_recode(v1_clin$v1_mss_s3_mss44_ged_lesen_pas,v1_con$v1_mss_s3_mss44,"v1_mss_itm44")
## N Y <NA>
## [1,] No. cases 1242 125 176 1543
## [2,] Percent 80.5 8.1 11.4 100
45. “I thought someone wanted to harm me” (dichotomous, v1_mss_itm45)
v1_mss_recode(v1_clin$v1_mss_s3_mss45_etw_antun,v1_con$v1_mss_s3_mss45,"v1_mss_itm45")
## N Y <NA>
## [1,] No. cases 1242 127 174 1543
## [2,] Percent 80.5 8.2 11.3 100
46. “I heard voices when people weren’t there” (dichotomous, v1_mss_itm46)
v1_mss_recode(v1_clin$v1_mss_s3_mss46_stimmen,v1_con$v1_mss_s3_mss46,"v1_mss_itm46")
## N Y <NA>
## [1,] No. cases 1230 140 173 1543
## [2,] Percent 79.7 9.1 11.2 100
47. “I had false beliefs concerning who I was” (dichotomous, v1_mss_itm47)
v1_mss_recode(v1_clin$v1_mss_s3_mss47_jmd_anders,v1_con$v1_mss_s3_mss47,"v1_mss_itm47")
## N Y <NA>
## [1,] No. cases 1309 62 172 1543
## [2,] Percent 84.8 4 11.1 100
48. “I knew I was getting ill” (dichotomous, v1_mss_itm48)
v1_mss_recode(v1_clin$v1_mss_s3_mss48_krank_einsicht,v1_con$v1_mss_s3_mss48,"v1_mss_itm48")
## N Y <NA>
## [1,] No. cases 1048 307 188 1543
## [2,] Percent 67.9 19.9 12.2 100
Create MSS sum score (continuous [0-48],v1_mss_sum) Please note that if one or more of MSS items are missing, this will result in the sum score to become NA.
v1_mss_sum<-ifelse(v1_mss_itm1=="Y",1,0)+
ifelse(v1_mss_itm2=="Y",1,0)+
ifelse(v1_mss_itm3=="Y",1,0)+
ifelse(v1_mss_itm4=="Y",1,0)+
ifelse(v1_mss_itm5=="Y",1,0)+
ifelse(v1_mss_itm6=="Y",1,0)+
ifelse(v1_mss_itm7=="Y",1,0)+
ifelse(v1_mss_itm8=="Y",1,0)+
ifelse(v1_mss_itm9=="Y",1,0)+
ifelse(v1_mss_itm10=="Y",1,0)+
ifelse(v1_mss_itm11=="Y",1,0)+
ifelse(v1_mss_itm12=="Y",1,0)+
ifelse(v1_mss_itm13=="Y",1,0)+
ifelse(v1_mss_itm14=="Y",1,0)+
ifelse(v1_mss_itm15=="Y",1,0)+
ifelse(v1_mss_itm16=="Y",1,0)+
ifelse(v1_mss_itm17=="Y",1,0)+
ifelse(v1_mss_itm18=="Y",1,0)+
ifelse(v1_mss_itm19=="Y",1,0)+
ifelse(v1_mss_itm20=="Y",1,0)+
ifelse(v1_mss_itm21=="Y",1,0)+
ifelse(v1_mss_itm22=="Y",1,0)+
ifelse(v1_mss_itm23=="Y",1,0)+
ifelse(v1_mss_itm24=="Y",1,0)+
ifelse(v1_mss_itm25=="Y",1,0)+
ifelse(v1_mss_itm26=="Y",1,0)+
ifelse(v1_mss_itm27=="Y",1,0)+
ifelse(v1_mss_itm28=="Y",1,0)+
ifelse(v1_mss_itm29=="Y",1,0)+
ifelse(v1_mss_itm30=="Y",1,0)+
ifelse(v1_mss_itm31=="Y",1,0)+
ifelse(v1_mss_itm32=="Y",1,0)+
ifelse(v1_mss_itm33=="Y",1,0)+
ifelse(v1_mss_itm34=="Y",1,0)+
ifelse(v1_mss_itm35=="Y",1,0)+
ifelse(v1_mss_itm36=="Y",1,0)+
ifelse(v1_mss_itm37=="Y",1,0)+
ifelse(v1_mss_itm38=="Y",1,0)+
ifelse(v1_mss_itm39=="Y",1,0)+
ifelse(v1_mss_itm40=="Y",1,0)+
ifelse(v1_mss_itm41=="Y",1,0)+
ifelse(v1_mss_itm42=="Y",1,0)+
ifelse(v1_mss_itm43=="Y",1,0)+
ifelse(v1_mss_itm44=="Y",1,0)+
ifelse(v1_mss_itm45=="Y",1,0)+
ifelse(v1_mss_itm46=="Y",1,0)+
ifelse(v1_mss_itm47=="Y",1,0)+
ifelse(v1_mss_itm48=="Y",1,0)
summary(v1_mss_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 1.000 4.000 6.051 9.000 39.000 412
Create dataset
v1_mss<-data.frame(v1_mss_itm1,v1_mss_itm2,v1_mss_itm3,v1_mss_itm4,v1_mss_itm5,v1_mss_itm6,
v1_mss_itm7,v1_mss_itm8,v1_mss_itm9,v1_mss_itm10,v1_mss_itm11,
v1_mss_itm12,v1_mss_itm13,v1_mss_itm14,v1_mss_itm15,v1_mss_itm16,
v1_mss_itm17,v1_mss_itm18,v1_mss_itm19,v1_mss_itm20,v1_mss_itm21,
v1_mss_itm22,v1_mss_itm23,v1_mss_itm24,v1_mss_itm25,v1_mss_itm26,
v1_mss_itm27,v1_mss_itm28,v1_mss_itm29,v1_mss_itm30,v1_mss_itm31,
v1_mss_itm32,v1_mss_itm33,v1_mss_itm34,v1_mss_itm35,v1_mss_itm36,
v1_mss_itm37,v1_mss_itm38,v1_mss_itm39,v1_mss_itm40,v1_mss_itm41,
v1_mss_itm42,v1_mss_itm43,v1_mss_itm44,v1_mss_itm45,v1_mss_itm46,
v1_mss_itm47,v1_mss_itm48, v1_mss_sum)
In this questionnaire (Norbeck, 1984; Sarason, Johnson, & Siegel, 1978) many possible life events are listed (e.g. “Difficulties finding work”) from the following areas: health, work, school, residence, love and marriage, family and close friends, parenting, personal or social, financial, crime and legal matters, and other. Participants are supposed to answer only to those life events which they have experienced during the past six months. For these particular events, participants were asked to rate:
As participants usually only experience relatively few life events during the follow-up period, most of the items are not filled out. We have coded empty items as “-999” in people that filled out the questionnaire correctly. In participants that did not fill out the questionaire at all or filled it out obviously wrong (e.g. answering every question, regardless whether they experienced the life event or not), all items are “NA”.
The questionaire is divided in ten separate sections (A-“Health”, B-“Work”, C-“School”, D-“Residence”, E-“Love and marriage”, F-“Family and close friends”, G-“Parenting”, H-“Personal or social”, I-“Financial”, J-“Crime and legal matters”). The respective sections are contained in the item name.
1. “Major personal illness or injury”
1A Nature (dichotomous [“good”,“bad”], v1_leq_A_1A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq1a_schw_krankh,v1_con$v1_leq_a_leq1a,"v1_leq_A_1A")
## -999 bad good <NA>
## [1,] No. cases 796 409 78 260 1543
## [2,] Percent 51.6 26.5 5.1 16.9 100
1B Impact (ordinal [0,1,2,3], v1_leq_A_1B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq1e_schw_krankh,v1_con$v1_leq_a_leq1e,"v1_leq_A_1B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 787 22 37 108 329 260 1543
## [2,] Percent 51 1.4 2.4 7 21.3 16.9 100
2. “Major change in eating habits”
2A Nature (dichotomous [“good”,“bad”], v1_leq_A_2A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq2a_ernaehrung,v1_con$v1_leq_a_leq2a,"v1_leq_A_2A")
## -999 bad good <NA>
## [1,] No. cases 869 193 221 260 1543
## [2,] Percent 56.3 12.5 14.3 16.9 100
2B Impact (ordinal [0,1,2,3], v1_leq_A_2B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq2e_ernaehrung,v1_con$v1_leq_a_leq2e,"v1_leq_A_2B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 858 35 80 174 136 260 1543
## [2,] Percent 55.6 2.3 5.2 11.3 8.8 16.9 100
3. “Major change in sleeping habits”
3A Nature (dichotomous [“good”,“bad”], v1_leq_A_3A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq3a_schlaf,v1_con$v1_leq_a_leq3a,"v1_leq_A_3A")
## -999 bad good <NA>
## [1,] No. cases 811 317 155 260 1543
## [2,] Percent 52.6 20.5 10 16.9 100
3B Impact (ordinal [0,1,2,3], v1_leq_A_3B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq3e_schlaf,v1_con$v1_leq_a_leq3e,"v1_leq_A_3B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 802 26 100 169 186 260 1543
## [2,] Percent 52 1.7 6.5 11 12.1 16.9 100
4. “Major change in usual type and/or amount of recreation”
4A Nature (dichotomous [“good”,“bad”], v1_leq_A_4A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq4a_freizeit,v1_con$v1_leq_a_leq4a,"v1_leq_A_4A")
## -999 bad good <NA>
## [1,] No. cases 777 242 264 260 1543
## [2,] Percent 50.4 15.7 17.1 16.9 100
4B Impact (ordinal [0,1,2,3], v1_leq_A_4B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq4e_freizeit,v1_con$v1_leq_a_leq4e,"v1_leq_A_4B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 768 31 95 204 185 260 1543
## [2,] Percent 49.8 2 6.2 13.2 12 16.9 100
5. “Major dental work”
5A Nature (dichotomous [“good”,“bad”], v1_leq_A_5A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq5a_zahnarzt,v1_con$v1_leq_a_leq5a,"v1_leq_A_5A")
## -999 bad good <NA>
## [1,] No. cases 1076 87 120 260 1543
## [2,] Percent 69.7 5.6 7.8 16.9 100
5B Impact (ordinal [0,1,2,3], v1_leq_A_5B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq5e_zahnarzt,v1_con$v1_leq_a_leq5e,"v1_leq_A_5B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1061 57 49 63 53 260 1543
## [2,] Percent 68.8 3.7 3.2 4.1 3.4 16.9 100
6. “(Female) Pregnancy”
6A Nature (dichotomous [“good”,“bad”], v1_leq_A_6A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq6a_schwanger,v1_con$v1_leq_a_leq6a,"v1_leq_A_6A")
## -999 bad good <NA>
## [1,] No. cases 1259 7 17 260 1543
## [2,] Percent 81.6 0.5 1.1 16.9 100
6B Impact (ordinal [0,1,2,3], v1_leq_A_6B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq6e_schwanger,v1_con$v1_leq_a_leq6e,"v1_leq_A_6B")
## -999 0 2 3 <NA>
## [1,] No. cases 1258 7 3 15 260 1543
## [2,] Percent 81.5 0.5 0.2 1 16.9 100
7. “(Female) Miscarriage or abortion”
7A Nature (dichotomous [“good”,“bad”], v1_leq_A_7A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq7a_fehlg_abtr,v1_con$v1_leq_a_leq7a,"v1_leq_A_7A")
## -999 bad good <NA>
## [1,] No. cases 1271 9 3 260 1543
## [2,] Percent 82.4 0.6 0.2 16.9 100
7B Impact (ordinal [0,1,2,3], v1_leq_A_7B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq7e_fehlg_abtr,v1_con$v1_leq_a_leq7e,"v1_leq_A_7B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1270 4 2 1 6 260 1543
## [2,] Percent 82.3 0.3 0.1 0.1 0.4 16.9 100
8. “(Female) Started menopause”
8A Nature (dichotomous [“good”,“bad”], v1_leq_A_8A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq8a_wechseljahre,v1_con$v1_leq_a_leq8a,"v1_leq_A_8A")
## -999 bad good <NA>
## [1,] No. cases 1232 35 16 260 1543
## [2,] Percent 79.8 2.3 1 16.9 100
8B Impact (ordinal [0,1,2,3], v1_leq_A_8B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq8e_wechseljahre,v1_con$v1_leq_a_leq8e,"v1_leq_A_8B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1229 9 8 19 18 260 1543
## [2,] Percent 79.7 0.6 0.5 1.2 1.2 16.9 100
9. “Major difficulties with birth control pills or devices”
9A Nature (dichotomous [“good”,“bad”], v1_leq_A_9A)
v1_leq_a_recode(v1_clin$v1_leq_a_leq9a_verhuetung,v1_con$v1_leq_a_leq9a,"v1_leq_A_9A")
## -999 bad good <NA>
## [1,] No. cases 1234 36 13 260 1543
## [2,] Percent 80 2.3 0.8 16.9 100
9B Impact (ordinal [0,1,2,3], v1_leq_A_9B)
v1_leq_b_recode(v1_clin$v1_leq_a_leq9e_verhuetung,v1_con$v1_leq_a_leq9e,"v1_leq_A_9B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1231 15 12 8 17 260 1543
## [2,] Percent 79.8 1 0.8 0.5 1.1 16.9 100
Create dataset
v1_leq_A<-data.frame(v1_leq_A_1A,v1_leq_A_1B,v1_leq_A_2A,v1_leq_A_2B,v1_leq_A_3A,
v1_leq_A_3B,v1_leq_A_4A,v1_leq_A_4B,v1_leq_A_5A,v1_leq_A_5B,
v1_leq_A_6A,v1_leq_A_6B,v1_leq_A_7A,v1_leq_A_7B,v1_leq_A_8A,
v1_leq_A_8B,v1_leq_A_9A,v1_leq_A_9B)
10. “Difficulty finding a job”
10A Nature (dichotomous [“good”,“bad”], v1_leq_B_10A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq10a_arbeitssuche,v1_con$v1_leq_b_leq10a,"v1_leq_B_10A")
## -999 bad good <NA>
## [1,] No. cases 1058 180 45 260 1543
## [2,] Percent 68.6 11.7 2.9 16.9 100
10B Impact (ordinal [0,1,2,3], v1_leq_B_10B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq10e_arbeitssuche,v1_con$v1_leq_b_leq10e,"v1_leq_B_10B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1049 22 40 62 110 260 1543
## [2,] Percent 68 1.4 2.6 4 7.1 16.9 100
11. “Beginning work outside the home”
11A Nature (dichotomous [“good”,“bad”], v1_leq_B_11A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq11a_arbeit_aussen,v1_con$v1_leq_b_leq11a,"v1_leq_B_11A")
## -999 bad good <NA>
## [1,] No. cases 1092 65 126 260 1543
## [2,] Percent 70.8 4.2 8.2 16.9 100
11B Impact (ordinal [0,1,2,3], v1_leq_B_11B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq11e_arbeit_aussen,v1_con$v1_leq_b_leq11e,"v1_leq_B_11B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1087 20 38 52 86 260 1543
## [2,] Percent 70.4 1.3 2.5 3.4 5.6 16.9 100
12. “Changing to a new type of work” 12A Nature (dichotomous [“good”,“bad”], v1_leq_B_12A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq12a_arbeitswechs,v1_con$v1_leq_b_leq12a,"v1_leq_B_12A")
## -999 bad good <NA>
## [1,] No. cases 1067 57 159 260 1543
## [2,] Percent 69.2 3.7 10.3 16.9 100
12B Impact (ordinal [0,1,2,3], v1_leq_B_12B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq12e_arbeitswechs,v1_con$v1_leq_b_leq12e,"v1_leq_B_12B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1064 13 44 72 90 260 1543
## [2,] Percent 69 0.8 2.9 4.7 5.8 16.9 100
13. “Changing your work hours or conditions”
13A Nature (dichotomous [“good”,“bad”], v1_leq_B_13A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq13a_veraend_arb,v1_con$v1_leq_b_leq13a,"v1_leq_B_13A")
## -999 bad good <NA>
## [1,] No. cases 1029 95 159 260 1543
## [2,] Percent 66.7 6.2 10.3 16.9 100
13B Impact (ordinal [0,1,2,3], v1_leq_B_13B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq13e_veraend_arb,v1_con$v1_leq_b_leq13e,"v1_leq_B_13B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1026 11 66 83 97 260 1543
## [2,] Percent 66.5 0.7 4.3 5.4 6.3 16.9 100
14. “Change in your responsibilities at work” 14A Nature (dichotomous [“good”,“bad”], v1_leq_B_14A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq14a_veraend_ba,v1_con$v1_leq_b_leq14a,"v1_leq_B_14A")
## -999 bad good <NA>
## [1,] No. cases 1017 81 185 260 1543
## [2,] Percent 65.9 5.2 12 16.9 100
14B Impact (ordinal [0,1,2,3], v1_leq_B_14B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq14e_veraend_ba,v1_con$v1_leq_b_leq14e,"v1_leq_B_14B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1016 18 57 85 107 260 1543
## [2,] Percent 65.8 1.2 3.7 5.5 6.9 16.9 100
15. “Troubles at work with your employer or co-worker”
15A Nature (dichotomous [“good”,“bad”], v1_leq_B_15A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq15a_schw_arbeit,v1_con$v1_leq_b_leq15a,"v1_leq_B_15A")
## -999 bad good <NA>
## [1,] No. cases 1079 181 23 260 1543
## [2,] Percent 69.9 11.7 1.5 16.9 100
15B Impact (ordinal [0,1,2,3], v1_leq_B_15B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq15e_schw_arbeit,v1_con$v1_leq_b_leq15e,"v1_leq_B_15B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1077 23 50 58 75 260 1543
## [2,] Percent 69.8 1.5 3.2 3.8 4.9 16.9 100
16. “Major business readjustment”
16A Nature (dichotomous [“good”,“bad”], v1_leq_B_16A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq16a_betr_reorg,v1_con$v1_leq_b_leq16a,"v1_leq_B_16A")
## -999 bad good <NA>
## [1,] No. cases 1214 38 31 260 1543
## [2,] Percent 78.7 2.5 2 16.9 100
16B Impact (ordinal [0,1,2,3], v1_leq_B_16B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq16e_betr_reorg,v1_con$v1_leq_b_leq16e,"v1_leq_B_16B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1210 12 20 19 22 260 1543
## [2,] Percent 78.4 0.8 1.3 1.2 1.4 16.9 100
17. “Being fired or laid off from work”
17A Nature (dichotomous [“good”,“bad”], v1_leq_B_17A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq17a_kuendigung,v1_con$v1_leq_b_leq17a,"v1_leq_B_17A")
## -999 bad good <NA>
## [1,] No. cases 1165 90 28 260 1543
## [2,] Percent 75.5 5.8 1.8 16.9 100
17B Impact (ordinal [0,1,2,3], v1_leq_B_17B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq17e_kuendigung,v1_con$v1_leq_b_leq17e,"v1_leq_B_17B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1163 13 14 28 65 260 1543
## [2,] Percent 75.4 0.8 0.9 1.8 4.2 16.9 100
18. “Retirement from work”
18A Nature (dichotomous [“good”,“bad”], v1_leq_B_18A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq18a_ende_beruf,v1_con$v1_leq_b_leq18a,"v1_leq_B_18A")
## -999 bad good <NA>
## [1,] No. cases 1206 44 33 260 1543
## [2,] Percent 78.2 2.9 2.1 16.9 100
18B Impact (ordinal [0,1,2,3], v1_leq_B_18B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq18e_ende_beruf,v1_con$v1_leq_b_leq18e,"v1_leq_B_18B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1203 11 6 16 47 260 1543
## [2,] Percent 78 0.7 0.4 1 3 16.9 100
19. “Taking courses by mail or studying at home to help you in your work”
19A Nature (dichotomous [“good”,“bad”], v1_leq_B_19A)
v1_leq_a_recode(v1_clin$v1_leq_b_leq19a_fortbildung,v1_con$v1_leq_b_leq19a,"v1_leq_B_19A")
## -999 bad good <NA>
## [1,] No. cases 1179 21 83 260 1543
## [2,] Percent 76.4 1.4 5.4 16.9 100
19B Impact (ordinal [0,1,2,3], v1_leq_B_19B)
v1_leq_b_recode(v1_clin$v1_leq_b_leq19e_fortbildung,v1_con$v1_leq_b_leq19e,"v1_leq_B_19B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1176 18 16 36 37 260 1543
## [2,] Percent 76.2 1.2 1 2.3 2.4 16.9 100
v1_leq_B<-data.frame(v1_leq_B_10A,v1_leq_B_10B,v1_leq_B_11A,v1_leq_B_11B,v1_leq_B_12A,
v1_leq_B_12B,v1_leq_B_13A,v1_leq_B_13B,v1_leq_B_14A,v1_leq_B_14B,
v1_leq_B_15A,v1_leq_B_15B,v1_leq_B_16A,v1_leq_B_16B,v1_leq_B_17A,
v1_leq_B_17B,v1_leq_B_18A,v1_leq_B_18B,v1_leq_B_19A,v1_leq_B_19B)
20. “Beginning or ceasing school, college, or training program”
20A Nature (dichotomous [“good”,“bad”], v1_leq_C_20A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq20a_beginn_ende,v1_con$v1_leq_c_d_leq20a,"v1_leq_C_20A")
## -999 bad good <NA>
## [1,] No. cases 1168 35 80 260 1543
## [2,] Percent 75.7 2.3 5.2 16.9 100
20B Impact (ordinal [0,1,2,3], v1_leq_C_20B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq20e_beginn_ende,v1_con$v1_leq_c_d_leq20e,"v1_leq_C_20B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1166 5 20 29 63 260 1543
## [2,] Percent 75.6 0.3 1.3 1.9 4.1 16.9 100
21. “Change of school, college, or training program”
21A Nature (dichotomous [“good”,“bad”], v1_leq_C_21A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq21a_schulwechsel,v1_con$v1_leq_c_d_leq21a,"v1_leq_C_21A")
## -999 bad good <NA>
## [1,] No. cases 1243 12 28 260 1543
## [2,] Percent 80.6 0.8 1.8 16.9 100
21B Impact (ordinal [0,1,2,3], v1_leq_C_21B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq21e_schulwechsel,v1_con$v1_leq_c_d_leq21e,"v1_leq_C_21B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1240 5 7 17 14 260 1543
## [2,] Percent 80.4 0.3 0.5 1.1 0.9 16.9 100
22. “Change in career goal or academic major”
A Nature (dichotomous [“good”,“bad”], v1_leq_C_22A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq22a_aend_karriere,v1_con$v1_leq_c_d_leq22a,"v1_leq_C_22A")
## -999 bad good <NA>
## [1,] No. cases 1191 21 71 260 1543
## [2,] Percent 77.2 1.4 4.6 16.9 100
B Impact (ordinal [0,1,2,3], v1_leq_C_22B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq22e_aend_karriere,v1_con$v1_leq_c_d_leq22e,"v1_leq_C_22B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1188 6 17 27 45 260 1543
## [2,] Percent 77 0.4 1.1 1.7 2.9 16.9 100
23. “Problem in school, college, or training program”
23A Nature (dichotomous [“good”,“bad”], v1_leq_C_23A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq23a_schulprob,v1_con$v1_leq_c_d_leq23a,"v1_leq_C_23A")
## -999 bad good <NA>
## [1,] No. cases 1201 73 9 260 1543
## [2,] Percent 77.8 4.7 0.6 16.9 100
23B Impact (ordinal [0,1,2,3], v1_leq_C_23B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq23e_schulprob,v1_con$v1_leq_c_d_leq23e,"v1_leq_C_23B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1199 7 17 27 33 260 1543
## [2,] Percent 77.7 0.5 1.1 1.7 2.1 16.9 100
Create dataset
v1_leq_C<-data.frame(v1_leq_C_20A,v1_leq_C_20B,v1_leq_C_21A,v1_leq_C_21B,v1_leq_C_22A,v1_leq_C_22B,v1_leq_C_23A,v1_leq_C_23B)
24. “Difficulty finding housing”
24A Nature (dichotomous [“good”,“bad”], v1_leq_D_24A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq24a_schw_wsuche,v1_con$v1_leq_c_d_leq24a,"v1_leq_D_24A")
## -999 bad good <NA>
## [1,] No. cases 1116 139 28 260 1543
## [2,] Percent 72.3 9 1.8 16.9 100
24B Impact (ordinal [0,1,2,3], v1_leq_D_24B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq24e_schw_wsuche,v1_con$v1_leq_c_d_leq24e,"v1_leq_D_24B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1111 18 43 51 60 260 1543
## [2,] Percent 72 1.2 2.8 3.3 3.9 16.9 100
25. “Changing residence within the same town or city”
A Nature (dichotomous [“good”,“bad”], v1_leq_D_25A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq25a_umzug_nah,v1_con$v1_leq_c_d_leq25a,"v1_leq_D_25A")
## -999 bad good <NA>
## [1,] No. cases 1142 35 106 260 1543
## [2,] Percent 74 2.3 6.9 16.9 100
B Impact (ordinal [0,1,2,3], v1_leq_D_25B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq25e_umzug_nah,v1_con$v1_leq_c_d_leq25e,"v1_leq_D_25B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1140 15 26 41 61 260 1543
## [2,] Percent 73.9 1 1.7 2.7 4 16.9 100
26. “Moving to a different town, city, state, or country”
26A Nature (dichotomous [“good”,“bad”], v1_leq_D_26A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq26a_umzug_fern,v1_con$v1_leq_c_d_leq26a,"v1_leq_D_26A")
## -999 bad good <NA>
## [1,] No. cases 1168 37 78 260 1543
## [2,] Percent 75.7 2.4 5.1 16.9 100
26B Impact (ordinal [0,1,2,3], v1_leq_D_26B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq26e_umzug_fern,v1_con$v1_leq_c_d_leq26e,"v1_leq_D_26B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1162 13 11 32 65 260 1543
## [2,] Percent 75.3 0.8 0.7 2.1 4.2 16.9 100
27. “Major change in your life conditions (home improvements or a decline in your home or neighborhood)”
27A Nature (dichotomous [“good”,“bad”], v1_leq_D_27A)
v1_leq_a_recode(v1_clin$v1_leq_c_d_leq27a_veraend_lu,v1_con$v1_leq_c_d_leq27a,"v1_leq_D_27A")
## -999 bad good <NA>
## [1,] No. cases 1029 111 143 260 1543
## [2,] Percent 66.7 7.2 9.3 16.9 100
27B Impact (ordinal [0,1,2,3], v1_leq_D_27B)
v1_leq_b_recode(v1_clin$v1_leq_c_d_leq27e_veraend_lu,v1_con$v1_leq_c_d_leq27e,"v1_leq_D_27B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1023 20 49 69 122 260 1543
## [2,] Percent 66.3 1.3 3.2 4.5 7.9 16.9 100
Create dataset
v1_leq_D<-data.frame(v1_leq_D_24A,v1_leq_D_24B,v1_leq_D_25A,v1_leq_D_25B,v1_leq_D_26A,
v1_leq_D_26B,v1_leq_D_27A,v1_leq_D_27B)
28. “Began a new, close, personal relationship”
28A Nature (dichotomous [“good”,“bad”], v1_leq_E_28A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq28a_neue_bez,v1_con$v1_leq_e_leq28a,"v1_leq_E_28A")
## -999 bad good <NA>
## [1,] No. cases 1100 29 154 260 1543
## [2,] Percent 71.3 1.9 10 16.9 100
28B Impact (ordinal [0,1,2,3], v1_leq_E_28B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq28e_neue_bez,v1_con$v1_leq_e_leq28e,"v1_leq_E_28B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1096 9 28 45 105 260 1543
## [2,] Percent 71 0.6 1.8 2.9 6.8 16.9 100
29. “Became engaged”
29A Nature (dichotomous [“good”,“bad”], v1_leq_E_29A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq29a_verlobung,v1_con$v1_leq_e_leq29a,"v1_leq_E_29A")
## -999 bad good <NA>
## [1,] No. cases 1251 8 24 260 1543
## [2,] Percent 81.1 0.5 1.6 16.9 100
29B Impact (ordinal [0,1,2,3], v1_leq_E_29B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq29e_verlobung,v1_con$v1_leq_e_leq29e,"v1_leq_E_29B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1249 3 4 8 19 260 1543
## [2,] Percent 80.9 0.2 0.3 0.5 1.2 16.9 100
30. “Girlfriend or boyfriend problems”
30A Nature (dichotomous [“good”,“bad”], v1_leq_E_30A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq30a_prob_partner,v1_con$v1_leq_e_leq30a,"v1_leq_E_30A")
## -999 bad good <NA>
## [1,] No. cases 1068 190 25 260 1543
## [2,] Percent 69.2 12.3 1.6 16.9 100
30B Impact (ordinal [0,1,2,3], v1_leq_E_30B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq30e_prob_partner,v1_con$v1_leq_e_leq30e,"v1_leq_E_30B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1065 6 39 84 89 260 1543
## [2,] Percent 69 0.4 2.5 5.4 5.8 16.9 100
31. “Breaking up with a girlfriend or breaking an engagement”
31A Nature (dichotomous [“good”,“bad”], v1_leq_E_31A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq31a_trennung,v1_con$v1_leq_e_leq31a,"v1_leq_E_31A")
## -999 bad good <NA>
## [1,] No. cases 1149 103 31 260 1543
## [2,] Percent 74.5 6.7 2 16.9 100
31B Impact (ordinal [0,1,2,3], v1_leq_E_31B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq31e_trennung,v1_con$v1_leq_e_leq31e,"v1_leq_E_31B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1144 10 21 45 63 260 1543
## [2,] Percent 74.1 0.6 1.4 2.9 4.1 16.9 100
32. “(Male) Wife or girlfriend’s pregnancy”
32A Nature (dichotomous [“good”,“bad”], v1_leq_E_32A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq32a_schwanger_p,v1_con$v1_leq_e_leq32a,"v1_leq_E_32A")
## -999 bad good <NA>
## [1,] No. cases 1269 6 8 260 1543
## [2,] Percent 82.2 0.4 0.5 16.9 100
32B Impact (ordinal [0,1,2,3], v1_leq_E_32B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq32e_schwanger_p,v1_con$v1_leq_e_leq32e,"v1_leq_E_32B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1267 2 3 2 9 260 1543
## [2,] Percent 82.1 0.1 0.2 0.1 0.6 16.9 100
33. “(Male) Wife or girlfriend having a miscarriage or abortion”
33A Nature (dichotomous [“good”,“bad”], v1_leq_E_33A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq33a_fehlg_abtr_p,v1_con$v1_leq_e_leq33a,"v1_leq_E_33A")
## -999 bad good <NA>
## [1,] No. cases 1272 9 2 260 1543
## [2,] Percent 82.4 0.6 0.1 16.9 100
33B Impact (ordinal [0,1,2,3], v1_leq_E_33B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq33e_fehlg_abtr_p,v1_con$v1_leq_e_leq33e,"v1_leq_E_33B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1271 5 2 1 4 260 1543
## [2,] Percent 82.4 0.3 0.1 0.1 0.3 16.9 100
34. “Getting married (or beginning to live with someone)”
34A Nature (dichotomous [“good”,“bad”], v1_leq_E_34A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq34a_heirat,v1_con$v1_leq_e_leq34a,"v1_leq_E_34A")
## -999 bad good <NA>
## [1,] No. cases 1244 5 34 260 1543
## [2,] Percent 80.6 0.3 2.2 16.9 100
34B Impact (ordinal [0,1,2,3], v1_leq_E_34B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq34e_heirat,v1_con$v1_leq_e_leq34e,"v1_leq_E_34B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1240 3 3 13 24 260 1543
## [2,] Percent 80.4 0.2 0.2 0.8 1.6 16.9 100
35. “A change in closeness with your partner”
35A Nature (dichotomous [“good”,“bad”], v1_leq_E_35A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq35a_veraend_naehe,v1_con$v1_leq_e_leq35a,"v1_leq_E_35A")
## -999 bad good <NA>
## [1,] No. cases 1087 114 82 260 1543
## [2,] Percent 70.4 7.4 5.3 16.9 100
35B Impact (ordinal [0,1,2,3], v1_leq_E_35B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq35e_veraend_naehe,v1_con$v1_leq_e_leq35e,"v1_leq_E_35B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1082 6 29 71 95 260 1543
## [2,] Percent 70.1 0.4 1.9 4.6 6.2 16.9 100
36. “Infidelity”
36A Nature (dichotomous [“good”,“bad”], v1_leq_E_36A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq36a_untreue,v1_con$v1_leq_e_leq36a,"v1_leq_E_36A")
## -999 bad good <NA>
## [1,] No. cases 1224 49 10 260 1543
## [2,] Percent 79.3 3.2 0.6 16.9 100
36B Impact (ordinal [0,1,2,3], v1_leq_E_36B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq36e_untreue,v1_con$v1_leq_e_leq36e,"v1_leq_E_36B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1221 13 11 8 30 260 1543
## [2,] Percent 79.1 0.8 0.7 0.5 1.9 16.9 100
37. “Trouble with in-laws”
37A Nature (dichotomous [“good”,“bad”], v1_leq_E_37A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq37a_konf_schwiege,v1_con$v1_leq_e_leq37a,"v1_leq_E_37A")
## -999 bad good <NA>
## [1,] No. cases 1224 51 8 260 1543
## [2,] Percent 79.3 3.3 0.5 16.9 100
37B Impact (ordinal [0,1,2,3], v1_leq_E_37B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq37e_konf_schwiege,v1_con$v1_leq_e_leq37e,"v1_leq_E_37B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1222 4 19 25 13 260 1543
## [2,] Percent 79.2 0.3 1.2 1.6 0.8 16.9 100
38. “Separation from spouse or partner due to conflict”
38A Nature (dichotomous [“good”,“bad”], v1_leq_E_38A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq38a_trennung_str,v1_con$v1_leq_e_leq38a,"v1_leq_E_38A")
## -999 bad good <NA>
## [1,] No. cases 1221 45 17 260 1543
## [2,] Percent 79.1 2.9 1.1 16.9 100
38B Impact (ordinal [0,1,2,3], v1_leq_E_38B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq38e_trennung_str,v1_con$v1_leq_e_leq38e,"v1_leq_E_38B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1221 3 5 20 34 260 1543
## [2,] Percent 79.1 0.2 0.3 1.3 2.2 16.9 100
39. “Separation from spouse or partner due to work, travel, etc.”
39A Nature (dichotomous [“good”,“bad”], v1_leq_E_39A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq39a_trennung_ber,v1_con$v1_leq_e_leq39a,"v1_leq_E_39A")
## -999 bad <NA>
## [1,] No. cases 1266 17 260 1543
## [2,] Percent 82 1.1 16.9 100
39B Impact (ordinal [0,1,2,3], v1_leq_E_39B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq39e_trennung_ber,v1_con$v1_leq_e_leq39e,"v1_leq_E_39B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1264 6 1 6 6 260 1543
## [2,] Percent 81.9 0.4 0.1 0.4 0.4 16.9 100
40. “Reconciliation with spouse or partner”
40A Nature (dichotomous [“good”,“bad”], v1_leq_E_40A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq40a_versoehnung,v1_con$v1_leq_e_leq40a,"v1_leq_E_40A")
## -999 bad good <NA>
## [1,] No. cases 1210 6 67 260 1543
## [2,] Percent 78.4 0.4 4.3 16.9 100
40B Impact (ordinal [0,1,2,3], v1_leq_E_40B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq40e_versoehnung,v1_con$v1_leq_e_leq40e,"v1_leq_E_40B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1209 4 13 20 37 260 1543
## [2,] Percent 78.4 0.3 0.8 1.3 2.4 16.9 100
41. “Divorce”
41A Nature (dichotomous [“good”,“bad”], v1_leq_E_41A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq41a_scheidung,v1_con$v1_leq_e_leq41a,"v1_leq_E_41A")
## -999 bad good <NA>
## [1,] No. cases 1260 16 7 260 1543
## [2,] Percent 81.7 1 0.5 16.9 100
41B Impact (ordinal [0,1,2,3], v1_leq_E_41B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq41e_scheidung,v1_con$v1_leq_e_leq41e,"v1_leq_E_41B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1259 4 1 6 13 260 1543
## [2,] Percent 81.6 0.3 0.1 0.4 0.8 16.9 100
42. “Change in your spouse or partner’s work outside the home (beginning work, ceasing work, changing jobs, retirement, etc.”
42A Nature (dichotomous [“good”,“bad”], v1_leq_E_42A)
v1_leq_a_recode(v1_clin$v1_leq_e_leq42a_veraend_taet,v1_con$v1_leq_e_leq42a,"v1_leq_E_42A")
## -999 bad good <NA>
## [1,] No. cases 1212 29 42 260 1543
## [2,] Percent 78.5 1.9 2.7 16.9 100
42B Impact (ordinal [0,1,2,3], v1_leq_E_42B)
v1_leq_b_recode(v1_clin$v1_leq_e_leq42e_veraend_taet,v1_con$v1_leq_e_leq42e,"v1_leq_E_42B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1210 9 10 30 24 260 1543
## [2,] Percent 78.4 0.6 0.6 1.9 1.6 16.9 100
Create dataset
v1_leq_E<-data.frame(v1_leq_E_28A,v1_leq_E_28B,v1_leq_E_29A,v1_leq_E_29B,v1_leq_E_30A,
v1_leq_E_30B,v1_leq_E_31A,v1_leq_E_31B,v1_leq_E_32A,v1_leq_E_32B,
v1_leq_E_33A,v1_leq_E_33B,v1_leq_E_34A,v1_leq_E_34B,v1_leq_E_35A,
v1_leq_E_35B,v1_leq_E_36A,v1_leq_E_36B,v1_leq_E_37A,v1_leq_E_37B,
v1_leq_E_38A,v1_leq_E_38B,v1_leq_E_39A,v1_leq_E_39B,v1_leq_E_40A,
v1_leq_E_40B,v1_leq_E_41A,v1_leq_E_41B,v1_leq_E_42A,v1_leq_E_42B)
43. “Gain of a new family member (through birth, adoption, relative moving in, etc)”
43A Nature (dichotomous [“good”,“bad”], v1_leq_F_43A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq43a_neu_fmitglied,v1_con$v1_leq_f_g_leq43a,"v1_leq_F_43A")
## -999 bad good <NA>
## [1,] No. cases 1180 12 91 260 1543
## [2,] Percent 76.5 0.8 5.9 16.9 100
43B Impact (ordinal [0,1,2,3], v1_leq_F_43B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq43e_neu_fmitglied,v1_con$v1_leq_f_g_leq43e,"v1_leq_F_43B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1179 9 30 26 39 260 1543
## [2,] Percent 76.4 0.6 1.9 1.7 2.5 16.9 100
44. “Child or family member leaving home (due to marriage, to attend college, or for some other reason)”
44A Nature (dichotomous [“good”,“bad”], v1_leq_F_44A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq44a_auszug_fm,v1_con$v1_leq_f_g_leq44a,"v1_leq_F_44A")
## -999 bad good <NA>
## [1,] No. cases 1226 26 31 260 1543
## [2,] Percent 79.5 1.7 2 16.9 100
44B Impact (ordinal [0,1,2,3], v1_leq_F_44B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq44e_auszug_fm,v1_con$v1_leq_f_g_leq44e,"v1_leq_F_44B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1224 7 13 21 18 260 1543
## [2,] Percent 79.3 0.5 0.8 1.4 1.2 16.9 100
45. “Major change in the health or behavior of a family member or close friend (illness, accidents, drug or disciplinary problems, etc.)”
45A Nature (dichotomous [“good”,“bad”], v1_leq_F_45A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq45a_gz_verh_fm,v1_con$v1_leq_f_g_leq45a,"v1_leq_F_45A")
## -999 bad good <NA>
## [1,] No. cases 1045 215 23 260 1543
## [2,] Percent 67.7 13.9 1.5 16.9 100
45B Impact (ordinal [0,1,2,3], v1_leq_F_45B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq45e_gz_verh_fm,v1_con$v1_leq_f_g_leq45e,"v1_leq_F_45B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1044 5 40 89 105 260 1543
## [2,] Percent 67.7 0.3 2.6 5.8 6.8 16.9 100
46. “Death of spouse or partner”
46A Nature (dichotomous [“good”,“bad”], v1_leq_F_46A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq46a_tod_partner,v1_con$v1_leq_f_g_leq46a,"v1_leq_F_46A")
## -999 bad <NA>
## [1,] No. cases 1270 13 260 1543
## [2,] Percent 82.3 0.8 16.9 100
46B Impact (ordinal [0,1,2,3], v1_leq_F_46B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq46e_tod_partner,v1_con$v1_leq_f_g_leq46e,"v1_leq_F_46B")
## -999 0 2 3 <NA>
## [1,] No. cases 1269 2 4 8 260 1543
## [2,] Percent 82.2 0.1 0.3 0.5 16.9 100
47. “Death of a child”
47A Nature (dichotomous [“good”,“bad”], v1_leq_F_47A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq47a_tod_kind,v1_con$v1_leq_f_g_leq47a,"v1_leq_F_47A")
## -999 bad <NA>
## [1,] No. cases 1273 10 260 1543
## [2,] Percent 82.5 0.6 16.9 100
47B Impact (ordinal [0,1,2,3], v1_leq_F_47B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq47e_tod_kind,v1_con$v1_leq_f_g_leq47e,"v1_leq_F_47B")
## -999 0 3 <NA>
## [1,] No. cases 1273 2 8 260 1543
## [2,] Percent 82.5 0.1 0.5 16.9 100
48. “Death of family member or close friend”
48A Nature (dichotomous [“good”,“bad”], v1_leq_F_48A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq48a_tod_fm_ef,v1_con$v1_leq_f_g_leq48a,"v1_leq_F_48A")
## -999 bad good <NA>
## [1,] No. cases 1176 104 3 260 1543
## [2,] Percent 76.2 6.7 0.2 16.9 100
48B Impact (ordinal [0,1,2,3], v1_leq_F_48B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq48e_tod_fm_ef,v1_con$v1_leq_f_g_leq48e,"v1_leq_F_48B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1175 9 22 34 43 260 1543
## [2,] Percent 76.2 0.6 1.4 2.2 2.8 16.9 100
49. “Birth of a grandchild”
49A Nature (dichotomous [“good”,“bad”], v1_leq_F_49A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq49a_geb_enkel,v1_con$v1_leq_f_g_leq49a,"v1_leq_F_49A")
## -999 bad good <NA>
## [1,] No. cases 1254 3 26 260 1543
## [2,] Percent 81.3 0.2 1.7 16.9 100
49B Impact (ordinal [0,1,2,3], v1_leq_F_49B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq49e_geb_enkel,v1_con$v1_leq_f_g_leq49e,"v1_leq_F_49B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1253 5 5 3 17 260 1543
## [2,] Percent 81.2 0.3 0.3 0.2 1.1 16.9 100
50. “Change in marital status of your parents”
50A Nature (dichotomous [“good”,“bad”], v1_leq_F_50A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq50a_fstand_eltern,v1_con$v1_leq_f_g_leq50a,"v1_leq_F_50A")
## -999 bad good <NA>
## [1,] No. cases 1253 23 7 260 1543
## [2,] Percent 81.2 1.5 0.5 16.9 100
50B Impact (ordinal [0,1,2,3], v1_leq_F_50B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq50e_fstand_eltern,v1_con$v1_leq_f_g_leq50e,"v1_leq_F_50B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1252 4 7 10 10 260 1543
## [2,] Percent 81.1 0.3 0.5 0.6 0.6 16.9 100
Create dataset
v1_leq_F<-data.frame(v1_leq_F_43A,v1_leq_F_43B,v1_leq_F_44A,v1_leq_F_44B,v1_leq_F_45A,
v1_leq_F_45B,v1_leq_F_46A,v1_leq_F_46B,v1_leq_F_47A,v1_leq_F_47B,
v1_leq_F_48A,v1_leq_F_48B,v1_leq_F_49A,v1_leq_F_49B,v1_leq_F_50A,
v1_leq_F_50B)
51. “Change in child care arrangements”
51A Nature (dichotomous [“good”,“bad”], v1_leq_G_51A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq51a_kindbetr,v1_con$v1_leq_f_g_leq51a,"v1_leq_G_51A")
## -999 bad good <NA>
## [1,] No. cases 1245 17 21 260 1543
## [2,] Percent 80.7 1.1 1.4 16.9 100
51B Impact (ordinal [0,1,2,3], v1_leq_G_51B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq51e_kindbetr,v1_con$v1_leq_f_g_leq51e,"v1_leq_G_51B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1244 5 5 12 17 260 1543
## [2,] Percent 80.6 0.3 0.3 0.8 1.1 16.9 100
52. “Conflicts with spouse or partner about parenting”
52A Nature (dichotomous [“good”,“bad”], v1_leq_G_52A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq52a_konf_eschaft,v1_con$v1_leq_f_g_leq52a,"v1_leq_G_52A")
## -999 bad good <NA>
## [1,] No. cases 1244 33 6 260 1543
## [2,] Percent 80.6 2.1 0.4 16.9 100
52B Impact (ordinal [0,1,2,3], v1_leq_G_52B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq52e_konf_eschaft,v1_con$v1_leq_f_g_leq52e,"v1_leq_G_52B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1244 3 12 16 8 260 1543
## [2,] Percent 80.6 0.2 0.8 1 0.5 16.9 100
53. “Conflicts with child’s grandparents (or other important person) about parenting”
53A Nature (dichotomous [“good”,“bad”], v1_leq_G_53A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq53a_konf_geltern,v1_con$v1_leq_f_g_leq53a,"v1_leq_G_53A")
## -999 bad good <NA>
## [1,] No. cases 1264 16 3 260 1543
## [2,] Percent 81.9 1 0.2 16.9 100
53B Impact (ordinal [0,1,2,3], v1_leq_G_53B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq53e_konf_geltern,v1_con$v1_leq_f_g_leq53e,"v1_leq_G_53B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1264 2 7 3 7 260 1543
## [2,] Percent 81.9 0.1 0.5 0.2 0.5 16.9 100
54. “Taking on full responsibility for parenting as a single parent”
54A Nature (dichotomous [“good”,“bad”], v1_leq_G_54A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq54a_alleinerz,v1_con$v1_leq_f_g_leq54a,"v1_leq_G_54A")
## -999 bad good <NA>
## [1,] No. cases 1263 12 8 260 1543
## [2,] Percent 81.9 0.8 0.5 16.9 100
54B Impact (ordinal [0,1,2,3], v1_leq_G_54B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq54e_alleinerz,v1_con$v1_leq_f_g_leq54e,"v1_leq_G_54B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1263 2 2 8 8 260 1543
## [2,] Percent 81.9 0.1 0.1 0.5 0.5 16.9 100
55. “Custody battles with former spouse or partner”
55A Nature (dichotomous [“good”,“bad”], v1_leq_G_55A)
v1_leq_a_recode(v1_clin$v1_leq_f_g_leq55a_sorgerecht,v1_con$v1_leq_f_g_leq55a,"v1_leq_G_55A")
## -999 bad good <NA>
## [1,] No. cases 1255 26 2 260 1543
## [2,] Percent 81.3 1.7 0.1 16.9 100
55B Impact (ordinal [0,1,2,3], v1_leq_G_55B)
v1_leq_b_recode(v1_clin$v1_leq_f_g_leq55e_sorgerecht,v1_con$v1_leq_f_g_leq55e,"v1_leq_G_55B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1253 2 11 7 10 260 1543
## [2,] Percent 81.2 0.1 0.7 0.5 0.6 16.9 100
Create dataset
v1_leq_G<-data.frame(v1_leq_G_51A,
v1_leq_G_51B,
v1_leq_G_52A,
v1_leq_G_52B,
v1_leq_G_53A,
v1_leq_G_53B,
v1_leq_G_54A,
v1_leq_G_54B,
v1_leq_G_55A,
v1_leq_G_55B)
69. “Major change in finances (increased or decreased income)”
69A Nature (dichotomous [“good”,“bad”], v1_leq_I_69A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq69a_finanz_sit,v1_con$v1_leq_i_j_k_leq69a,"v1_leq_I_69A")
## -999 bad good <NA>
## [1,] No. cases 888 232 163 260 1543
## [2,] Percent 57.6 15 10.6 16.9 100
69B Impact (ordinal [0,1,2,3], v1_leq_I_69B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq69e_finanz_sit,v1_con$v1_leq_i_j_k_leq69e,"v1_leq_I_69B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 886 14 90 122 171 260 1543
## [2,] Percent 57.4 0.9 5.8 7.9 11.1 16.9 100
70. “Took on a moderate purchase, such as TV, car, freezer, etc.”
70A Nature (dichotomous [“good”,“bad”], v1_leq_I_70A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq70a_finanz_verpfl,v1_con$v1_leq_i_j_k_leq70a,"v1_leq_I_70A")
## -999 bad good <NA>
## [1,] No. cases 1140 57 86 260 1543
## [2,] Percent 73.9 3.7 5.6 16.9 100
70B Impact (ordinal [0,1,2,3], v1_leq_I_70B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq70e_finanz_verpfl,v1_con$v1_leq_i_j_k_leq70e,"v1_leq_I_70B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1139 20 46 50 28 260 1543
## [2,] Percent 73.8 1.3 3 3.2 1.8 16.9 100
71. “Took on a major purchase or a mortgage loan, such as a home, business, property, etc”
71A Nature (dichotomous [“good”,“bad”], v1_leq_I_71A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq71a_hypothek,v1_con$v1_leq_i_j_k_leq71a,"v1_leq_I_71A")
## -999 bad good <NA>
## [1,] No. cases 1229 31 23 260 1543
## [2,] Percent 79.7 2 1.5 16.9 100
71B Impact (ordinal [0,1,2,3], v1_leq_I_71B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq71e_hypothek,v1_con$v1_leq_i_j_k_leq71e,"v1_leq_I_71B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1227 9 12 16 19 260 1543
## [2,] Percent 79.5 0.6 0.8 1 1.2 16.9 100
72. “Experienced a foreclosure on a mortgage or loan”
72A Nature (dichotomous [“good”,“bad”], v1_leq_I_72A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq72a_hypoth_kuend,v1_con$v1_leq_i_j_k_leq72a,"v1_leq_I_72A")
## -999 bad good <NA>
## [1,] No. cases 1256 12 15 260 1543
## [2,] Percent 81.4 0.8 1 16.9 100
72B Impact (ordinal [0,1,2,3], v1_leq_I_72B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq72e_hypoth_kuend,v1_con$v1_leq_i_j_k_leq72e,"v1_leq_I_72B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1256 6 4 5 12 260 1543
## [2,] Percent 81.4 0.4 0.3 0.3 0.8 16.9 100
73. “Credit rating difficulties”
73A Nature (dichotomous [“good”,“bad”], v1_leq_I_73A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq73a_kreditwuerdk,v1_con$v1_leq_i_j_k_leq73a,"v1_leq_I_73A")
## -999 bad good <NA>
## [1,] No. cases 1193 84 6 260 1543
## [2,] Percent 77.3 5.4 0.4 16.9 100
73B Impact (ordinal [0,1,2,3], v1_leq_I_73B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq73e_kreditwuerdk,v1_con$v1_leq_i_j_k_leq73e,"v1_leq_I_73B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1192 11 18 23 39 260 1543
## [2,] Percent 77.3 0.7 1.2 1.5 2.5 16.9 100
Create dataset
v1_leq_I<-data.frame(v1_leq_I_69A,v1_leq_I_69B,v1_leq_I_70A,v1_leq_I_70B,v1_leq_I_71A,
v1_leq_I_71B,v1_leq_I_72A,v1_leq_I_72B,v1_leq_I_73A,v1_leq_I_73B)
74. “Being robbed or victim of identity theft”
74A Nature (dichotomous [“good”,“bad”], v1_leq_J_74A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq74a_opf_diebstahl,v1_con$v1_leq_i_j_k_leq74a,"v1_leq_J_74A")
## -999 bad good <NA>
## [1,] No. cases 1205 71 7 260 1543
## [2,] Percent 78.1 4.6 0.5 16.9 100
74B Impact (ordinal [0,1,2,3], v1_leq_J_74B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq74e_opf_diebstahl,v1_con$v1_leq_i_j_k_leq74e,"v1_leq_J_74B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1202 14 21 18 28 260 1543
## [2,] Percent 77.9 0.9 1.4 1.2 1.8 16.9 100
75. “Being a victim of a violent act (rape, assault, etc.)”
75A Nature (dichotomous [“good”,“bad”], v1_leq_J_75A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq75a_opf_gewalttat,v1_con$v1_leq_i_j_k_leq75a,"v1_leq_J_75A")
## -999 bad good <NA>
## [1,] No. cases 1244 37 2 260 1543
## [2,] Percent 80.6 2.4 0.1 16.9 100
75B Impact (ordinal [0,1,2,3], v1_leq_J_75B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq75e_opf_gewalttat,v1_con$v1_leq_i_j_k_leq75e,"v1_leq_J_75B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1242 6 3 5 27 260 1543
## [2,] Percent 80.5 0.4 0.2 0.3 1.7 16.9 100
76. “Involved in an accident”
76A Nature (dichotomous [“good”,“bad”], v1_leq_J_76A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq76a_unfall,v1_con$v1_leq_i_j_k_leq76a,"v1_leq_J_76A")
## -999 bad good <NA>
## [1,] No. cases 1224 53 6 260 1543
## [2,] Percent 79.3 3.4 0.4 16.9 100
76B Impact (ordinal [0,1,2,3], v1_leq_J_76B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq76e_unfall,v1_con$v1_leq_i_j_k_leq76e,"v1_leq_J_76B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1219 9 22 11 22 260 1543
## [2,] Percent 79 0.6 1.4 0.7 1.4 16.9 100
77. “Involved in a law suit”
77A Nature (dichotomous [“good”,“bad”], v1_leq_J_77A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq77a_rechtsstreit,v1_con$v1_leq_i_j_k_leq77a,"v1_leq_J_77A")
## -999 bad good <NA>
## [1,] No. cases 1185 82 16 260 1543
## [2,] Percent 76.8 5.3 1 16.9 100
77B Impact (ordinal [0,1,2,3], v1_leq_J_77B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq77e_rechtsstreit,v1_con$v1_leq_i_j_k_leq77e,"v1_leq_J_77B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1184 11 22 20 46 260 1543
## [2,] Percent 76.7 0.7 1.4 1.3 3 16.9 100
78. “Involved in a minor violation of the law (traffic tickets, disturbing the peace, etc)”
78A Nature (dichotomous [“good”,“bad”], v1_leq_J_78A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq78a_owi,v1_con$v1_leq_i_j_k_leq78a,"v1_leq_J_78A")
## -999 bad good <NA>
## [1,] No. cases 1188 89 6 260 1543
## [2,] Percent 77 5.8 0.4 16.9 100
78B Impact (ordinal [0,1,2,3], v1_leq_J_78B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq78e_owi,v1_con$v1_leq_i_j_k_leq78e,"v1_leq_J_78B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 1187 26 33 18 19 260 1543
## [2,] Percent 76.9 1.7 2.1 1.2 1.2 16.9 100
79. “Legal troubles resulting in your being arrested or held in jail”
79A Nature (dichotomous [“good”,“bad”], v1_leq_J_79A)
v1_leq_a_recode(v1_clin$v1_leq_i_j_k_leq79a_konf_gesetz,v1_con$v1_leq_i_j_k_leq79a,"v1_leq_J_79A")
## -999 bad good <NA>
## [1,] No. cases 1259 20 4 260 1543
## [2,] Percent 81.6 1.3 0.3 16.9 100
79B Impact (ordinal [0,1,2,3], v1_leq_J_79B)
v1_leq_b_recode(v1_clin$v1_leq_i_j_k_leq79e_konf_gesetz,v1_con$v1_leq_i_j_k_leq79e,"v1_leq_J_79B")
## -999 0 2 3 <NA>
## [1,] No. cases 1258 6 8 11 260 1543
## [2,] Percent 81.5 0.4 0.5 0.7 16.9 100
Create dataset
v1_leq_J<-data.frame(v1_leq_J_74A,v1_leq_J_74B,v1_leq_J_75A,v1_leq_J_75B,v1_leq_J_76A,
v1_leq_J_76B,v1_leq_J_77A,v1_leq_J_77B,v1_leq_J_78A,v1_leq_J_78B,
v1_leq_J_79A,v1_leq_J_79B)
Create LEQ dataset
v1_leq<-data.frame(v1_leq_A,v1_leq_B,v1_leq_C,v1_leq_D,v1_leq_E,v1_leq_F,v1_leq_G,
v1_leq_H,v1_leq_I,v1_leq_J)
The WHOQOL-BREF instrument comprises 26 items, which measure the following broad domains: physical health, psychological health, social relationships, and environment. The past two weeks are assessed. All items are on a five-point scale with the following gradations:
Items 1, 15: “Very poor”-1, “Poor”-2, “Neither poor nor good”-3, “Good”-4, “Very good”-5 Items 2, 16-25: “Very dissatisfied”-1, “dissatisfied”-2, “Neither satisfied nor dissatisfied”-3, “satisfied”-4, “Very satisfied”-5 Items 3-14: “Not at all”-1, “A little”-2, “A moderate amount”-3, “Very much”-4, “An extreme amount”-5 Items 26: “Never”-1, “Seldom”-2, “Quite often”-3, “Very often”-4, “Always”-5
The coding of items number three, four and 26 has been reversed to keep directionality (see below). For all items higher scores now mean higher quality of life. Please see below for subscales (domain scores) of this questionnaire.
1. “How would you rate your quality of life?” (ordinal [1,2,3,4,5], v1_whoqol_itm1)
v1_quol_recode(v1_clin$v1_whoqol_bref_who1_lebensqualitaet,v1_con$v1_whoqol_bref_who1,"v1_whoqol_itm1",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 52 153 391 526 243 178 1543
## [2,] Percent 3.4 9.9 25.3 34.1 15.7 11.5 100
2. “How satisfied are you with your health? (ordinal [1,2,3,4,5], v1_whoqol_itm2)”
v1_quol_recode(v1_clin$v1_whoqol_bref_who2_gesundheit,v1_con$v1_whoqol_bref_who2,"v1_whoqol_itm2",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 98 307 305 460 187 186 1543
## [2,] Percent 6.4 19.9 19.8 29.8 12.1 12.1 100
3. “To what extent do you feel that physical pain prevents you from doing what you need to do?” (ordinal [1,2,3,4,5], v1_whoqol_itm3)
Coding reversed so that higher scores mean less impairment by pain.
v1_quol_recode(v1_clin$v1_whoqol_bref_who3_schmerzen,v1_con$v1_whoqol_bref_who3,"v1_whoqol_itm3",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 27 104 123 304 798 187 1543
## [2,] Percent 1.7 6.7 8 19.7 51.7 12.1 100
4. “How much do you need any medical treatment to function in your daily life? (ordinal [1,2,3,4,5], v1_whoqol_itm4)”
Coding reversed so that higher scores mean less dependence on medical treatment.
v1_quol_recode(v1_clin$v1_whoqol_bref_who4_med_behand,v1_con$v1_whoqol_bref_who4,"v1_whoqol_itm4",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 168 294 213 229 451 188 1543
## [2,] Percent 10.9 19.1 13.8 14.8 29.2 12.2 100
5. “How much do you enjoy life?” (ordinal [1,2,3,4,5], v1_whoqol_itm5)
v1_quol_recode(v1_clin$v1_whoqol_bref_who5_lebensgenuss,v1_con$v1_whoqol_bref_who5,"v1_whoqol_itm5",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 75 226 374 461 213 194 1543
## [2,] Percent 4.9 14.6 24.2 29.9 13.8 12.6 100
6. “To what extent do ou feel your life to be meaningful?” (ordinal [1,2,3,4,5], v1_whoqol_itm6)
v1_quol_recode(v1_clin$v1_whoqol_bref_who6_lebenssinn,v1_con$v1_whoqol_bref_who6,"v1_whoqol_itm6",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 105 160 278 453 352 195 1543
## [2,] Percent 6.8 10.4 18 29.4 22.8 12.6 100
7. “How well are you able to concentrate?” (ordinal [1,2,3,4,5], v1_whoqol_itm7)
v1_quol_recode(v1_clin$v1_whoqol_bref_who7_konzentration,v1_con$v1_whoqol_bref_who7,"v1_whoqol_itm7",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 43 231 499 496 89 185 1543
## [2,] Percent 2.8 15 32.3 32.1 5.8 12 100
8. “How safe do you feel in your daily life?” (ordinal [1,2,3,4,5], v1_whoqol_itm8)
v1_quol_recode(v1_clin$v1_whoqol_bref_who8_sicherheit,v1_con$v1_whoqol_bref_who8,"v1_whoqol_itm8",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 66 144 335 545 266 187 1543
## [2,] Percent 4.3 9.3 21.7 35.3 17.2 12.1 100
9. “How healthy is your physical environment?” (ordinal [1,2,3,4,5], v1_whoqol_itm9)
v1_quol_recode(v1_clin$v1_whoqol_bref_who9_umweltbed,v1_con$v1_whoqol_bref_who9,"v1_whoqol_itm9",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 23 62 310 634 324 190 1543
## [2,] Percent 1.5 4 20.1 41.1 21 12.3 100
10. “Do you have enough energy for everyday life?” (ordinal [1,2,3,4,5], v1_whoqol_itm10)
v1_quol_recode(v1_clin$v1_whoqol_bref_who10_energie,v1_con$v1_whoqol_bref_who10,"v1_whoqol_itm10",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 48 168 353 485 297 192 1543
## [2,] Percent 3.1 10.9 22.9 31.4 19.2 12.4 100
11. “Are you able to accept your bodily appearance?” (ordinal [1,2,3,4,5], v1_whoqol_itm11)
v1_quol_recode(v1_clin$v1_whoqol_bref_who11_aussehen,v1_con$v1_whoqol_bref_who11,"v1_whoqol_itm11",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 48 134 293 526 344 198 1543
## [2,] Percent 3.1 8.7 19 34.1 22.3 12.8 100
12. “Have you enough money to meet your needs?” (ordinal [1,2,3,4,5], v1_whoqol_itm12)
v1_quol_recode(v1_clin$v1_whoqol_bref_who12_genug_geld,v1_con$v1_whoqol_bref_who12,"v1_whoqol_itm12",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 92 205 319 394 341 192 1543
## [2,] Percent 6 13.3 20.7 25.5 22.1 12.4 100
13. “How available to you is the information that you need in your day-to-day life?” (ordinal [1,2,3,4,5], v1_whoqol_itm13)
v1_quol_recode(v1_clin$v1_whoqol_bref_who13_infozugang,v1_con$v1_whoqol_bref_who13,"v1_whoqol_itm13",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 50 179 486 623 194 1543
## [2,] Percent 0.7 3.2 11.6 31.5 40.4 12.6 100
14. “To what extent do you have the opportunity for leisure activities?” (ordinal [1,2,3,4,5], v1_whoqol_itm14)
v1_quol_recode(v1_clin$v1_whoqol_bref_who14_freizeitaktiv,v1_con$v1_whoqol_bref_who14,"v1_whoqol_itm14",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 20 138 286 438 468 193 1543
## [2,] Percent 1.3 8.9 18.5 28.4 30.3 12.5 100
15. “How well are you able to get around? (ordinal [1,2,3,4,5], v1_whoqol_itm15)”
v1_quol_recode(v1_clin$v1_whoqol_bref_who15_fortbewegung,v1_con$v1_whoqol_bref_who15,"v1_whoqol_itm15",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 8 67 219 491 565 193 1543
## [2,] Percent 0.5 4.3 14.2 31.8 36.6 12.5 100
16. “How satisfied are you with your sleep?” (ordinal [1,2,3,4,5], v1_whoqol_itm16)
v1_quol_recode(v1_clin$v1_whoqol_bref_who16_schlaf,v1_con$v1_whoqol_bref_who16,"v1_whoqol_itm16",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 69 245 252 573 233 171 1543
## [2,] Percent 4.5 15.9 16.3 37.1 15.1 11.1 100
17. “How satisfied are you with your ability to perform your daily living activities?” (ordinal [1,2,3,4,5], v1_whoqol_itm17)
v1_quol_recode(v1_clin$v1_whoqol_bref_who17_alltag,v1_con$v1_whoqol_bref_who17,"v1_whoqol_itm17",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 59 239 250 557 265 173 1543
## [2,] Percent 3.8 15.5 16.2 36.1 17.2 11.2 100
18. “How satisfied are you with your capacity for work?” (ordinal [1,2,3,4,5], v1_whoqol_itm18)
v1_quol_recode(v1_clin$v1_whoqol_bref_who18_arbeitsfhgk,v1_con$v1_whoqol_bref_who18,"v1_whoqol_itm18",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 163 287 281 406 217 189 1543
## [2,] Percent 10.6 18.6 18.2 26.3 14.1 12.2 100
19. “How satisfied are you with yourself?” (ordinal [1,2,3,4,5], v1_whoqol_itm19)
v1_quol_recode(v1_clin$v1_whoqol_bref_who19_selbstzufried,v1_con$v1_whoqol_bref_who19,"v1_whoqol_itm19",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 90 211 329 542 185 186 1543
## [2,] Percent 5.8 13.7 21.3 35.1 12 12.1 100
20. “How satisfied are you with your personal relationships?” (ordinal [1,2,3,4,5], v1_whoqol_itm20)
v1_quol_recode(v1_clin$v1_whoqol_bref_who20_pers_bezieh,v1_con$v1_whoqol_bref_who20,"v1_whoqol_itm20",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 65 181 260 601 250 186 1543
## [2,] Percent 4.2 11.7 16.9 39 16.2 12.1 100
21. “How satisfied are you with your sex life?” (ordinal [1,2,3,4,5], v1_whoqol_itm21)
v1_quol_recode(v1_clin$v1_whoqol_bref_who21_sexualleben,v1_con$v1_whoqol_bref_who21,"v1_whoqol_itm21",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 200 248 385 353 162 195 1543
## [2,] Percent 13 16.1 25 22.9 10.5 12.6 100
22. “How satisfied are you with the support you get from your friends?” (ordinal [1,2,3,4,5], v1_whoqol_itm22)
v1_quol_recode(v1_clin$v1_whoqol_bref_who22_freunde,v1_con$v1_whoqol_bref_who22,"v1_whoqol_itm22",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 63 119 274 580 331 176 1543
## [2,] Percent 4.1 7.7 17.8 37.6 21.5 11.4 100
23. “How satisfied are you with the conditions of your living place?” (ordinal [1,2,3,4,5], v1_whoqol_itm23)
v1_quol_recode(v1_clin$v1_whoqol_bref_who23_wohnbeding,v1_con$v1_whoqol_bref_who23,"v1_whoqol_itm23",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 88 134 208 530 410 173 1543
## [2,] Percent 5.7 8.7 13.5 34.3 26.6 11.2 100
24. “How satisfied are you with your access to health services?” (ordinal [1,2,3,4,5], v1_whoqol_itm24)
v1_quol_recode(v1_clin$v1_whoqol_bref_who24_gesundhdiens,v1_con$v1_whoqol_bref_who24,"v1_whoqol_itm24",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 31 43 212 613 472 172 1543
## [2,] Percent 2 2.8 13.7 39.7 30.6 11.1 100
25. “How satisfied are you with your mode of transportation?” (ordinal [1,2,3,4,5], v1_whoqol_itm25)
v1_quol_recode(v1_clin$v1_whoqol_bref_who25_transport,v1_con$v1_whoqol_bref_who25,"v1_whoqol_itm25",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 35 77 190 577 484 180 1543
## [2,] Percent 2.3 5 12.3 37.4 31.4 11.7 100
26. “How often do you have negative feelings, such as blue mood, despair, anxiety, depression?” (ordinal [1,2,3,4,5], v1_whoqol_itm26)
Coding reversed so that higher scores mean symptoms less often.
v1_quol_recode(v1_clin$v1_whoqol_bref_who26_neg_gefuehle,v1_con$v1_whoqol_bref_who26,"v1_whoqol_itm26",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 65 288 328 454 210 198 1543
## [2,] Percent 4.2 18.7 21.3 29.4 13.6 12.8 100
Here, domain scores for Physical Health, Psychological, Social relationships and Environment are calculated from the WHOQOL single items, according to the scoring instructions given in Angermeyer et al. (2000).
Global (continuous [4-20],v1_whoqol_dom_glob)
v1_whoqol_dom_glob_df<-data.frame(as.numeric(v1_whoqol_itm1),as.numeric(v1_whoqol_itm2))
v1_who_glob_no_nas<-rowSums(is.na(v1_whoqol_dom_glob_df))
v1_whoqol_dom_glob<-ifelse((v1_who_glob_no_nas==0) | (v1_who_glob_no_nas==1),
rowMeans(v1_whoqol_dom_glob_df,na.rm=T)*4,NA)
v1_whoqol_dom_glob<-round(v1_whoqol_dom_glob,2)
summary(v1_whoqol_dom_glob)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.0 10.0 14.0 13.6 16.0 20.0 172
Physical Health (continuous [4-20],v1_whoqol_dom_phys)
v1_whoqol_dom_phys_df<-data.frame(as.numeric(v1_whoqol_itm3),as.numeric(v1_whoqol_itm10),as.numeric(v1_whoqol_itm16),as.numeric(v1_whoqol_itm15),as.numeric(v1_whoqol_itm17),as.numeric(v1_whoqol_itm4),as.numeric(v1_whoqol_itm18))
v1_who_phys_no_nas<-rowSums(is.na(v1_whoqol_dom_phys_df))
v1_whoqol_dom_phys<-ifelse((v1_who_phys_no_nas==0) | (v1_who_phys_no_nas==1),
rowMeans(v1_whoqol_dom_phys_df,na.rm=T)*4,NA)
v1_whoqol_dom_phys<-round(v1_whoqol_dom_phys,2)
summary(v1_whoqol_dom_phys)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 5.14 12.57 14.86 14.62 17.14 20.00 192
Psychological (continuous [4-20],v1_whoqol_dom_psy)
v1_whoqol_dom_psy_df<-data.frame(as.numeric(v1_whoqol_itm5),as.numeric(v1_whoqol_itm7),as.numeric(v1_whoqol_itm19),as.numeric(v1_whoqol_itm11),as.numeric(v1_whoqol_itm26),as.numeric(v1_whoqol_itm6))
v1_who_psy_no_nas<-rowSums(is.na(v1_whoqol_dom_psy_df))
v1_whoqol_dom_psy<-ifelse((v1_who_psy_no_nas==0) | (v1_who_psy_no_nas==1),
rowMeans(v1_whoqol_dom_psy_df,na.rm=T)*4,NA)
v1_whoqol_dom_psy<-round(v1_whoqol_dom_psy,2)
summary(v1_whoqol_dom_psy)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.67 11.33 14.40 13.79 16.67 20.00 196
Social relationships (continuous [4-20],v1_whoqol_dom_soc)
v1_whoqol_dom_soc_df<-data.frame(as.numeric(v1_whoqol_itm20),as.numeric(v1_whoqol_itm22),as.numeric(v1_whoqol_itm21))
v1_who_soc_no_nas<-rowSums(is.na(v1_whoqol_dom_soc_df))
v1_whoqol_dom_soc<-ifelse((v1_who_soc_no_nas==0) | (v1_who_soc_no_nas==1),
rowMeans(v1_whoqol_dom_soc_df,na.rm=T)*4,NA)
v1_whoqol_dom_soc<-round(v1_whoqol_dom_soc,2)
summary(v1_whoqol_dom_soc)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 12.00 14.67 13.80 16.00 20.00 178
Environment (continuous [4-20],v1_whoqol_dom_env)
v1_whoqol_dom_env_df<-data.frame(as.numeric(v1_whoqol_itm8),as.numeric(v1_whoqol_itm23),as.numeric(v1_whoqol_itm12),as.numeric(v1_whoqol_itm24),as.numeric(v1_whoqol_itm13),as.numeric(v1_whoqol_itm14),as.numeric(v1_whoqol_itm9),as.numeric(v1_whoqol_itm25))
v1_who_env_no_nas<-rowSums(is.na(v1_whoqol_dom_env_df))
v1_whoqol_dom_env<-ifelse((v1_who_env_no_nas==0) | (v1_who_env_no_nas==1),
rowMeans(v1_whoqol_dom_env_df,na.rm=T)*4,NA)
v1_whoqol_dom_env<-round(v1_whoqol_dom_env,2)
summary(v1_whoqol_dom_env)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.50 13.50 16.00 15.48 17.50 20.00 194
Create dataset
v1_whoqol<-data.frame(v1_whoqol_itm1,v1_whoqol_itm2,v1_whoqol_itm3,v1_whoqol_itm4,
v1_whoqol_itm5,v1_whoqol_itm6,v1_whoqol_itm7,v1_whoqol_itm8,
v1_whoqol_itm9,v1_whoqol_itm10,v1_whoqol_itm11,v1_whoqol_itm12,
v1_whoqol_itm13,v1_whoqol_itm14,v1_whoqol_itm15,v1_whoqol_itm16,
v1_whoqol_itm17,v1_whoqol_itm18,v1_whoqol_itm19,v1_whoqol_itm20,
v1_whoqol_itm21,v1_whoqol_itm22,v1_whoqol_itm23,v1_whoqol_itm24,
v1_whoqol_itm25,v1_whoqol_itm26,v1_whoqol_dom_glob,
v1_whoqol_dom_phys,v1_whoqol_dom_psy,v1_whoqol_dom_soc,
v1_whoqol_dom_env)
This is a 10-item questionnaire measuring personality (Rammstedt & John, 2007). It is based on the well-known ‘Big Five’ model of personality. The five dimensions are the following: extraversion, neuroticism, conscientiousness, agreeableness, openness. Instruction: How well do the following statements describe your personality? Each statement starts with: “I see myself as someone who…”. Each item is to be rated on a five point scale (“disagree strongly”-1, “disagree a little”-2,“neither agree nor disagree”-3, “agree a little”-4,“agree strongly”-5). The coding of some items has been reversed so that higher scores on each item mean higher scores on the respective personality dimension. Below, we calculate sumscores for each personality dimension.
1. “…is reserved” (ordinal [1,2,3,4,5], v1_big_five_itm1)
Personality dimension: extraversion, coding reversed.
big_five_recode(v1_clin$v1_bfi_10_bfi1_reserviert,v1_con$v1_bfi_10_bfi1,"v1_big_five_itm1",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 157 480 222 349 160 175 1543
## [2,] Percent 10.2 31.1 14.4 22.6 10.4 11.3 100
2. “… is generally trusting” (ordinal [1,2,3,4,5], v1_big_five_itm2)
Personality dimension: agreeableness.
big_five_recode(v1_clin$v1_bfi_10_bfi2_vertrauen,v1_con$v1_bfi_10_bfi2,"v1_big_five_itm2",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 47 201 243 657 221 174 1543
## [2,] Percent 3 13 15.7 42.6 14.3 11.3 100
3. “…tends to be lazy” (ordinal [1,2,3,4,5], v1_big_five_itm3)
Personality dimension: conscientiousness, coding reversed.
big_five_recode(v1_clin$v1_bfi_10_bfi3_bequem,v1_con$v1_bfi_10_bfi3,"v1_big_five_itm3",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 86 351 263 408 256 179 1543
## [2,] Percent 5.6 22.7 17 26.4 16.6 11.6 100
4. “…is relaxed, handles stress well” (ordinal [1,2,3,4,5], v1_big_five_itm4)
Personality dimension: neuroticism, coding reversed.
big_five_recode(v1_clin$v1_bfi_10_bfi4_stress,v1_con$v1_bfi_10_bfi4,"v1_big_five_itm4",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 102 424 250 435 154 178 1543
## [2,] Percent 6.6 27.5 16.2 28.2 10 11.5 100
5. “… has few artistic interests” (ordinal [1,2,3,4,5], v1_big_five_itm5)
Personality dimension: openness, coding reversed.
big_five_recode(v1_clin$v1_bfi_10_bfi5_kunst,v1_con$v1_bfi_10_bfi5,"v1_big_five_itm5",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 141 263 178 403 375 183 1543
## [2,] Percent 9.1 17 11.5 26.1 24.3 11.9 100
6. “…is outgoing, sociable” (ordinal [1,2,3,4,5], v1_big_five_itm6)
Personality dimension: extraversion.
big_five_recode(v1_clin$v1_bfi_10_bfi6_gesellig,v1_con$v1_bfi_10_bfi6,"v1_big_five_itm6",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 87 314 261 499 206 176 1543
## [2,] Percent 5.6 20.3 16.9 32.3 13.4 11.4 100
7. “…tends to find fault with others” (ordinal [1,2,3,4,5], v1_big_five_itm7)
Personality dimension: agreeableness, coding reversed.
big_five_recode(v1_clin$v1_bfi_10_bfi7_kritik,v1_con$v1_bfi_10_bfi7,"v1_big_five_itm7",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 45 302 364 449 204 179 1543
## [2,] Percent 2.9 19.6 23.6 29.1 13.2 11.6 100
8. “… does a thorough job” (ordinal [1,2,3,4,5], v1_big_five_itm8)
Personality dimension: conscientiousness.
big_five_recode(v1_clin$v1_bfi_10_bfi8_gruendlich,v1_con$v1_bfi_10_bfi8,"v1_big_five_itm8",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 13 104 158 701 390 177 1543
## [2,] Percent 0.8 6.7 10.2 45.4 25.3 11.5 100
9. “…gets nervous easily” (ordinal [1,2,3,4,5], v1_big_five_itm9)
Personality dimension: neuroticism.
big_five_recode(v1_clin$v1_bfi_10_bfi9_unsicher1,v1_con$v1_bfi_10_bfi9,"v1_big_five_itm9",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 149 380 277 419 145 173 1543
## [2,] Percent 9.7 24.6 18 27.2 9.4 11.2 100
10. “…habe eine aktive Vorstellungskraft, bin phantasievoll.” (ordinal [1,2,3,4,5], v1_big_five_itm10)
Personality dimension: openness.
big_five_recode(v1_clin$v1_bfi_10_bfi10_phantasie,v1_con$v1_bfi_10_bfi10,"v1_big_five_itm10",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 49 154 195 603 368 174 1543
## [2,] Percent 3.2 10 12.6 39.1 23.8 11.3 100
The scoring instructions are described in Rammstedt et al. (2012).
Extraversion (continuous, [1,2,3,4,5], v1_big_five_extra)
v1_big_five_extra<-(as.numeric(v1_big_five_itm1)+as.numeric(v1_big_five_itm6))/2
summary(v1_big_five_extra)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.000 2.000 3.000 3.108 4.000 5.000 181
Neuroticism (continuous, [1,2,3,4,5], v1_big_five_neuro)
v1_big_five_neuro<-(as.numeric(v1_big_five_itm4)+as.numeric(v1_big_five_itm9))/2
summary(v1_big_five_neuro)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.000 2.500 3.000 3.052 4.000 5.000 180
Openness (continuous, [1,2,3,4,5], v1_big_five_openn)
v1_big_five_openn<-(as.numeric(v1_big_five_itm5)+as.numeric(v1_big_five_itm10))/2
summary(v1_big_five_openn)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.000 3.000 3.500 3.624 4.500 5.000 187
Conscientiousness (continuous, [1,2,3,4,5], v1_big_five_consc)
v1_big_five_consc<-(as.numeric(v1_big_five_itm3)+as.numeric(v1_big_five_itm8))/2
summary(v1_big_five_consc)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.00 3.00 3.50 3.64 4.50 5.00 186
Agreeableness (continuous, [1,2,3,4,5], v1_big_five_agree)
v1_big_five_agree<-(as.numeric(v1_big_five_itm2)+as.numeric(v1_big_five_itm7))/2
summary(v1_big_five_agree)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.000 3.000 3.500 3.461 4.000 5.000 182
Create dataset
v1_pers<-data.frame(v1_big_five_itm1,v1_big_five_itm2,v1_big_five_itm3,v1_big_five_itm4,
v1_big_five_itm5,v1_big_five_itm6,v1_big_five_itm7,v1_big_five_itm8,
v1_big_five_itm9,v1_big_five_itm10,v1_big_five_extra,v1_big_five_neuro,
v1_big_five_openn,v1_big_five_consc,v1_big_five_agree)
v1_df<-data.frame(v1_id,
v1_rec,
v1_dem,
v1_eth,
v1_psy_trtmt,
v1_med,
v1_fam_hist,
v1_som_dsrdr,
v1_subst,
v1_scid,
v1_symp_panss,
v1_symp_ids_c,
v1_symp_ymrs,
v1_ill_sev,
v1_nrpsy,
v1_rlgn,
v1_cape,
v1_sf12,
v1_med_adh,
v1_bdi2,
v1_asrm,
v1_mss,
v1_leq,
v1_whoqol,
v1_pers)
## [1] 1344
## [1] 329
v2_clin<-subset(v2_clin, as.character(v2_clin$mnppsd)%in%as.character(v1_clin$mnppsd))
dim(v2_clin)[1]
## [1] 1223
v2_con<-subset(v2_con, as.character(v2_con$mnppsd)%in%as.character(v1_con$mnppsd))
dim(v2_con)[1]
## [1] 320
v2_id<-as.factor(c(as.character(v2_clin$mnppsd),as.character(v2_con$mnppsd)))
v2_interv_date<-c(as.Date(as.character(v2_clin$v2_ausschluss1_rekr_datum), "%Y%m%d"),as.Date(as.character(v2_con$v2_rekru_visit_rekr_datum), "%Y%m%d"))
v2_age_years_clin<-as.numeric(substr(v2_clin$v2_ausschluss1_rekr_datum,1,4))-
as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,1,4))
v2_age_years_con<-as.numeric(substr(v2_con$v2_rekru_visit_rekr_datu,1,4))-
as.numeric(substr(v1_con$v1_demo1_gebdat,1,4))
v2_age_years<-c(v2_age_years_clin,v2_age_years_con)
v2_age<-ifelse(c(as.numeric(substr(v2_clin$v2_ausschluss1_rekr_datum,5,6)),as.numeric(substr(v2_con$v2_rekru_visit_rekr_datu,5,6)))<
c(as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6)),as.numeric(substr(v1_con$v1_demo1_gebdat,5,6))),
v2_age_years-1,v2_age_years)
summary(v2_age)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 18.00 30.00 44.00 42.78 53.00 86.00 542
Create dataset
v2_rec<-data.frame(v2_age,v2_interv_date)
Clinical study participant are asked whether an acute illness episode occurred since the last study visit. Possible answers are “Y”-yes, “N”-no and “C”-chronic symptomatology. The latter category is for people which continually experience symptoms. If the answer was yes, additional questions were asked about the episodes, if not these are omitted. For participants with chronic symptomatology, the participant is asked about the nature of the chronic symptomatology (manic/depressive/mixed/psychotic) and answers are coded in the questions “Did you experience … symptoms during this illness episode?” (first illness episode).
Importantly, if the participant experienced multiple illness episodes since the last study visit, a set of questions (see below) was supposed to be answered for each illness episode. As most interviewers answered these questions only for a maximum of two illness episodes and few participants experienced more than two illness episodes, data are included only for the first two illness episodes.
“Did you experience an acute illness episode since the last study visit?” (categorical [Y, N, C], v2_clin_ill_ep_snc_lst)
v2_clin_ill_ep_snc_lst<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_ill_ep_snc_lst<-ifelse(c(v2_clin$v2_aktu_situat_aenderung_akt_sit,rep(-999,dim(v2_con)[1]))==1,"Y",
ifelse(c(v2_clin$v2_aktu_situat_aenderung_akt_sit,rep(-999,dim(v2_con)[1]))==2,"N",
ifelse(c(v2_clin$v2_aktu_situat_aenderung_akt_sit,rep(-999,dim(v2_con)[1]))==3,"C",v2_clin_ill_ep_snc_lst)))
v2_clin_ill_ep_snc_lst<-factor(v2_clin_ill_ep_snc_lst)
descT(v2_clin_ill_ep_snc_lst)
## -999 C N Y <NA>
## [1,] No. cases 320 88 420 231 484 1543
## [2,] Percent 20.7 5.7 27.2 15 31.4 100
“If yes, how many illness episodes? (continuous [no. illness episodes], v2_clin_no_ep)”
v2_clin_no_ep<-ifelse(v2_clin_ill_ep_snc_lst=="Y",c(v2_clin$v2_aktu_situat_anzahl_episoden,rep(-999,dim(v2_con)[1])),-999)
descT(v2_clin_no_ep)
## -999 1 2 3 4 5 99 <NA>
## [1,] No. cases 828 177 29 8 3 2 1 495 1543
## [2,] Percent 53.7 11.5 1.9 0.5 0.2 0.1 0.1 32.1 100
In the following, characteristics of each illness episode are assessed. Checkboxes are supposed to be ticked if a criterion applies. Please note that episodes can have more than one characteristic (e.g. episodes with both manic and psychotic symptoms).
“Did you experience manic symptoms during this illness episode?” (checkbox [Y], v2_clin_fst_ill_ep_man)
v2_clin_fst_ill_ep_man<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_man<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_manisch_31642_1,rep(-999,dim(v2_con)[1]))==1,"Y",
-999)
descT(v2_clin_fst_ill_ep_man)
## -999 Y <NA>
## [1,] No. cases 1039 35 469 1543
## [2,] Percent 67.3 2.3 30.4 100
“Did you experience depressive symptoms during this illness episode?” (checkbox [Y], v2_clin_fst_ill_ep_dep)
v2_clin_fst_ill_ep_dep<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_dep<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_depressiv_31642_1,rep(-999,dim(v2_con)[1]))==1,"Y",
-999)
descT(v2_clin_fst_ill_ep_dep)
## -999 Y <NA>
## [1,] No. cases 935 139 469 1543
## [2,] Percent 60.6 9 30.4 100
“Did you experience mixed symptoms during this illness episode?” (checkbox [Y], v2_clin_fst_ill_ep_mx) This checkbox assesses whether this was a mixed mood episode (both depressive and manic symptoms present).
v2_clin_fst_ill_ep_mx<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_mx<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_gemischt_31642_1,rep(-999,dim(v2_con)[1]))==1,"Y",
-999)
descT(v2_clin_fst_ill_ep_mx)
## -999 Y <NA>
## [1,] No. cases 1060 15 468 1543
## [2,] Percent 68.7 1 30.3 100
“Did you experience psychotic symptoms during this illness episode?” (checkbox [Y], v2_clin_fst_ill_ep_psy)
v2_clin_fst_ill_ep_psy<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_psy<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_psych_31642_1,rep(-999,dim(v2_con)[1]))==1,"Y",
-999)
descT(v2_clin_fst_ill_ep_psy)
## -999 Y <NA>
## [1,] No. cases 1011 64 468 1543
## [2,] Percent 65.5 4.1 30.3 100
“How long did this episode last?” (ordinal [less than two weeks, two to four weeks, more than four weeks], v2_clin_fst_ill_ep_dur)
v2_clin_fst_ill_ep_dur<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_dur<-ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v2_con)[1]))==1,"less than two weeks",
ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v2_con)[1]))==2,"two to four weeks",
ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v2_con)[1]))==3,"more than four weeks",
ifelse(v2_clin_ill_ep_snc_lst=="N",-999,v2_clin_fst_ill_ep_dur))))
v2_clin_fst_ill_ep_dur<-ordered(v2_clin_fst_ill_ep_dur,
levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v2_clin_fst_ill_ep_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 740 39 57
## [2,] Percent 48 2.5 3.7
## more than four weeks <NA>
## [1,] 125 582 1543
## [2,] 8.1 37.7 100
“During this episode, were you hospitalized?” (dichotomous, v2_clin_fst_ill_ep_hsp)
v2_clin_fst_ill_ep_hsp<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_hsp<-ifelse(v2_clin_ill_ep_snc_lst=="N",-999,
ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_aufenthalt_31642_1,rep(-999,dim(v2_con)[1]))==2,"N",
ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_aufenthalt_31642_1,rep(-999,dim(v2_con)[1]))==1,"Y", v2_clin_fst_ill_ep_hsp)))
descT(v2_clin_fst_ill_ep_hsp)
## -999 N Y <NA>
## [1,] No. cases 740 106 118 579 1543
## [2,] Percent 48 6.9 7.6 37.5 100
“If yes, for how long?” (ordinal, [less than two weeks, two to four weeks, more than four weeks] v2_clin_fst_ill_ep_hsp_dur)
v2_clin_fst_ill_ep_hsp_dur<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_hsp_dur<-ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v2_con)[1]))==1,"less than two weeks",
ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v2_con)[1]))==2,"two to four weeks",
ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v2_con)[1]))==3,"more than four weeks",
-999)))
v2_clin_fst_ill_ep_hsp_dur<-ordered(v2_clin_fst_ill_ep_hsp_dur, levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v2_clin_fst_ill_ep_hsp_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 934 18 25
## [2,] Percent 60.5 1.2 1.6
## more than four weeks <NA>
## [1,] 69 497 1543
## [2,] 4.5 32.2 100
The following questions ask for the reasons for hospitalization, multiple answers are possible (checkboxes):
Reason for hospitalization: symptom worsensing (checkbox [Y], v2_clin_fst_ill_ep_symp_wrs)
v2_clin_fst_ill_ep_symp_wrs<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_symp_wrs<-ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund1_31642_1,rep(-999,dim(v2_con)[1]))==1,"Y",-999)
descT(v2_clin_fst_ill_ep_symp_wrs)
## -999 Y <NA>
## [1,] No. cases 976 97 470 1543
## [2,] Percent 63.3 6.3 30.5 100
Reason for hospitalization: self-endangerment (checkbox [Y], v2_clin_fst_ill_ep_slf_end)
v2_clin_fst_ill_ep_slf_end<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_slf_end<-ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund2_31642_1,rep(-999,dim(v2_con)[1]))==1, "Y",
-999)
descT(v2_clin_fst_ill_ep_slf_end)
## -999 Y <NA>
## [1,] No. cases 1061 14 468 1543
## [2,] Percent 68.8 0.9 30.3 100
Reason for hospitalization: suicidality (checkbox [Y], v2_clin_fst_ill_ep_suic)
v2_clin_fst_ill_ep_suic<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_suic<-ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund3_31642_1,rep(-999,dim(v2_con)[1]))==1, "Y",
-999)
descT(v2_clin_fst_ill_ep_suic)
## -999 Y <NA>
## [1,] No. cases 1056 19 468 1543
## [2,] Percent 68.4 1.2 30.3 100
Reason for hospitalization: endangerment of others (checkbox [Y], v2_clin_fst_ill_ep_oth_end)
v2_clin_fst_ill_ep_oth_end<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_oth_end<-ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund4_31642_1,rep(-999,dim(v2_con)[1]))==1, "Y",-999)
descT(v2_clin_fst_ill_ep_oth_end)
## -999 Y <NA>
## [1,] No. cases 1071 4 468 1543
## [2,] Percent 69.4 0.3 30.3 100
Reason for hospitalization: medication change (checkbox [Y], v2_clin_fst_ill_ep_med_chg)
v2_clin_fst_ill_ep_med_chg<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_med_chg<-ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund5_31642_1,rep(-999,dim(v2_con)[1]))==1, "Y",-999)
descT(v2_clin_fst_ill_ep_med_chg)
## -999 Y <NA>
## [1,] No. cases 1057 17 469 1543
## [2,] Percent 68.5 1.1 30.4 100
Reason for hospitalization: other (checkbox [Y], v2_clin_fst_ill_ep_othr)
v2_clin_fst_ill_ep_othr<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_fst_ill_ep_othr<-ifelse(v2_clin_fst_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_grund6_31642_1,rep(-999,dim(v2_con)[1]))==1, "Y",-999)
descT(v2_clin_fst_ill_ep_othr)
## -999 Y <NA>
## [1,] No. cases 1050 25 468 1543
## [2,] Percent 68 1.6 30.3 100
“Did you experience manic symptoms during this illness episode?” (checkbox [Y], v2_clin_sec_ill_ep_man)
v2_clin_sec_ill_ep_man<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_man<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_manisch_31642_2,rep(-999,dim(v2_con)[1]))==1,"Y",-999)
descT(v2_clin_sec_ill_ep_man)
## -999 Y <NA>
## [1,] No. cases 858 5 680 1543
## [2,] Percent 55.6 0.3 44.1 100
“Did you experience depressive symptoms during this illness episode?” (checkbox [Y], v2_clin_sec_ill_ep_dep) #frstill
v2_clin_sec_ill_ep_dep<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_dep<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_depressiv_31642_2,rep(-999,dim(v2_con)[1]))==1,"Y",
-999)
descT(v2_clin_sec_ill_ep_dep)
## -999 Y <NA>
## [1,] No. cases 841 22 680 1543
## [2,] Percent 54.5 1.4 44.1 100
“Did you experience mixed symptoms during this illness episode?” (checkbox [Y], v2_clin_sec_ill_ep_mx) This checkbox assesses whether this was a mixed mood episode (both depressive and manic symptoms present).
v2_clin_sec_ill_ep_mx<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_mx<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_gemischt_31642_2,rep(-999,dim(v2_con)[1]))==1,"Y",
-999)
descT(v2_clin_sec_ill_ep_mx)
## -999 Y <NA>
## [1,] No. cases 861 2 680 1543
## [2,] Percent 55.8 0.1 44.1 100
“Did you experience psychotic symptoms during this illness episode?” (checkbox [Y], v2_clin_sec_ill_ep_psy)
v2_clin_sec_ill_ep_psy<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_psy<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_psych_31642_2,rep(-999,dim(v2_con)[1]))==1,"Y",
-999)
descT(v2_clin_sec_ill_ep_psy)
## -999 Y <NA>
## [1,] No. cases 855 8 680 1543
## [2,] Percent 55.4 0.5 44.1 100
“How long did this episode last?” (ordinal [less than two weeks, two to four weeks, more than four weeks], v2_clin_sec_ill_ep_dur)
v2_clin_sec_ill_ep_dur<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_dur<-ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v2_con)[1]))==1,"less than two weeks",
ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v2_con)[1]))==2,"two to four weeks",
ifelse(v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v2_con)[1]))==3,"more than four weeks",
ifelse(v2_clin_ill_ep_snc_lst=="N",-999,v2_clin_sec_ill_ep_dur))))
v2_clin_sec_ill_ep_dur<-ordered(v2_clin_sec_ill_ep_dur, levels=c("less than two weeks","two to four weeks","more than four weeks"))
descT(v2_clin_sec_ill_ep_dur)
## less than two weeks two to four weeks more than four weeks
## [1,] No. cases 8 13 14
## [2,] Percent 0.5 0.8 0.9
## <NA>
## [1,] 1508 1543
## [2,] 97.7 100
“During this episode, were you hospitalized?” (dichotomous, v2_clin_sec_ill_ep_hsp)
v2_clin_sec_ill_ep_hsp<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_hsp<-ifelse(v2_clin_ill_ep_snc_lst=="N",-999,
ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_aufenthalt_31642_2,rep(-999,dim(v2_con)[1]))==2,"N",
ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_aufenthalt_31642_2,rep(-999,dim(v2_con)[1]))==1,"Y", v2_clin_sec_ill_ep_hsp)))
v2_clin_sec_ill_ep_hsp<-factor(v2_clin_sec_ill_ep_hsp)
descT(v2_clin_sec_ill_ep_hsp)
## -999 N Y <NA>
## [1,] No. cases 740 16 18 769 1543
## [2,] Percent 48 1 1.2 49.8 100
“If yes, for how long?” (ordinal, [less than two weeks, two to four weeks, more than four weeks] v2_clin_sec_ill_ep_hsp_dur)
v2_clin_sec_ill_ep_hsp_dur<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_hsp_dur<-ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v2_con)[1]))==1,"less than two weeks",
ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v2_con)[1]))==2,"two to four weeks",
ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v2_con)[1]))==3,"more than four weeks",
-999)))
v2_clin_sec_ill_ep_hsp_dur<-ordered(v2_clin_sec_ill_ep_hsp_dur, levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v2_clin_sec_ill_ep_hsp_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 844 1 4
## [2,] Percent 54.7 0.1 0.3
## more than four weeks <NA>
## [1,] 9 685 1543
## [2,] 0.6 44.4 100
The following questions ask for the reasons for hospitalization, multiple answers are possible (checkboxes): Reason for hospitalization: symptom worsensing (checkbox [Y], v2_clin_sec_ill_ep_symp_wrs)
v2_clin_sec_ill_ep_symp_wrs<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_symp_wrs<-ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund1_31642_2,rep(-999,dim(v2_con)[1]))==1,"Y",-999)
descT(v2_clin_sec_ill_ep_symp_wrs)
## -999 Y <NA>
## [1,] No. cases 852 11 680 1543
## [2,] Percent 55.2 0.7 44.1 100
Reason for hospitalization: self-endangerment (checkbox [Y], v2_clin_sec_ill_ep_slf_end)
v2_clin_sec_ill_ep_slf_end<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_slf_end<-ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund2_31642_2,rep(-999,dim(v2_con)[1]))==1, "Y",
-999)
descT(v2_clin_sec_ill_ep_slf_end)
## -999 Y <NA>
## [1,] No. cases 862 1 680 1543
## [2,] Percent 55.9 0.1 44.1 100
Reason for hospitalization: suicidality (checkbox [Y], v2_clin_sec_ill_ep_suic)
v2_clin_sec_ill_ep_suic<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_suic<-ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund3_31642_2,rep(-999,dim(v2_con)[1]))==1, "Y",
-999)
descT(v2_clin_sec_ill_ep_suic)
## -999 Y <NA>
## [1,] No. cases 860 3 680 1543
## [2,] Percent 55.7 0.2 44.1 100
Reason for hospitalization: endangerment of others (checkbox [Y], v2_clin_sec_ill_ep_oth_end)
v2_clin_sec_ill_ep_oth_end<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_oth_end<-ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund4_31642_2,rep(-999,dim(v2_con)[1]))==1, "Y",-999)
descT(v2_clin_sec_ill_ep_oth_end)
## -999 <NA>
## [1,] No. cases 863 680 1543
## [2,] Percent 55.9 44.1 100
Reason for hospitalization: medication change (checkbox [Y], v2_clin_sec_ill_ep_med_chg)
v2_clin_sec_ill_ep_med_chg<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_med_chg<-ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_k_episode_grund5_31642_2,rep(-999,dim(v2_con)[1]))==1, "Y",-999)
descT(v2_clin_sec_ill_ep_med_chg)
## -999 Y <NA>
## [1,] No. cases 862 1 680 1543
## [2,] Percent 55.9 0.1 44.1 100
Reason for hospitalization: other (checkbox [Y], v2_clin_sec_ill_ep_othr)
v2_clin_sec_ill_ep_othr<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_sec_ill_ep_othr<-ifelse(v2_clin_sec_ill_ep_hsp=="Y" & v2_clin_ill_ep_snc_lst=="Y" & c(v2_clin$v2_aktu_situat_k_episode_grund6_31642_2,rep(-999,dim(v2_con)[1]))==1, "Y",-999)
descT(v2_clin_sec_ill_ep_othr)
## -999 Y <NA>
## [1,] No. cases 858 5 680 1543
## [2,] Percent 55.6 0.3 44.1 100
v2_clin_add_oth_hsp<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_add_oth_hsp<-ifelse(v2_clin_ill_ep_snc_lst=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_aufent,rep(-999,dim(v2_con)[1]))==1,"Y","N")
descT(v2_clin_add_oth_hsp)
## N Y <NA>
## [1,] No. cases 1019 24 500 1543
## [2,] Percent 66 1.6 32.4 100
v2_clin_oth_hsp_nmb<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_oth_hsp_nmb<-ifelse(v2_clin_add_oth_hsp=="Y",
c(v2_clin$v2_aktu_situat_aenderung_anzahl,rep(-999,dim(v2_con)[1])),-999)
descT(v2_clin_oth_hsp_nmb)
## -999 1 2 3 <NA>
## [1,] No. cases 1019 20 1 1 502 1543
## [2,] Percent 66 1.3 0.1 0.1 32.5 100
v2_clin_oth_hsp_dur<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_oth_hsp_dur<-
ifelse(v2_clin_add_oth_hsp=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_dauer,rep(-999,dim(v2_con)[1]))==1,"less than two weeks",
ifelse(v2_clin_add_oth_hsp=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_dauer,rep(-999,dim(v2_con)[1]))==2,"two to four weeks",
ifelse(v2_clin_add_oth_hsp=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_dauer,rep(-999,dim(v2_con)[1]))==3,"more than four weeks",
ifelse(v2_clin_add_oth_hsp=="N",-999,v2_clin_add_oth_hsp))))
v2_clin_oth_hsp_dur<-ordered(v2_clin_oth_hsp_dur, levels=c("less than two weeks","two to four weeks","more than four weeks"))
descT(v2_clin_oth_hsp_dur)
## less than two weeks two to four weeks more than four weeks
## [1,] No. cases 7 6 10
## [2,] Percent 0.5 0.4 0.6
## <NA>
## [1,] 1520 1543
## [2,] 98.5 100
v2_clin_othr_psy_med<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_clin_othr_psy_med<-ifelse(v2_clin_add_oth_hsp=="Y" & v2_clin_add_oth_hsp=="Y" &
c(v2_clin$v2_aktu_situat_aenderung_medikament,rep(-999,dim(v2_con)[1]))==1,"Y",
ifelse(v2_clin_add_oth_hsp=="N",-999,v2_clin_othr_psy_med))
descT(v2_clin_othr_psy_med)
## -999 Y <NA>
## [1,] No. cases 1019 2 522 1543
## [2,] Percent 66 0.1 33.8 100
This is an ordinal scale with four levels: “no”-1, “yes, outpatient”-2, “yes, day patient”-3, “yes, inpatient”-4.
v2_clin_cur_psy_trm<-rep(NA,dim(v2_clin)[1])
v2_con_cur_psy_trm<-rep(NA,dim(v2_con)[1])
v2_clin_cur_psy_trm<-ifelse(v2_clin$v2_aktu_situat_psybehandlung==0,"1",
ifelse(v2_clin$v2_aktu_situat_psybehandlung==3,"2",
ifelse(v2_clin$v2_aktu_situat_psybehandlung==2,"3",
ifelse(v2_clin$v2_aktu_situat_psybehandlung==1,"4",v2_clin_cur_psy_trm))))
v2_con_cur_psy_trm<-ifelse(v2_con$v2_bildung_beruf_psybehandlung==0,"1",
ifelse(v2_con$v2_bildung_beruf_psybehandlung==3,"2",
ifelse(v2_con$v2_bildung_beruf_psybehandlung==2,"3",
ifelse(v2_con$v2_bildung_beruf_psybehandlung==1,"4",v2_con_cur_psy_trm))))
v2_cur_psy_trm<-factor(c(v2_clin_cur_psy_trm,v2_con_cur_psy_trm),ordered=T)
descT(v2_cur_psy_trm)
## 1 2 3 4 <NA>
## [1,] No. cases 300 618 11 34 580 1543
## [2,] Percent 19.4 40.1 0.7 2.2 37.6 100
Create dataset
v2_clin_ill_ep<-data.frame(v2_clin_ill_ep_snc_lst,
v2_clin_no_ep,
v2_clin_fst_ill_ep_man,
v2_clin_fst_ill_ep_dep,
v2_clin_fst_ill_ep_mx,
v2_clin_fst_ill_ep_psy,
v2_clin_fst_ill_ep_dur,
v2_clin_fst_ill_ep_hsp,
v2_clin_fst_ill_ep_hsp_dur,
v2_clin_fst_ill_ep_symp_wrs,
v2_clin_fst_ill_ep_slf_end,
v2_clin_fst_ill_ep_suic,
v2_clin_fst_ill_ep_oth_end,
v2_clin_fst_ill_ep_med_chg,
v2_clin_fst_ill_ep_othr,
v2_clin_sec_ill_ep_man,
v2_clin_sec_ill_ep_dep,
v2_clin_sec_ill_ep_mx,
v2_clin_sec_ill_ep_psy,
v2_clin_sec_ill_ep_dur,
v2_clin_sec_ill_ep_hsp,
v2_clin_sec_ill_ep_hsp_dur,
v2_clin_sec_ill_ep_symp_wrs,
v2_clin_sec_ill_ep_slf_end,
v2_clin_sec_ill_ep_suic,
v2_clin_sec_ill_ep_oth_end,
v2_clin_sec_ill_ep_med_chg,
v2_clin_sec_ill_ep_othr,
v2_clin_add_oth_hsp,
v2_clin_oth_hsp_nmb,
v2_clin_oth_hsp_dur,
v2_clin_othr_psy_med,
v2_cur_psy_trm)
Did your marital status change since the last study visit? (dichotomous, v2_cng_mar_stat)
v2_clin_cng_mar_stat<-rep(NA,dim(v2_clin)[1])
v2_clin_cng_mar_stat<-ifelse(v2_clin$v2_aktu_situat_fam_stand==1, "Y",
ifelse(v2_clin$v2_aktu_situat_fam_stand==2, "N", v2_clin_cng_mar_stat))
v2_con_cng_mar_stat<-rep(NA,dim(v2_con)[1])
v2_con_cng_mar_stat<-ifelse(v2_con$v2_famil_wohn_fam_stand==1, "Y",
ifelse(v2_con$v2_famil_wohn_fam_stand==2, "N", v2_con_cng_mar_stat))
v2_cng_mar_stat<-factor(c(v2_clin_cng_mar_stat,v2_con_cng_mar_stat))
v2_clin_marital_stat<-rep(NA,dim(v2_clin)[1])
v2_clin_marital_stat<-ifelse(v2_clin$v2_aktu_situat_fam_familienstand==1,"Married",
ifelse(v2_clin$v2_aktu_situat_fam_familienstand==2,"Married_living_sep",
ifelse(v2_clin$v2_aktu_situat_fam_familienstand==3,"Single",
ifelse(v2_clin$v2_aktu_situat_fam_familienstand==4,"Divorced",
ifelse(v2_clin$v2_aktu_situat_fam_familienstand==5,"Widowed",v2_clin_marital_stat)))))
v2_con_marital_stat<-rep(NA,dim(v2_con)[1])
v2_con_marital_stat<-ifelse(v2_con$v2_famil_wohn_fam_famstand==1,"Married",
ifelse(v2_con$v2_famil_wohn_fam_famstand==2,"Married_living_sep",
ifelse(v2_con$v2_famil_wohn_fam_famstand==3,"Single",
ifelse(v2_con$v2_famil_wohn_fam_famstand==4,"Divorced",
ifelse(v2_con$v2_famil_wohn_fam_famstand==5,"Widowed",v2_con_marital_stat)))))
v2_marital_stat<-factor(c(v2_clin_marital_stat,v2_con_marital_stat))
desc(v2_marital_stat)
## Divorced Married Married_living_sep Single Widowed NA's
## [1,] No. cases 127 232 37 564 17 566
## [2,] Percent 8.2 15 2.4 36.6 1.1 36.7
##
## [1,] 1543
## [2,] 100
v2_clin_partner<-rep(NA,dim(v2_clin)[1])
v2_clin_partner<-ifelse(v2_clin$v2_aktu_situat_fam_fest_partner==1,"Y",
ifelse(v2_clin$v2_aktu_situat_fam_fest_partner==2,"N",v2_clin_partner))
v2_con_partner<-rep(NA,dim(v2_con)[1])
v2_con_partner<-ifelse(v2_con$v2_famil_wohn_fam_partner==1,"Y",
ifelse(v2_con$v2_famil_wohn_fam_partner==2,"N",v2_con_partner))
v2_partner<-factor(c(v2_clin_partner,v2_con_partner))
descT(v2_partner)
## N Y <NA>
## [1,] No. cases 473 484 586 1543
## [2,] Percent 30.7 31.4 38 100
v2_no_bio_chld<-c(v2_clin$v2_aktu_situat_fam_kind_gesamt,v2_con$v2_famil_wohn_fam_lkind)
descT(v2_no_bio_chld)
## 0 1 2 3 4 5 <NA>
## [1,] No. cases 600 171 118 59 13 5 577 1543
## [2,] Percent 38.9 11.1 7.6 3.8 0.8 0.3 37.4 100
v2_no_adpt_chld<-c(v2_clin$v2_aktu_situat_fam_adopt_gesamt,v2_con$v2_famil_wohn_fam_adkind)
descT(v2_no_adpt_chld)
## 0 1 2 <NA>
## [1,] No. cases 941 2 2 598 1543
## [2,] Percent 61 0.1 0.1 38.8 100
v2_stp_chld<-c(v2_clin$v2_aktu_situat_fam_stift_gesamt,v2_con$v2_famil_wohn_fam_skind)
descT(v2_stp_chld)
## 0 1 2 3 4 <NA>
## [1,] No. cases 871 42 17 4 2 607 1543
## [2,] Percent 56.4 2.7 1.1 0.3 0.1 39.3 100
v2_clin_chg_hsng<-rep(NA,dim(v2_clin)[1])
v2_clin_chg_hsng<-ifelse(v2_clin$v2_wohnsituation_wohn_aenderung==1,"Y",
ifelse(v2_clin$v2_wohnsituation_wohn_aenderung==2,"N",v2_clin_chg_hsng))
v2_con_chg_hsng<-rep(NA,dim(v2_con)[1])
v2_con_chg_hsng<-ifelse(v2_con$v2_famil_wohn_wohn_stand==1,"Y",
ifelse(v2_con$v2_famil_wohn_wohn_stand==2,"N",v2_con_chg_hsng))
v2_chg_hsng<-factor(c(v2_clin_chg_hsng,v2_con_chg_hsng))
descT(v2_chg_hsng)
## N Y <NA>
## [1,] No. cases 863 129 551 1543
## [2,] Percent 55.9 8.4 35.7 100
v2_clin_liv_aln<-rep(NA,dim(v2_clin)[1])
v2_clin_liv_aln<-ifelse(v2_clin$v2_wohnsituation_wohn_allein==1,"Y",
ifelse(v2_clin$v2_wohnsituation_wohn_allein==0,"N",v2_clin_liv_aln))
v2_con_liv_aln<-rep(NA,dim(v2_con)[1])
v2_con_liv_aln<-ifelse(v2_con$v2_famil_wohn_wohn_allein==1,"Y",
ifelse(v2_con$v2_famil_wohn_wohn_allein==0,"N",v2_con_liv_aln))
v2_liv_aln<-factor(c(v2_clin_liv_aln,v2_con_liv_aln))
descT(v2_liv_aln)
## N Y <NA>
## [1,] No. cases 640 374 529 1543
## [2,] Percent 41.5 24.2 34.3 100
Did your employment situation change since the last study visit?
v2_clin_chg_empl_stat<-rep(NA,dim(v2_clin)[1])
v2_clin_chg_empl_stat<-ifelse(v2_clin$v2_wohnsituation_erwerb_aenderung==1, "Y",
ifelse(v2_clin$v2_wohnsituation_erwerb_aenderung==2, "N",v2_clin_chg_empl_stat))
v2_con_chg_empl_stat<-rep(NA,dim(v2_con)[1])
v2_con_chg_empl_stat<-ifelse(v2_con$v2_bildung_beruf_bild_stand==1, "Y",
ifelse(v2_con$v2_bildung_beruf_bild_stand==2, "N",v2_con_chg_empl_stat))
v2_chg_empl_stat<-factor(c(v2_clin_chg_empl_stat,v2_con_chg_empl_stat))
descT(v2_chg_empl_stat)
## N Y <NA>
## [1,] No. cases 842 142 559 1543
## [2,] Percent 54.6 9.2 36.2 100
Because of several categories that are unique to the Germany labor market, several of answer categories were pooled to arrive at a more clear-cut (Y/N) answer to this question. Thr following transformations were used: “no information”-NA, “full-time”-Y, “part-time”-Y, “partial retirement”-Y, “marginal employment”-Y, “1-euro-job”-Y, “Occassionally/infrequently”-999, “in professional training”-Y, “professional retraining”-Y, “voluntary service/alternative military service”-Y, “maternity leave or other leave”-Y, “not employed”-N.
v2_clin_curr_paid_empl<-rep(NA,dim(v2_clin)[1])
v2_clin_curr_paid_empl<-ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==1,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==2,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==3,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==4,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==5,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==6,-999,
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==7,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==8,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==9,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==10,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerbstaetig==11,"N",v2_clin_curr_paid_empl)))))))))))
v2_con_curr_paid_empl<-rep(NA,dim(v2_con)[1])
v2_con_curr_paid_empl<-ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==1,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==2,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==3,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==4,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==5,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==6,-999,
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==7,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==8,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==9,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==10,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_taetig==11,"N",v2_con_curr_paid_empl)))))))))))
v2_curr_paid_empl<-factor(c(v2_clin_curr_paid_empl,v2_con_curr_paid_empl))
descT(v2_curr_paid_empl)
## -999 N Y <NA>
## [1,] No. cases 23 454 495 571 1543
## [2,] Percent 1.5 29.4 32.1 37 100
NB: Not available (-999) in control participants
v2_clin_disabl_pens<-rep(NA,dim(v2_clin)[1])
v2_clin_disabl_pens<-ifelse(v2_clin$v2_wohnsituation_rente_psych==1,"Y",
ifelse(v2_clin$v2_wohnsituation_rente_psych==2,"N",v2_clin_disabl_pens))
v2_con_disabl_pens<-rep(-999,dim(v2_con)[1])
v2_disabl_pens<-factor(c(v2_clin_disabl_pens,v2_con_disabl_pens))
descT(v2_disabl_pens)
## -999 N Y <NA>
## [1,] No. cases 320 306 261 656 1543
## [2,] Percent 20.7 19.8 16.9 42.5 100
v2_clin_spec_emp<-rep(NA,dim(v2_clin)[1])
v2_clin_spec_emp<-ifelse(v2_clin$v2_wohnsituation_erwerb_werk==1,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerb_werk==2,"N",v2_clin_spec_emp))
v2_con_spec_emp<-rep(NA,dim(v2_con)[1])
v2_con_spec_emp<-ifelse(v2_con$v2_bildung_beruf_erwerb_wfbm==1,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_wfbm==2,"N",v2_con_spec_emp))
v2_spec_emp<-factor(c(v2_clin_spec_emp,v2_con_spec_emp))
descT(v2_spec_emp)
## N Y <NA>
## [1,] No. cases 355 62 1126 1543
## [2,] Percent 23 4 73 100
Cases are set ot -999 in the following cases: 1) Pension, 2) Unknown, 3) Filled out but >26 weeks.
v2_clin_wrk_abs_pst_6_mths<-rep(NA,dim(v2_clin)[1])
v2_clin_wrk_abs_pst_6_mths<-ifelse((v2_clin$v2_wohnsituation_erwerb_unbekannt==1 | v2_clin$v2_wohnsituation_erwerb_rente==1 |
v2_clin$v2_wohnsituation_erwerb_fehlen>26),-999, v2_clin$v2_wohnsituation_erwerb_fehlen)
v2_con_wrk_abs_pst_6_mths<-rep(NA,dim(v2_con)[1])
v2_con_wrk_abs_pst_6_mths<-ifelse((v2_con$v2_bildung_beruf_erwerb_ausfallu==1 | v2_con$v2_bildung_beruf_erwerb_rente==1 |
v2_con$v2_bildung_beruf_erwerb_ausfallm>26),-999, v2_con$v2_bildung_beruf_erwerb_ausfallm)
v2_wrk_abs_pst_6_mths<-c(v2_clin_wrk_abs_pst_6_mths,v2_con_wrk_abs_pst_6_mths)
descT(v2_wrk_abs_pst_6_mths)
## -999 0 1 2 3 4 5 6 7 8 10 12 13 14
## [1,] No. cases 351 274 10 9 10 14 5 9 1 10 4 8 2 1
## [2,] Percent 22.7 17.8 0.6 0.6 0.6 0.9 0.3 0.6 0.1 0.6 0.3 0.5 0.1 0.1
## 15 16 18 19 20 24 25 26 <NA>
## [1,] 1 6 1 1 8 32 4 15 767 1543
## [2,] 0.1 0.4 0.1 0.1 0.5 2.1 0.3 1 49.7 100
Important: if receiving pension, this question refers to impairments in the household
v2_clin_cur_work_restr<-rep(NA,dim(v2_clin)[1])
v2_clin_cur_work_restr<-ifelse(v2_clin$v2_wohnsituation_erwerb_psysymptom==1,"Y",
ifelse(v2_clin$v2_wohnsituation_erwerb_psysymptom==2,"N",v2_clin_cur_work_restr))
v2_con_cur_work_restr<-rep(NA,dim(v2_con)[1])
v2_con_cur_work_restr<-ifelse(v2_con$v2_bildung_beruf_erwerb_psyeinsch==1,"Y",
ifelse(v2_con$v2_bildung_beruf_erwerb_psyeinsch==2,"N",v2_con_cur_work_restr))
v2_cur_work_restr<-factor(c(v2_clin_cur_work_restr,v2_con_cur_work_restr))
descT(v2_cur_work_restr)
## N Y <NA>
## [1,] No. cases 568 341 634 1543
## [2,] Percent 36.8 22.1 41.1 100
v2_weight<-c(v2_clin$v2_wohnsituation_erwerb_gewicht,v2_con$v2_bildung_beruf_erwerb_gewicht)
summary(v2_weight)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 43.00 69.00 80.00 83.52 95.00 171.00 575
We here provide the body mass index of study participants, calculated as weight in kilograms divided by the squared height in meters.
v2_bmi<-v2_weight/(v1_height/100)^2
summary(v2_bmi)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 16.90 23.15 26.57 27.54 30.79 66.17 579
Create dataset
v2_dem<-data.frame(v2_cng_mar_stat,v2_marital_stat,v2_partner,v2_no_bio_chld,v2_no_adpt_chld,v2_stp_chld,v2_chg_hsng,v2_liv_aln,
v2_chg_empl_stat,v2_curr_paid_empl,v2_disabl_pens,v2_spec_emp,v2_wrk_abs_pst_6_mths,v2_cur_work_restr,
v2_weight,v2_bmi)
The participant is asked the following question: “Before your first illness episode, was there a special event that could have triggered the disease? If yes, please describe.” The following answering alternatives were given: N-“No”, U-“Unclear if trigger, namely”, Y-“yes, namely”.
v2_evnt_prcp_illn<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_evnt_prcp_illn<-ifelse(c(v2_clin$v2_ergaenz_leq_ergaenz_frage1,rep(-999,dim(v2_con)[1]))==1,"N",
ifelse(c(v2_clin$v2_ergaenz_leq_ergaenz_frage1,rep(-999,dim(v2_con)[1]))==2,"U",
ifelse(c(v2_clin$v2_ergaenz_leq_ergaenz_frage1,rep(-999,dim(v2_con)[1]))==3,"Y",
ifelse(c(v2_clin$v2_ergaenz_leq_ergaenz_frage1,rep(-999,dim(v2_con)[1]))==-999,-999,v2_evnt_prcp_illn))))
v2_evnt_prcp_illn<-factor(v2_evnt_prcp_illn)
descT(v2_evnt_prcp_illn)
## -999 N U Y <NA>
## [1,] No. cases 320 159 90 314 660 1543
## [2,] Percent 20.7 10.3 5.8 20.3 42.8 100
If unclear or yes, find the event described in the following item (categorical [text], v2_evnt_prcp_illn_txt) Output masked, as this is very sensitive information.
Create dataset
v2_ev_prc_fst_ep<-data.frame(v2_evnt_prcp_illn,v2_evnt_prcp_illn_txt)
If there occurred one or more illness episodes between study visits, participants were asked whether one of the life events they experienced and coded in the LEQ may have precipitated the episode.
To systematically evaluate this, each life event coded by the participant in the LEQ was afterwards evaluated if it:
A Occurred before the episode B Was, in the opinion of the participant, a precipitating factor for the illness episode C Which ife event, expressed as the corresponding item of the LEQ (“item number…”) she or he experienced
As these items were answered by only a fraction of the patients, these were autmatically recoded using a for loop and descriptive statistics on each item are not given here. The items are, however, included in the dataset as “v2_evnt_prcp_b4_1” to “v2_evnt_prcp_b4_31” (A), “v2_evnt_prcp_it_1” to “v2_evnt_prcp_it_31” (B), and “v2_evnt_prcp_it_1” to “v2_evnt_prcp_it_31” (C).
**Life events: Occurred before illness episode? (dichotomous, v2_evnt_prcp_b4_*)**
for(i in 1:length(grep("v2_ergaenz_leq_leq_zeit_31055_",names(v2_clin)))){
b4_event_recode_v2(v2_clin[,grep("v2_ergaenz_leq_leq_zeit_31055_",names(v2_clin))[i]],
paste("v2_evnt_prcp_b4_",i,sep=""))
}
**Life events: Was a precipitating factor for illness episode (categorical [N,U,Y], v2_evnt_prcp_f_*)**
for(i in 1:length(grep("v2_ergaenz_leq_leq_ausloeser_31055_",names(v2_clin)))){
prcp_event_recode_v2(v2_clin[,grep("v2_ergaenz_leq_leq_ausloeser_31055_",names(v2_clin))[i]],
paste("v2_evnt_prcp_f_",i,sep=""))
}
**Life events: LEQ item number (categorical [LEQ item number], v2_evnt_prcp_it_*)**
for(i in 1:length(grep("v2_ergaenz_leq_leq_item_31055_",names(v2_clin)))){
leq_event_recode_v2(v2_clin[,grep("v2_ergaenz_leq_leq_item_31055_",names(v2_clin))[i]],
paste("v2_evnt_prcp_it_",i,sep=""))
}
Create dataset
v2_leprcp<-data.frame(v2_evnt_prcp_it_1,v2_evnt_prcp_b4_1,v2_evnt_prcp_f_1,
v2_evnt_prcp_it_2,v2_evnt_prcp_b4_2,v2_evnt_prcp_f_2,
v2_evnt_prcp_it_3,v2_evnt_prcp_b4_3,v2_evnt_prcp_f_3,
v2_evnt_prcp_it_4,v2_evnt_prcp_b4_4,v2_evnt_prcp_f_4,
v2_evnt_prcp_it_5,v2_evnt_prcp_b4_5,v2_evnt_prcp_f_5,
v2_evnt_prcp_it_6,v2_evnt_prcp_b4_6,v2_evnt_prcp_f_6,
v2_evnt_prcp_it_7,v2_evnt_prcp_b4_7,v2_evnt_prcp_f_7,
v2_evnt_prcp_it_8,v2_evnt_prcp_b4_8,v2_evnt_prcp_f_8,
v2_evnt_prcp_it_9,v2_evnt_prcp_b4_9,v2_evnt_prcp_f_9,
v2_evnt_prcp_it_10,v2_evnt_prcp_b4_10,v2_evnt_prcp_f_10,
v2_evnt_prcp_it_11,v2_evnt_prcp_b4_11,v2_evnt_prcp_f_11,
v2_evnt_prcp_it_12,v2_evnt_prcp_b4_12,v2_evnt_prcp_f_12,
v2_evnt_prcp_it_13,v2_evnt_prcp_b4_13,v2_evnt_prcp_f_13,
v2_evnt_prcp_it_14,v2_evnt_prcp_b4_14,v2_evnt_prcp_f_14,
v2_evnt_prcp_it_15,v2_evnt_prcp_b4_15,v2_evnt_prcp_f_15,
v2_evnt_prcp_it_16,v2_evnt_prcp_b4_16,v2_evnt_prcp_f_16,
v2_evnt_prcp_it_17,v2_evnt_prcp_b4_17,v2_evnt_prcp_f_17,
v2_evnt_prcp_it_18,v2_evnt_prcp_b4_18,v2_evnt_prcp_f_18,
v2_evnt_prcp_it_19,v2_evnt_prcp_b4_19,v2_evnt_prcp_f_19,
v2_evnt_prcp_it_20,v2_evnt_prcp_b4_20,v2_evnt_prcp_f_20,
v2_evnt_prcp_it_21,v2_evnt_prcp_b4_21,v2_evnt_prcp_f_21,
v2_evnt_prcp_it_22,v2_evnt_prcp_b4_22,v2_evnt_prcp_f_22,
v2_evnt_prcp_it_23,v2_evnt_prcp_b4_23,v2_evnt_prcp_f_23,
v2_evnt_prcp_it_24,v2_evnt_prcp_b4_24,v2_evnt_prcp_f_24,
v2_evnt_prcp_it_25,v2_evnt_prcp_b4_25,v2_evnt_prcp_f_25,
v2_evnt_prcp_it_26,v2_evnt_prcp_b4_26,v2_evnt_prcp_f_26,
v2_evnt_prcp_it_27,v2_evnt_prcp_b4_27,v2_evnt_prcp_f_27,
v2_evnt_prcp_it_28,v2_evnt_prcp_b4_28,v2_evnt_prcp_f_28,
v2_evnt_prcp_it_29,v2_evnt_prcp_b4_29,v2_evnt_prcp_f_29,
v2_evnt_prcp_it_30,v2_evnt_prcp_b4_30,v2_evnt_prcp_f_30,
v2_evnt_prcp_it_31,v2_evnt_prcp_b4_31,v2_evnt_prcp_f_31)
Please note that all of the following questions refer to suicide attempts and suicidal ideation occurring since the last study visit.
Please not that the following items on suicidal ideation were skipped if this question was not answered positively. If skipped these items are coded -999.
v2_suic_ide_snc_lst_vst<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_suic_ide_snc_lst_vst<-ifelse(c(v2_clin$v2_snx_112_suizged1_x7_suizid_gedanken,rep(-999,dim(v2_con)[1]))==1, "N",
ifelse(c(v2_clin$v2_snx_112_suizged1_x7_suizid_gedanken,rep(-999,dim(v2_con)[1]))==3, "Y", v2_suic_ide_snc_lst_vst))
v2_suic_ide_snc_lst_vst<-factor(v2_suic_ide_snc_lst_vst)
descT(v2_suic_ide_snc_lst_vst)
## -999 N Y <NA>
## [1,] No. cases 320 527 192 504 1543
## [2,] Percent 20.7 34.2 12.4 32.7 100
This is an ordinal item with the following gradation: “only fleeting thoughts”-1, “serious thoughts (details were elaborated)”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v2_scid_suic_ide<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_scid_suic_ide<-ifelse(v2_suic_ide_snc_lst_vst=="Y"&c(v2_clin$v2_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v2_con)[1]))==1, "1",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v2_con)[1]))==2, "2",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v2_con)[1]))==3, "3",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v2_con)[1]))==4, "4",-999))))
v2_scid_suic_ide<-factor(v2_scid_suic_ide,ordered=T)
descT(v2_scid_suic_ide)
## -999 1 2 3 4 <NA>
## [1,] No. cases 847 113 24 36 16 507 1543
## [2,] Percent 54.9 7.3 1.6 2.3 1 32.9 100
This is an ordinal item with the following gradation: “no”-1, “yes, but no details”-2, “yes, including details”-3.
v2_scid_suic_thght_mth<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_scid_suic_thght_mth<-ifelse(v2_suic_ide_snc_lst_vst=="Y"&c(v2_clin$v2_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v2_con)[1]))==1, "1",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v2_con)[1]))==2, "2",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v2_con)[1]))==3, "3",-999)))
v2_scid_suic_thght_mth<-factor(v2_scid_suic_thght_mth,ordered=T)
descT(v2_scid_suic_thght_mth)
## -999 1 2 3 <NA>
## [1,] No. cases 847 99 61 29 507 1543
## [2,] Percent 54.9 6.4 4 1.9 32.9 100
This is an ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v2_scid_suic_note_thgts<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_scid_suic_note_thgts<-ifelse(v2_suic_ide_snc_lst_vst=="Y"&c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==1, "1",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==2, "2",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==3, "3",
ifelse(v2_suic_ide_snc_lst_vst=="Y" & c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==4, "4",-999))))
v2_scid_suic_note_thgts<-factor(v2_scid_suic_note_thgts,ordered=T)
descT(v2_scid_suic_note_thgts)
## -999 1 2 3 4 <NA>
## [1,] No. cases 847 171 9 3 5 508 1543
## [2,] Percent 54.9 11.1 0.6 0.2 0.3 32.9 100
This is an ordinal item with the following gradation: “no”-1, “interruption of attempt”-2, “yes”-3. Please not that the following items on suicidal attempt were skipped if this question was answered with “no”. In that case, items are coded as -999.
v2_suic_attmpt_snc_lst_vst<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_suic_attmpt_snc_lst_vst<-ifelse(c(v2_clin$v2_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v2_con)[1]))==1, "1",
ifelse(c(v2_clin$v2_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v2_con)[1]))==2, "2",
ifelse(c(v2_clin$v2_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v2_con)[1]))==3, "3",-999)))
v2_suic_attmpt_snc_lst_vst<-factor(v2_suic_attmpt_snc_lst_vst,ordered=T)
descT(v2_suic_attmpt_snc_lst_vst)
## -999 1 2 3 <NA>
## [1,] No. cases 320 686 2 13 522 1543
## [2,] Percent 20.7 44.5 0.1 0.8 33.8 100
This is an ordinal item with the following gradation: “1 time”-1, “2 times”-2, “3-times”-3, “4 times”-4, “5 times”-5, “6 or more times”-6.
v2_no_suic_attmpt<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_no_suic_attmpt<-ifelse(v2_suic_attmpt_snc_lst_vst==1, -999, ifelse(v2_suic_attmpt_snc_lst_vst>1, c(v2_clin$v2_snx_111_suizvrs1_x2_suiz_anz,rep(-999,dim(v2_con)[1])),v2_no_suic_attmpt))
v2_no_suic_attmpt<-factor(v2_no_suic_attmpt,ordered=T)
descT(v2_no_suic_attmpt)
## -999 1 3 <NA>
## [1,] No. cases 1006 12 1 524 1543
## [2,] Percent 65.2 0.8 0.1 34 100
This is an ordinal item with the following gradation: “no preparation (impulsive attempt)”-1, “little preparation”-2, “moderate preparation”-3, “Extensive, all details planned”-4.
v2_prep_suic_attp_ord<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_prep_suic_attp_ord<-ifelse(v2_suic_attmpt_snc_lst_vst==1, -999,
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v2_con)[1]))==1, "1",
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v2_con)[1]))==2, "2",
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v2_con)[1]))==3, "3",
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v2_con)[1]))==4, "4",
v2_prep_suic_attp_ord)))))
v2_prep_suic_attp_ord<-factor(v2_prep_suic_attp_ord,ordered=T)
descT(v2_prep_suic_attp_ord)
## -999 1 2 3 4 <NA>
## [1,] No. cases 1006 5 1 4 4 523 1543
## [2,] Percent 65.2 0.3 0.1 0.3 0.3 33.9 100
This is an ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v2_suic_note_attmpt<-c(rep(NA,dim(v2_clin)[1]),rep(-999,dim(v2_con)[1]))
v2_suic_note_attmpt<-ifelse(v2_suic_attmpt_snc_lst_vst==1, -999,
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==1, "1",
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==2, "2",
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==3, "3",
ifelse(v2_suic_attmpt_snc_lst_vst>1 & c(v2_clin$v2_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v2_con)[1]))==4, "4",
v2_suic_note_attmpt)))))
v2_suic_note_attmpt<-factor(v2_suic_note_attmpt,ordered=T)
descT(v2_suic_note_attmpt)
## -999 1 3 4 <NA>
## [1,] No. cases 1006 8 1 3 525 1543
## [2,] Percent 65.2 0.5 0.1 0.2 34 100
Create dataset
v2_suic<-data.frame(v2_suic_ide_snc_lst_vst,v2_scid_suic_ide,v2_scid_suic_thght_mth,v2_scid_suic_note_thgts,
v2_suic_attmpt_snc_lst_vst,v2_no_suic_attmpt,v2_prep_suic_attp_ord,
v2_suic_note_attmpt)
PsyCourse 3.1 contains now medication data. The code below creates the following variables for each person:
Number of antidepressants prescribed (continuous [number], v2_Antidepressants) Number of antipsychotics prescribed (continuous [number], v2_Antipsychotics) Number of mood stabilizers prescribed (continuous [number], v2_Mood_Stabilizers) Number of tranquilizers prescribed (continuous [number], v2_Tranquilizers) Number of other psychiatric medications (continuous [number], v2_Other_psychiatric)
#get the following variables from v2_clin
#1. Medication name ["_med_medi_1"]
#2. Medication category ["_med_kategorie_1"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_1"]
#6. Bedarf category ["_bedarf_kategorie_1"]
v2_clin_medication_variables_1<-as.data.frame(v2_clin[,grep("mnppsd|_med_medi_1|_med_kategorie_1|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_1|_bedarf_kategorie_1",names(v2_clin))])
dim(v2_clin_medication_variables_1) #[1] 1223 61
## [1] 1223 61
#recode the variables that are coded as characters/logicals in the "v2_clin_medication_variables_1" as factors
v2_clin_medication_variables_1$v2_medikabehand3_depot_medi_200170_3<-as.factor(v2_clin_medication_variables_1$v2_medikabehand3_depot_medi_200170_3)
v2_clin_medication_variables_1$v2_medikabehand3_bedarf_medi_199584_9<-as.factor(v2_clin_medication_variables_1$v2_medikabehand3_bedarf_medi_199584_9)
v2_clin_medication_variables_1$v2_medikabehand3_bedarf_kategorie_199584_9<-as.factor(v2_clin_medication_variables_1$v2_medikabehand3_bedarf_kategorie_199584_9)
v2_clin_medication_variables_1$v2_medikabehand3_bedarf_medi_199584_10<-as.factor(v2_clin_medication_variables_1$v2_medikabehand3_bedarf_medi_199584_10)
v2_clin_medication_variables_1$v2_medikabehand3_bedarf_kategorie_199584_10<-as.factor(v2_clin_medication_variables_1$v2_medikabehand3_bedarf_kategorie_199584_10)
#make the duplicated data frame
v2_clin_medications_duplicated_1<-as.data.frame(t(apply(v2_clin_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v2_clin_medications_duplicated_1) #1223 30
## [1] 1223 30
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v2_clin, not as character
v2_clin_medication_variables_1[,!c(TRUE, FALSE)][v2_clin_medications_duplicated_1=="TRUE"] <- NA
dim(v2_clin_medication_variables_1) #1223 61
## [1] 1223 61
#bind columns id and medication names, but not categories together
v2_clin_medication_name_1<-as.data.frame(cbind("mnppsd"=v2_clin_medication_variables_1[,1], v2_clin_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v2_clin_medication_name_1) #1223 31
## [1] 1223 31
#get the medication categories from the "_medication_variables_1" dataframe
v2_clin_medication_categories_1<-as.data.frame(v2_clin_medication_variables_1[,c(TRUE, FALSE)])
dim(v2_clin_medication_categories_1) #1223 31
## [1] 1223 31
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v2_clin, not as character
#Important: v2_clin_medication_name_1=="NA" replaced with is.na(v2_clin_medication_name_1)
v2_clin_medication_categories_1[is.na(v2_clin_medication_name_1)] <- NA
#write.csv(v2_clin_medication_categories_1, file="v2_clin_medication_group_1.csv")
#Make a count table of medications
v2_clin_med_table<-data.frame("mnppsd"=v2_clin$mnppsd)
v2_clin_med_table$v2_Antidepressants<-rowSums(v2_clin_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v2_clin_med_table$v2_Antipsychotics<-rowSums(v2_clin_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v2_clin_med_table$v2_Mood_stabilizers<-rowSums(v2_clin_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v2_clin_med_table$v2_Tranquilizers<-rowSums(v2_clin_medication_categories_1 == "Sedativa", na.rm = TRUE)
v2_clin_med_table$v2_Other_psychiatric<-rowSums(v2_clin_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
#get the following variables from v2_con
#1. Medication name ["_med_medi_2"]
#2. Medication category ["_med_kategorie_2"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_2"]
#6. Bedarf category ["_bedarf_kategorie_2"]
v2_con_medication_variables_1<-as.data.frame(v2_con[,grep("mnppsd|_med_medi_2|_med_kategorie_2|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_2|_bedarf_kategorie_2",names(v2_con))])
dim(v2_con_medication_variables_1) #[1] 320 29
## [1] 320 29
#recode the variables that are coded as characters/logicals in the "v2_con_medication_variables_1" as factors
v2_con_medication_variables_1$v2_medikabehand3_med_medi_200705_8<-as.factor(v2_con_medication_variables_1$v2_medikabehand3_med_medi_200705_8)
v2_con_medication_variables_1$v2_medikabehand3_med_kategorie_200705_8<-as.factor(v2_con_medication_variables_1$v2_medikabehand3_med_kategorie_200705_8)
v2_con_medication_variables_1$v2_medikabehand3_depot_medi_201224_2<-as.factor(v2_con_medication_variables_1$v2_medikabehand3_depot_medi_201224_2)
v2_con_medication_variables_1$v2_medikabehand3_depot_kategorie_201224_2<-as.factor(v2_con_medication_variables_1$v2_medikabehand3_depot_kategorie_201224_2)
v2_con_medication_variables_1$v2_medikabehand3_bedarf_medi_201187_4<-as.factor(v2_con_medication_variables_1$v2_medikabehand3_bedarf_medi_201187_4)
v2_con_medication_variables_1$v2_medikabehand3_bedarf_kategorie_201187_4<-as.factor(v2_con_medication_variables_1$v2_medikabehand3_bedarf_kategorie_201187_4)
#make the duplicated data frame
v2_con_medications_duplicated_1<-as.data.frame(t(apply(v2_con_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v2_con_medications_duplicated_1) #320 14
## [1] 320 14
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v2_con, not as character
v2_con_medication_variables_1[,!c(TRUE, FALSE)][v2_con_medications_duplicated_1=="TRUE"] <- NA
dim(v2_con_medication_variables_1) #320 29
## [1] 320 29
#bind columns id and medication names, but not categories together
v2_con_medication_name_1<-as.data.frame(cbind("mnppsd"=v2_con_medication_variables_1[,1], v2_con_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v2_con_medication_name_1) #320 15
## [1] 320 15
#get the medication categories from the "_medication_variables_1" dataframe
v2_con_medication_categories_1<-as.data.frame(v2_con_medication_variables_1[,c(TRUE, FALSE)])
dim(v2_con_medication_categories_1) #320 15
## [1] 320 15
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v2_con, not as character
#Important: v2_con_medication_name_1=="NA" replaced with is.na(v2_con_medication_name_1)
v2_con_medication_categories_1[is.na(v2_con_medication_name_1)] <- NA
#write.csv(v2_con_medication_categories_1, file="v2_con_medication_group_1.csv")
#Make a count table of medications
v2_con_med_table<-data.frame("mnppsd"=v2_con$mnppsd)
v2_con_med_table$v2_Antidepressants<-rowSums(v2_con_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v2_con_med_table$v2_Antipsychotics<-rowSums(v2_con_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v2_con_med_table$v2_Mood_stabilizers<-rowSums(v2_con_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v2_con_med_table$v2_Tranquilizers<-rowSums(v2_con_medication_categories_1 == "Sedativa", na.rm = TRUE)
v2_con_med_table$v2_Other_psychiatric<-rowSums(v2_con_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
Bind v2_clin and v2_con together by rows
v2_drugs<-rbind(v2_clin_med_table,v2_con_med_table)
dim(v2_drugs) #1543 6
## [1] 1543 6
#check if the id column of v2_drugs and v1_id match
table(droplevels(v2_drugs[,1])==v1_id)
##
## TRUE
## 1543
v2_clin_adv<-ifelse(v2_clin$v2_medikabehand_medi2_nebenwirk==1,"Y","N")
v2_con_adv<-rep("-999",dim(v2_con)[1])
v2_adv<-factor(c(v2_clin_adv,v2_con_adv))
descT(v2_adv)
## -999 N Y <NA>
## [1,] No. cases 320 217 355 651 1543
## [2,] Percent 20.7 14.1 23 42.2 100
v2_clin_medchange<-rep(NA,dim(v2_clin)[1])
v2_clin_medchange<-ifelse(v2_clin$v2_medikabehand_medi3_mediaenderung==1,"Y","N")
v2_con_medchange<-rep("-999",dim(v2_con)[1])
v2_medchange<-as.factor(c(v2_clin_medchange,v2_con_medchange))
descT(v2_medchange)
## -999 N Y <NA>
## [1,] No. cases 320 191 382 650 1543
## [2,] Percent 20.7 12.4 24.8 42.1 100
Please see the section in Visit 1 for explanation.
v2_clin_lith<-rep(NA,dim(v2_clin)[1])
v2_clin_lith<-ifelse(v2_clin$v2_medikabehand_med_zusatz_lithium==1,"Y","N")
v2_con_lith<-rep("-999",dim(v2_con)[1])
v2_lith<-as.factor(c(v2_clin_lith,v2_con_lith))
v2_lith<-as.factor(v2_lith)
descT(v2_lith)
## -999 N Y <NA>
## [1,] No. cases 320 215 133 875 1543
## [2,] Percent 20.7 13.9 8.6 56.7 100
Ordinal variable, gradation the following: “less than one year”-1, “one to two years”-2, “two or more years”-3.
v2_clin_lith_prd<-rep(NA,dim(v2_clin)[1])
v2_con_lith_prd<-rep(-999,dim(v2_con)[1])
v2_clin_lith_prd<-ifelse(v2_clin_lith=="N", -999, ifelse(v2_clin$v2_medikabehand_med_zusatz_dauer==2,1,
ifelse(v2_clin$v2_medikabehand_med_zusatz_dauer==1,2,
ifelse(v2_clin$v2_medikabehand_med_zusatz_dauer==0,3,NA))))
v2_lith_prd<-factor(c(v2_clin_lith_prd,v2_con_lith_prd))
descT(v2_lith_prd)
## -999 1 2 3 <NA>
## [1,] No. cases 535 53 18 62 875 1543
## [2,] Percent 34.7 3.4 1.2 4 56.7 100
Create dataset
v2_med<-data.frame(v2_drugs[,2:6],v2_adv,v2_medchange,v2_lith,v2_lith_prd)
For more explanation, see Visit 1
This is a categorical item with four optional answers: “no, still smoker”-NS, “no, still nonsmoker”-NN, and “yes, stopped smoking (more than three months ago)” -YSP, “yes, started smoking (more than three months ago)”-YST.
v2_clin_smk_strt_stp<-rep(NA,dim(v2_clin)[1])
v2_clin_smk_strt_stp<-ifelse(v2_clin$v2_tabalk1_ta1_jemals_rauch==1,"NS",
ifelse(v2_clin$v2_tabalk1_ta1_jemals_rauch==2,"NN",
ifelse(v2_clin$v2_tabalk1_ta1_jemals_rauch==3,"YSP",
ifelse(v2_clin$v2_tabalk1_ta1_jemals_rauch==4,"YST",v2_clin_smk_strt_stp))))
#ATTENTION: answering alternative: e-cigarette only in controls
v2_con_smk_strt_stp<-rep(NA,dim(v2_clin)[1])
v2_con_smk_strt_stp<-ifelse(v2_con$v2_tabalk_folge_tabak1==1 | v2_con$v2_tabalk_folge_tabak1==2,"NS",
ifelse(v2_con$v2_tabalk_folge_tabak1==3,"NN",
ifelse(v2_con$v2_tabalk_folge_tabak1==4,"YSP",
ifelse(v2_con$v2_tabalk_folge_tabak1==5,"YST",v2_con_smk_strt_stp))))
v2_smk_strt_stp<-c(v2_clin_smk_strt_stp,v2_con_smk_strt_stp)
descT(v2_smk_strt_stp)
## NN NS YSP YST <NA>
## [1,] No. cases 346 610 27 15 545 1543
## [2,] Percent 22.4 39.5 1.7 1 35.3 100
In the original item, the number of cigarettes is to be entered by the investigator, however there are three options to which timeframe these cigarettes refer to: per day, per week or per month. Here, we have decided to give the cigarettes per year.
Please not that people who have stopped smoking but less than three months ago are still labeled as smokers, therefore zeros can occur.
v2_no_cig<-c(rep(NA,dim(v2_clin)[1]),rep(NA,dim(v2_con)[1]))
v2_no_cig<-ifelse((v2_smk_strt_stp=="NN" | v2_smk_strt_stp=="YSP"), -999,
ifelse((v2_smk_strt_stp=="NS" | v2_smk_strt_stp=="YST") &
c(v2_clin$v2_tabalk1_ta3_zig_pro_zeit,v2_con$v2_tabalk_folge_tabak2_zeit)==1,
c(v2_clin$v2_tabalk1_ta3_anz_zig,v2_con$v2_tabalk_folge_tabak2_anz)*365,
ifelse((v2_smk_strt_stp=="NS" | v2_smk_strt_stp=="YST") &
c(v2_clin$v2_tabalk1_ta3_zig_pro_zeit,v2_con$v2_tabalk_folge_tabak2_zeit)==2,
c(v2_clin$v2_tabalk1_ta3_anz_zig,v2_con$v2_tabalk_folge_tabak2_anz)*52,
ifelse((v2_smk_strt_stp=="NS" | v2_smk_strt_stp=="YST") &
c(v2_clin$v2_tabalk1_ta3_zig_pro_zeit,v2_con$v2_tabalk_folge_tabak2_zeit)==3,
c(v2_clin$v2_tabalk1_ta3_anz_zig,v2_con$v2_tabalk_folge_tabak2_anz)*12,
v2_no_cig))))
summary(v2_no_cig[v2_no_cig>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0 3650 6935 6320 7300 23725 754
This is and ordinal item. Optional answers are: “never”-1, “only on special occasions”-2, “once per month or less”-3, “two to four times per month”-4, “two to three times per week”-5, “four times per week or several times but not daily”-6, “daily”-7.
v2_alc_pst6_mths<-c(v2_clin$v2_tabalk1_ta9_alkkonsum,v2_con$v2_tabalk_folge_alkohol4)
v2_alc_pst6_mths<-factor(v2_alc_pst6_mths, ordered=T)
descT(v2_alc_pst6_mths)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 251 203 98 239 119 43 38 552 1543
## [2,] Percent 16.3 13.2 6.4 15.5 7.7 2.8 2.5 35.8 100
This is an ordinal item. Optional answers are: “never”-1, “once or twice”-2, “three to five times”-3, “six to eleven times”-4, “approximately once per month”-5, “two to three times per month”-6, “one to two times per week”-7, “three to four times per week”-8, “daily or almost daily”-9. Note that this item was skipped if participants chose answering alternatives 1, 2 or 3 in the previous question. In these cases, coding is -999.
v2_alc_5orm<-ifelse(v2_alc_pst6_mths<4,-999,
ifelse(is.na(c(v2_clin$v2_tabalk1_ta10_alk_haeufigk_m1,v2_con$v2_tabalk_folge_alkohol5))==T,
c(v2_clin$v2_tabalk1_ta11_alk_haeufigk_f1,v2_con$v2_tabalk_folge_alkohol6),
c(v2_clin$v2_tabalk1_ta10_alk_haeufigk_m1,v2_con$v2_tabalk_folge_alkohol5)))
v2_alc_5orm<-factor(v2_alc_5orm, ordered=T)
descT(v2_alc_5orm)
## -999 1 2 3 4 5 6 7 8 9 <NA>
## [1,] No. cases 552 193 80 57 20 29 31 15 3 7 556 1543
## [2,] Percent 35.8 12.5 5.2 3.7 1.3 1.9 2 1 0.2 0.5 36 100
On follow-up visits, participant were asked whether they had consumed illicit drugs since the last visit. If yes, the following information was collected:
Here, we include only the information whether, since the last study visit, the participant consumed any illicit drugs. More detailed information is available on request.
“During the past six months, did you take ANY illicit drugs?” (dichotomous, v2_pst6_ill_drg)
v2_pst6_ill_drg<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_pst6_ill_drg<-ifelse(c(v2_clin$v2_drogen1_dg1_konsum,v2_con$v2_drogen_folge_drogenkonsum)==2, "Y", "N")
descT(v2_pst6_ill_drg)
## N Y <NA>
## [1,] No. cases 915 77 551 1543
## [2,] Percent 59.3 5 35.7 100
Create dataset
v2_subst<-data.frame(v2_smk_strt_stp,
v2_no_cig,
v2_alc_pst6_mths,
v2_alc_5orm,
v2_pst6_ill_drg)
For more information on the scale, please see Visit 1
P1 Delusions (ordinal [1,2,3,4,5,6,7], v2_panss_p1)
v2_panss_p1<-c(v2_clin$v2_panss_p_p1_wahnideen,v2_con$v2_panss_p_p1_wahnideen)
v2_panss_p1<-factor(v2_panss_p1, ordered=T)
descT(v2_panss_p1)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 763 55 62 27 16 11 609 1543
## [2,] Percent 49.4 3.6 4 1.7 1 0.7 39.5 100
P2 Conceptual disorganization (ordinal [1,2,3,4,5,6,7], v2_panss_p2)
v2_panss_p2<-c(v2_clin$v2_panss_p_p2_form_denkst,v2_con$v2_panss_p_p2_form_denkst)
v2_panss_p2<-factor(v2_panss_p2, ordered=T)
descT(v2_panss_p2)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 683 93 103 44 8 3 609 1543
## [2,] Percent 44.3 6 6.7 2.9 0.5 0.2 39.5 100
P3 Hallucinatory behavior (ordinal [1,2,3,4,5,6,7], v2_panss_p3)
v2_panss_p3<-c(v2_clin$v2_panss_p_p3_halluz,v2_con$v2_panss_p_p3_halluz)
v2_panss_p3<-factor(v2_panss_p3, ordered=T)
descT(v2_panss_p3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 826 34 28 29 12 6 608 1543
## [2,] Percent 53.5 2.2 1.8 1.9 0.8 0.4 39.4 100
P4 Excitement (ordinal [1,2,3,4,5,6,7], v2_panss_p4)
v2_panss_p4<-c(v2_clin$v2_panss_p_p4_erregung,v2_con$v2_panss_p_p4_erregung)
v2_panss_p4<-factor(v2_panss_p4, ordered=T)
descT(v2_panss_p4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 718 78 109 22 4 3 609 1543
## [2,] Percent 46.5 5.1 7.1 1.4 0.3 0.2 39.5 100
P5 Grandiosity (ordinal [1,2,3,4,5,6,7], v2_panss_p5)
v2_panss_p5<-c(v2_clin$v2_panss_p_p5_groessenideen,v2_con$v2_panss_p_p5_groessenideen)
v2_panss_p5<-factor(v2_panss_p5, ordered=T)
descT(v2_panss_p5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 864 29 28 6 4 1 611 1543
## [2,] Percent 56 1.9 1.8 0.4 0.3 0.1 39.6 100
P6 Suspiciousness/persecution (ordinal [1,2,3,4,5,6,7], v2_panss_p6)
v2_panss_p6<-c(v2_clin$v2_panss_p_p6_misstr_verfolg,v2_con$v2_panss_p_p6_misstr_verfolg)
v2_panss_p6<-factor(v2_panss_p6, ordered=T)
descT(v2_panss_p6)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 761 60 73 20 15 4 1 609 1543
## [2,] Percent 49.3 3.9 4.7 1.3 1 0.3 0.1 39.5 100
P7 Hostility (ordinal [1,2,3,4,5,6,7], v2_panss_p7)
v2_panss_p7<-c(v2_clin$v2_panss_p_p7_feindseligkeit,v2_con$v2_panss_p_p7_feindseligkeit)
v2_panss_p7<-factor(v2_panss_p7, ordered=T)
descT(v2_panss_p7)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 850 43 32 6 1 1 610 1543
## [2,] Percent 55.1 2.8 2.1 0.4 0.1 0.1 39.5 100
PANSS Positive sum score (continuous [7-49], v2_panss_sum_pos)
v2_panss_sum_pos<-as.numeric.factor(v2_panss_p1)+
as.numeric.factor(v2_panss_p2)+
as.numeric.factor(v2_panss_p3)+
as.numeric.factor(v2_panss_p4)+
as.numeric.factor(v2_panss_p5)+
as.numeric.factor(v2_panss_p6)+
as.numeric.factor(v2_panss_p7)
summary(v2_panss_sum_pos)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.00 7.00 7.00 9.27 10.00 32.00 614
N1 Blunted affect (ordinal [1,2,3,4,5,6,7], v2_panss_n1)
v2_panss_n1<-c(v2_clin$v2_panss_n_n1_affektverflachung,v2_con$v2_panss_n_n1_affektverflachung)
v2_panss_n1<-factor(v2_panss_n1, ordered=T)
descT(v2_panss_n1)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 553 108 128 88 45 8 2 611 1543
## [2,] Percent 35.8 7 8.3 5.7 2.9 0.5 0.1 39.6 100
N2 Emotional withdrawal (ordinal [1,2,3,4,5,6,7], v2_panss_n2)
v2_panss_n2<-c(v2_clin$v2_panss_n_n2_emot_rueckzug,v2_con$v2_panss_n_n2_emot_rueckzug)
v2_panss_n2<-factor(v2_panss_n2, ordered=T)
descT(v2_panss_n2)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 646 95 99 70 21 4 608 1543
## [2,] Percent 41.9 6.2 6.4 4.5 1.4 0.3 39.4 100
N3 Poor rapport (ordinal [1,2,3,4,5,6,7], v2_panss_n3)
v2_panss_n3<-c(v2_clin$v2_panss_n_n3_mang_aff_rapp,v2_con$v2_panss_n_n3_mang_aff_rapp)
v2_panss_n3<-factor(v2_panss_n3, ordered=T)
descT(v2_panss_n3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 696 87 101 37 9 4 609 1543
## [2,] Percent 45.1 5.6 6.5 2.4 0.6 0.3 39.5 100
N4 Passive/apathetic social withdrawal (ordinal [1,2,3,4,5,6,7], v2_panss_n4)
v2_panss_n4<-c(v2_clin$v2_panss_n_n4_soz_pass_apath,v2_con$v2_panss_n_n4_soz_pass_apath)
v2_panss_n4<-factor(v2_panss_n4, ordered=T)
descT(v2_panss_n4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 655 75 123 55 24 3 608 1543
## [2,] Percent 42.4 4.9 8 3.6 1.6 0.2 39.4 100
N5 difficulty in abstract thinking (ordinal [1,2,3,4,5,6,7], v2_panss_n5)
v2_panss_n5<-c(v2_clin$v2_panss_n_n5_abstr_denken,v2_con$v2_panss_n_n5_abstr_denken)
v2_panss_n5<-factor(v2_panss_n5, ordered=T)
descT(v2_panss_n5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 620 98 135 56 15 5 614 1543
## [2,] Percent 40.2 6.4 8.7 3.6 1 0.3 39.8 100
N6 Lack of spontaneity and flow of conversation (ordinal [1,2,3,4,5,6,7], v2_panss_n6)
v2_panss_n6<-c(v2_clin$v2_panss_n_n6_spon_fl_sprache,v2_con$v2_panss_n_n6_spon_fl_sprache)
v2_panss_n6<-factor(v2_panss_n6, ordered=T)
descT(v2_panss_n6)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 719 74 87 33 15 2 613 1543
## [2,] Percent 46.6 4.8 5.6 2.1 1 0.1 39.7 100
N7 Stereotyped thinking (ordinal [1,2,3,4,5,6,7], v2_panss_n7)
v2_panss_n7<-c(v2_clin$v2_panss_n_n7_stereotyp_ged,v2_con$v2_panss_n_n7_stereotyp_ged)
v2_panss_n7<-factor(v2_panss_n7, ordered=T)
descT(v2_panss_n7)
## 1 2 3 4 5 <NA>
## [1,] No. cases 777 68 63 19 4 612 1543
## [2,] Percent 50.4 4.4 4.1 1.2 0.3 39.7 100
PANSS Negative sum score (continuous [7-49], v2_panss_sum_neg)
v2_panss_sum_neg<-as.numeric.factor(v2_panss_n1)+
as.numeric.factor(v2_panss_n2)+
as.numeric.factor(v2_panss_n3)+
as.numeric.factor(v2_panss_n4)+
as.numeric.factor(v2_panss_n5)+
as.numeric.factor(v2_panss_n6)+
as.numeric.factor(v2_panss_n7)
summary(v2_panss_sum_neg)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.00 7.00 9.00 11.08 13.00 39.00 620
G1 Somatic concerns (ordinal [1,2,3,4,5,6,7], v2_panss_g1)
v2_panss_g1<-c(v2_clin$v2_panss_g_g1_sorge_gesundh,v2_con$v2_panss_g_g1_sorge_gesundh)
v2_panss_g1<-factor(v2_panss_g1, ordered=T)
descT(v2_panss_g1)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 656 120 97 49 10 2 1 608 1543
## [2,] Percent 42.5 7.8 6.3 3.2 0.6 0.1 0.1 39.4 100
G2 Anxiety (ordinal [1,2,3,4,5,6,7], v2_panss_g2)
v2_panss_g2<-c(v2_clin$v2_panss_g_g2_angst,v2_con$v2_panss_g_g2_angst)
v2_panss_g2<-factor(v2_panss_g2, ordered=T)
descT(v2_panss_g2)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 598 81 183 47 24 1 1 608 1543
## [2,] Percent 38.8 5.2 11.9 3 1.6 0.1 0.1 39.4 100
G3 Guilt feelings (ordinal [1,2,3,4,5,6,7], v2_panss_g3)
v2_panss_g3<-c(v2_clin$v2_panss_g_g3_schuldgefuehle,v2_con$v2_panss_g_g3_schuldgefuehle)
v2_panss_g3<-factor(v2_panss_g3, ordered=T)
descT(v2_panss_g3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 704 76 93 41 13 4 612 1543
## [2,] Percent 45.6 4.9 6 2.7 0.8 0.3 39.7 100
G4 Tension (ordinal [1,2,3,4,5,6,7], v2_panss_g4)
v2_panss_g4<-c(v2_clin$v2_panss_g_g4_anspannung,v2_con$v2_panss_g_g4_anspannung)
v2_panss_g4<-factor(v2_panss_g4, ordered=T)
descT(v2_panss_g4)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 609 108 150 51 11 4 1 609 1543
## [2,] Percent 39.5 7 9.7 3.3 0.7 0.3 0.1 39.5 100
G5 Mannerisms & posturing (ordinal [1,2,3,4,5,6,7], v2_panss_g5)
v2_panss_g5<-c(v2_clin$v2_panss_g_g5_manier_koerperh,v2_con$v2_panss_g_g5_manier_koerperh)
v2_panss_g5<-factor(v2_panss_g5, ordered=T)
descT(v2_panss_g5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 851 36 30 9 6 1 610 1543
## [2,] Percent 55.2 2.3 1.9 0.6 0.4 0.1 39.5 100
G6 Depression (ordinal [1,2,3,4,5,6,7], v2_panss_g6)
v2_panss_g6<-c(v2_clin$v2_panss_g_g6_depression,v2_con$v2_panss_g_g6_depression)
v2_panss_g6<-factor(v2_panss_g6, ordered=T)
descT(v2_panss_g6)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 530 80 168 87 54 15 609 1543
## [2,] Percent 34.3 5.2 10.9 5.6 3.5 1 39.5 100
G7 Motor retardation (ordinal [1,2,3,4,5,6,7], v2_panss_g7)
v2_panss_g7<-c(v2_clin$v2_panss_g_g7_mot_verlangs,v2_con$v2_panss_g_g7_mot_verlangs)
v2_panss_g7<-factor(v2_panss_g7, ordered=T)
descT(v2_panss_g7)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 646 85 136 57 7 2 610 1543
## [2,] Percent 41.9 5.5 8.8 3.7 0.5 0.1 39.5 100
G8 Uncooperativeness (ordinal [1,2,3,4,5,6,7], v2_panss_g8)
v2_panss_g8<-c(v2_clin$v2_panss_g_g8_unkoop_verh,v2_con$v2_panss_g_g8_unkoop_verh)
v2_panss_g8<-factor(v2_panss_g8, ordered=T)
descT(v2_panss_g8)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 864 27 36 4 1 1 610 1543
## [2,] Percent 56 1.7 2.3 0.3 0.1 0.1 39.5 100
G9 Unusual thought content (ordinal [1,2,3,4,5,6,7], v2_panss_g9)
v2_panss_g9<-c(v2_clin$v2_panss_g_g9_ungew_denkinh,v2_con$v2_panss_g_g9_ungew_denkinh)
v2_panss_g9<-factor(v2_panss_g9, ordered=T)
descT(v2_panss_g9)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 772 50 75 21 12 4 609 1543
## [2,] Percent 50 3.2 4.9 1.4 0.8 0.3 39.5 100
G10 Disorientation (ordinal [1,2,3,4,5,6,7], v2_panss_g10)
v2_panss_g10<-c(v2_clin$v2_panss_g_g10_desorient,v2_con$v2_panss_g_g10_desorient)
v2_panss_g10<-factor(v2_panss_g10, ordered=T)
descT(v2_panss_g10)
## 1 2 3 4 5 <NA>
## [1,] No. cases 874 39 18 2 2 608 1543
## [2,] Percent 56.6 2.5 1.2 0.1 0.1 39.4 100
G11 Poor attention (ordinal [1,2,3,4,5,6,7], v2_panss_g11)
v2_panss_g11<-c(v2_clin$v2_panss_g_g11_mang_aufmerks,v2_con$v2_panss_g_g11_mang_aufmerks)
v2_panss_g11<-factor(v2_panss_g11, ordered=T)
descT(v2_panss_g11)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 578 96 189 56 8 2 614 1543
## [2,] Percent 37.5 6.2 12.2 3.6 0.5 0.1 39.8 100
G12 Lack of judgement & insight (ordinal [1,2,3,4,5,6,7], v2_panss_g12)
v2_panss_g12<-c(v2_clin$v2_panss_g_g12_mang_urt_einsi,v2_con$v2_panss_g_g12_mang_urt_einsi)
v2_panss_g12<-factor(v2_panss_g12, ordered=T)
descT(v2_panss_g12)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 812 51 48 8 11 2 611 1543
## [2,] Percent 52.6 3.3 3.1 0.5 0.7 0.1 39.6 100
G13 Disturbance of volition (ordinal [1,2,3,4,5,6,7], v2_panss_g13)
v2_panss_g13<-c(v2_clin$v2_panss_g_g13_willensschwae,v2_con$v2_panss_g_g13_willensschwae)
v2_panss_g13<-factor(v2_panss_g13, ordered=T)
descT(v2_panss_g13)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 820 40 56 15 1 1 610 1543
## [2,] Percent 53.1 2.6 3.6 1 0.1 0.1 39.5 100
G14 Poor impulse control (ordinal [1,2,3,4,5,6,7], v2_panss_g14)
v2_panss_g14<-c(v2_clin$v2_panss_g_g14_mang_impulsk,v2_con$v2_panss_g_g14_mang_impulsk)
v2_panss_g14<-factor(v2_panss_g14, ordered=T)
descT(v2_panss_g14)
## 1 2 3 4 5 <NA>
## [1,] No. cases 819 33 69 12 1 609 1543
## [2,] Percent 53.1 2.1 4.5 0.8 0.1 39.5 100
G15 Preoccupation (ordinal [1,2,3,4,5,6,7], v2_panss_g15)
v2_panss_g15<-c(v2_clin$v2_panss_g_g15_selbstbezog,v2_con$v2_panss_g_g15_selbstbezog)
v2_panss_g15<-factor(v2_panss_g15, ordered=T)
descT(v2_panss_g15)
## 1 2 3 4 5 <NA>
## [1,] No. cases 830 54 31 16 2 610 1543
## [2,] Percent 53.8 3.5 2 1 0.1 39.5 100
G16 Active social avoidance (ordinal [1,2,3,4,5,6,7], v2_panss_g16)
v2_panss_g16<-c(v2_clin$v2_panss_g_g16_aktsoz_vermeid,v2_con$v2_panss_g_g16_aktsoz_vermeid)
v2_panss_g16<-factor(v2_panss_g16, ordered=T)
descT(v2_panss_g16)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 717 69 98 29 18 2 610 1543
## [2,] Percent 46.5 4.5 6.4 1.9 1.2 0.1 39.5 100
PANSS General Psychopathology sum score (continuous [16-112], v2_panss_sum_gen)
v2_panss_sum_gen<-as.numeric.factor(v2_panss_g1)+
as.numeric.factor(v2_panss_g2)+
as.numeric.factor(v2_panss_g3)+
as.numeric.factor(v2_panss_g4)+
as.numeric.factor(v2_panss_g5)+
as.numeric.factor(v2_panss_g6)+
as.numeric.factor(v2_panss_g7)+
as.numeric.factor(v2_panss_g8)+
as.numeric.factor(v2_panss_g9)+
as.numeric.factor(v2_panss_g10)+
as.numeric.factor(v2_panss_g11)+
as.numeric.factor(v2_panss_g12)+
as.numeric.factor(v2_panss_g13)+
as.numeric.factor(v2_panss_g14)+
as.numeric.factor(v2_panss_g15)+
as.numeric.factor(v2_panss_g16)
summary(v2_panss_sum_gen)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 16.00 17.00 20.00 22.88 27.00 68.00 631
Create PANSS Total score (continuous [30-210], v2_panss_sum_tot)
v2_panss_sum_tot<-v2_panss_sum_pos+v2_panss_sum_neg+v2_panss_sum_gen
summary(v2_panss_sum_tot)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 30.00 31.00 38.00 43.25 50.00 137.00 645
Create dataset
v2_symp_panss<-data.frame(v2_panss_p1,v2_panss_p2,v2_panss_p3,v2_panss_p4,v2_panss_p5,v2_panss_p6,v2_panss_p7,
v2_panss_n1,v2_panss_n2,v2_panss_n3,v2_panss_n4,v2_panss_n5,v2_panss_n6,v2_panss_n7,
v2_panss_g1,v2_panss_g2,v2_panss_g3,v2_panss_g4,v2_panss_g5,v2_panss_g6,v2_panss_g7,
v2_panss_g8,v2_panss_g9,v2_panss_g10,v2_panss_g11,v2_panss_g12,v2_panss_g13,v2_panss_g14,
v2_panss_g15,v2_panss_g16,v2_panss_sum_pos,v2_panss_sum_neg,v2_panss_sum_gen,
v2_panss_sum_tot)
For more information on the scale, please see Visit 1
Item 1 Sleep onset insomnia (ordinal [0,1,2,3], v2_idsc_itm1)
v2_idsc_itm1<-c(v2_clin$v2_ids_c_s1_ids1_einschlafschw,v2_con$v2_ids_c_s1_ids1_einschlafschw)
v2_idsc_itm1<-factor(v2_idsc_itm1, ordered=T)
descT(v2_idsc_itm1)
## 0 1 2 3 <NA>
## [1,] No. cases 661 123 81 65 613 1543
## [2,] Percent 42.8 8 5.2 4.2 39.7 100
Item 2 Mid-nocturnal insomnia (ordinal [0,1,2,3], v2_idsc_itm2)
v2_idsc_itm2<-c(v2_clin$v2_ids_c_s1_ids2_naechtl_aufw,v2_con$v2_ids_c_s1_ids2_naechtl_aufw)
v2_idsc_itm2<-factor(v2_idsc_itm2, ordered=T)
descT(v2_idsc_itm2)
## 0 1 2 3 <NA>
## [1,] No. cases 570 139 145 76 613 1543
## [2,] Percent 36.9 9 9.4 4.9 39.7 100
Item 3 Early morning insomnia (ordinal [0,1,2,3], v2_idsc_itm3)
v2_idsc_itm3<-c(v2_clin$v2_ids_c_s1_ids3_frueh_aufw,v2_con$v2_ids_c_s1_ids3_frueh_aufw)
v2_idsc_itm3<-factor(v2_idsc_itm3, ordered=T)
descT(v2_idsc_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 790 61 41 37 614 1543
## [2,] Percent 51.2 4 2.7 2.4 39.8 100
Item 4 Hypersomnia (ordinal [0,1,2,3], v2_idsc_itm4)
v2_idsc_itm4<-c(v2_clin$v2_ids_c_s1_ids4_hypersomnie,v2_con$v2_ids_c_s1_ids4_hypersomnie)
v2_idsc_itm4<-factor(v2_idsc_itm4, ordered=T)
descT(v2_idsc_itm4)
## 0 1 2 3 <NA>
## [1,] No. cases 580 239 90 20 614 1543
## [2,] Percent 37.6 15.5 5.8 1.3 39.8 100
Item 5 Mood (sad) (ordinal [0,1,2,3], v2_idsc_itm5)
v2_idsc_itm5<-c(v2_clin$v2_ids_c_s1_ids5_stimmung_trgk,v2_con$v2_ids_c_s1_ids5_stimmung_trgk)
v2_idsc_itm5<-factor(v2_idsc_itm5, ordered=T)
descT(v2_idsc_itm5)
## 0 1 2 3 <NA>
## [1,] No. cases 575 211 96 47 614 1543
## [2,] Percent 37.3 13.7 6.2 3 39.8 100
Item 6 Mood (irritable) (ordinal [0,1,2,3], v2_idsc_itm6)
v2_idsc_itm6<-c(v2_clin$v2_ids_c_s1_ids6_stimmung_grzt,v2_con$v2_ids_c_s1_ids6_stimmung_grzt)
v2_idsc_itm6<-factor(v2_idsc_itm6, ordered=T)
descT(v2_idsc_itm6)
## 0 1 2 3 <NA>
## [1,] No. cases 652 204 62 12 613 1543
## [2,] Percent 42.3 13.2 4 0.8 39.7 100
Item 7 Mood (anxious) (ordinal [0,1,2,3], v2_idsc_itm7)
v2_idsc_itm7<-c(v2_clin$v2_ids_c_s1_ids7_stimmung_agst,v2_con$v2_ids_c_s1_ids7_stimmung_agst)
v2_idsc_itm7<-factor(v2_idsc_itm7, ordered=T)
descT(v2_idsc_itm7)
## 0 1 2 3 <NA>
## [1,] No. cases 612 200 84 31 616 1543
## [2,] Percent 39.7 13 5.4 2 39.9 100
Item 8 Reactivity of mood (ordinal [0,1,2,3], v2_idsc_itm8)
v2_idsc_itm8<-c(v2_clin$v2_ids_c_s1_ids8_reakt_stimmung,v2_con$v2_ids_c_s1_ids8_reakt_stimmung)
v2_idsc_itm8<-factor(v2_idsc_itm8, ordered=T)
descT(v2_idsc_itm8)
## 0 1 2 3 <NA>
## [1,] No. cases 745 108 48 24 618 1543
## [2,] Percent 48.3 7 3.1 1.6 40.1 100
Item 9 Mood Variation (ordinal [0,1,2,3], v2_idsc_itm9)
v2_idsc_itm9<-c(v2_clin$v2_ids_c_s1_ids9_stimmungsschw,v2_con$v2_ids_c_s1_ids9_stimmungsschw)
v2_idsc_itm9<-factor(v2_idsc_itm9, ordered=T)
descT(v2_idsc_itm9)
## 0 1 2 3 <NA>
## [1,] No. cases 700 83 41 98 621 1543
## [2,] Percent 45.4 5.4 2.7 6.4 40.2 100
Item 9A (categorical [M, A, N], v2_idsc_itm9a)
Additional information if the answer on item 9 was 1,2 or 3: “When was the mood usually worse?” (“M”-morning, “A”-afternoon, “N”-night).
v2_idsc_itm9a_pre<-c(v2_clin$v2_ids_c_s1_ids9a_stimmungsschw,v2_con$v2_ids_c_s1_ids9a_stimmungsschw)
v2_idsc_itm9a<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_idsc_itm9a<-ifelse(v2_idsc_itm9!=0 & v2_idsc_itm9a_pre==1, "M", ifelse(v2_idsc_itm9==0, -999, v2_idsc_itm9a))
v2_idsc_itm9a<-ifelse(v2_idsc_itm9!=0 & v2_idsc_itm9a_pre==2, "A", ifelse(v2_idsc_itm9==0, -999, v2_idsc_itm9a))
v2_idsc_itm9a<-ifelse(v2_idsc_itm9!=0 & v2_idsc_itm9a_pre==3, "N", ifelse(v2_idsc_itm9==0, -999, v2_idsc_itm9a))
v2_idsc_itm9a<-factor(v2_idsc_itm9a, ordered=F)
descT(v2_idsc_itm9a)
## -999 A M N <NA>
## [1,] No. cases 700 16 117 36 674 1543
## [2,] Percent 45.4 1 7.6 2.3 43.7 100
Item 9B (dichotomous, v2_idsc_itm9b) Additional information if the answer on item 9 was 1,2 or 3: “Is mood variation attributed to environment by the patient?”.
v2_idsc_itm9b_pre<-c(v2_clin$v2_ids_c_s1_ids9b_stimmungsschw,v2_con$v2_ids_c_s1_ids9b_stimmungsschw)
v2_idsc_itm9b<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_idsc_itm9b<-ifelse(v2_idsc_itm9!=0 & v2_idsc_itm9b_pre==0, "N", ifelse(v2_idsc_itm9==0, -999, v2_idsc_itm9b))
v2_idsc_itm9b<-ifelse(v2_idsc_itm9!=0 & v2_idsc_itm9b_pre==1, "Y", ifelse(v2_idsc_itm9==0, -999, v2_idsc_itm9b))
v2_idsc_itm9b<-factor(v2_idsc_itm9b, ordered=F)
descT(v2_idsc_itm9b)
## -999 N Y <NA>
## [1,] No. cases 700 71 57 715 1543
## [2,] Percent 45.4 4.6 3.7 46.3 100
Item 10 Quality of mood (ordinal [0,1,2,3], v2_idsc_itm10)
v2_idsc_itm10<-c(v2_clin$v2_ids_c_s1_ids10_quali_stimmung,v2_con$v2_ids_c_s1_ids10_quali_stimmung)
v2_idsc_itm10<-factor(v2_idsc_itm10, ordered=T)
descT(v2_idsc_itm10)
## 0 1 2 3 <NA>
## [1,] No. cases 782 57 34 51 619 1543
## [2,] Percent 50.7 3.7 2.2 3.3 40.1 100
Items 11-14 Appetite and weight
Please not that item 11 assesses decreased appetite and item 13 assesses weight loss during the past two weeks. Item 12 assesses increased appetite and item 14 weight gain during the past two weeks.
The interviewer is supposed to rate either items 11 and 13 or items 12 and 14.
Item 11 (ordinal [0,1,2,3], v2_idsc_itm11)
v2_idsc_app_verm<-c(v2_clin$v2_ids_c_s2_ids11_appetit_verm,v2_con$v2_ids_c_s2_ids11_appetit_verm)
v2_idsc_app_gest<-c(v2_clin$v2_ids_c_s2_ids12_appetit_steig,v2_con$v2_ids_c_s2_ids12_appetit_steig)
v2_idsc_itm11<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_idsc_itm11<-ifelse(is.na(v2_idsc_app_verm)==T & is.na(v2_idsc_app_gest)==T, NA,
ifelse(is.na(v2_idsc_app_verm)==T & is.na(v2_idsc_app_gest)==F, -999,
ifelse(is.na(v2_idsc_app_verm)==F & is.na(v2_idsc_app_gest)==T,
v2_idsc_app_verm,
ifelse(is.na(v2_idsc_app_verm)==F & is.na(v2_idsc_app_gest)==F &
(v2_idsc_app_verm>v2_idsc_app_gest), v2_idsc_app_verm, ifelse(is.na(v2_idsc_app_verm)==F & is.na(v2_idsc_app_gest)==F & (v2_idsc_app_gest>=v2_idsc_app_verm),-999,v2_idsc_itm11)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v2_idsc_itm11)
## -999 0 1 2 3 <NA>
## [1,] No. cases 275 552 74 25 3 614 1543
## [2,] Percent 17.8 35.8 4.8 1.6 0.2 39.8 100
Item 12 (ordinal [0,1,2,3], v2_idsc_itm12)
v2_idsc_itm12<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_idsc_itm12<-ifelse(is.na(v2_idsc_app_verm)==T & is.na(v2_idsc_app_gest)==T, NA,
ifelse(is.na(v2_idsc_app_verm)==T & is.na(v2_idsc_app_gest)==F,
v2_idsc_app_gest,
ifelse(is.na(v2_idsc_app_verm)==F & is.na(v2_idsc_app_gest)==T,
-999,
ifelse(is.na(v2_idsc_app_verm)==F & is.na(v2_idsc_app_gest)==F &
(v2_idsc_app_verm>v2_idsc_app_gest), -999,
ifelse(is.na(v2_idsc_app_verm)==F & is.na(v2_idsc_app_gest)==F & (v2_idsc_app_gest>=v2_idsc_app_verm),
v2_idsc_app_gest,v2_idsc_itm12)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v2_idsc_itm12)
## -999 0 1 2 3 <NA>
## [1,] No. cases 654 110 100 42 23 614 1543
## [2,] Percent 42.4 7.1 6.5 2.7 1.5 39.8 100
Item 13 (ordinal [0,1,2,3], v2_idsc_itm13)
v2_idsc_gew_abn<-c(v2_clin$v2_ids_c_s2_ids13_gewichtsabn,v2_con$v2_ids_c_s2_ids13_gewichtsabn)
v2_idsc_gew_zun<-c(v2_clin$v2_ids_c_s2_ids14_gewichtszun,v2_con$v2_ids_c_s2_ids14_gewichtszun)
v2_idsc_itm13<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_idsc_itm13<-ifelse(is.na(v2_idsc_gew_abn)==T & is.na(v2_idsc_gew_zun)==T, NA,
ifelse(is.na(v2_idsc_gew_abn)==T & is.na(v2_idsc_gew_zun)==F, -999,
ifelse(is.na(v2_idsc_gew_abn)==F & is.na(v2_idsc_gew_zun)==T,
v2_idsc_gew_abn,
ifelse(is.na(v2_idsc_gew_abn)==F & is.na(v2_idsc_gew_zun)==F &
(v2_idsc_gew_abn>v2_idsc_gew_zun), v2_idsc_gew_abn, ifelse(is.na(v2_idsc_gew_abn)==F & is.na(v2_idsc_gew_zun)==F & (v2_idsc_gew_zun >= v2_idsc_gew_abn),-999,v2_idsc_itm13)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v2_idsc_itm13)
## -999 0 1 2 3 <NA>
## [1,] No. cases 299 533 45 37 17 612 1543
## [2,] Percent 19.4 34.5 2.9 2.4 1.1 39.7 100
Item 14 (ordinal [0,1,2,3], v2_idsc_itm14)
v2_idsc_itm14<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_idsc_itm14<-ifelse(is.na(v2_idsc_gew_abn)==T & is.na(v2_idsc_gew_zun)==T, NA,
ifelse(is.na(v2_idsc_gew_abn)==T & is.na(v2_idsc_gew_zun)==F,
v2_idsc_gew_zun,
ifelse(is.na(v2_idsc_gew_abn)==F & is.na(v2_idsc_gew_zun)==T,
-999,
ifelse(is.na(v2_idsc_gew_abn)==F & is.na(v2_idsc_gew_zun)==F &
(v2_idsc_gew_abn>v2_idsc_gew_zun), -999,
ifelse(is.na(v2_idsc_gew_abn)==F & is.na(v2_idsc_gew_zun)==F & (v2_idsc_gew_zun>=v2_idsc_gew_abn),
v2_idsc_gew_zun,v2_idsc_itm14)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v2_idsc_itm14)
## -999 0 1 2 3 <NA>
## [1,] No. cases 632 159 66 50 24 612 1543
## [2,] Percent 41 10.3 4.3 3.2 1.6 39.7 100
Item 15 Concentration/decision making (ordinal [0,1,2,3], v2_idsc_itm15)
v2_idsc_itm15<-c(v2_clin$v2_ids_c_s2_ids15_konz_entscheid,v2_con$v2_ids_c_s2_ids15_konz_entscheid)
v2_idsc_itm15<-factor(v2_idsc_itm15, ordered=T)
descT(v2_idsc_itm15)
## 0 1 2 3 <NA>
## [1,] No. cases 531 241 136 20 615 1543
## [2,] Percent 34.4 15.6 8.8 1.3 39.9 100
Item 16 Outlook (self) (ordinal [0,1,2,3], v2_idsc_itm16)
v2_idsc_itm16<-c(v2_clin$v2_ids_c_s2_ids16_selbstbild,v2_con$v2_ids_c_s2_ids16_selbstbild)
v2_idsc_itm16<-factor(v2_idsc_itm16, ordered=T)
descT(v2_idsc_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 676 155 49 49 614 1543
## [2,] Percent 43.8 10 3.2 3.2 39.8 100
Item 17 Outlook (future) (ordinal [0,1,2,3], v2_idsc_itm17)
v2_idsc_itm17<-c(v2_clin$v2_ids_c_s2_ids17_zukunftssicht,v2_con$v2_ids_c_s2_ids17_zukunftssicht)
v2_idsc_itm17<-factor(v2_idsc_itm17, ordered=T)
descT(v2_idsc_itm17)
## 0 1 2 3 <NA>
## [1,] No. cases 602 230 86 10 615 1543
## [2,] Percent 39 14.9 5.6 0.6 39.9 100
Item 18 Suicidal ideation (ordinal [0,1,2,3], v2_idsc_itm18)
v2_idsc_itm18<-c(v2_clin$v2_ids_c_s2_ids18_selbstmordged,v2_con$v2_ids_c_s2_ids18_selbstmordged)
v2_idsc_itm18<-factor(v2_idsc_itm18, ordered=T)
descT(v2_idsc_itm18)
## 0 1 2 3 <NA>
## [1,] No. cases 830 46 50 3 614 1543
## [2,] Percent 53.8 3 3.2 0.2 39.8 100
Item 19 Involvement (ordinal [0,1,2,3], v2_idsc_itm19)
v2_idsc_itm19<-c(v2_clin$v2_ids_c_s2_ids19_interess_aktiv,v2_con$v2_ids_c_s2_ids19_interess_aktiv)
v2_idsc_itm19<-factor(v2_idsc_itm19, ordered=T)
descT(v2_idsc_itm19)
## 0 1 2 3 <NA>
## [1,] No. cases 749 138 29 16 611 1543
## [2,] Percent 48.5 8.9 1.9 1 39.6 100
Item 20 Energy/fatigability (ordinal [0,1,2,3], v2_idsc_itm20)
v2_idsc_itm20<-c(v2_clin$v2_ids_c_s2_ids20_energ_ermued,v2_con$v2_ids_c_s2_ids20_energ_ermued)
v2_idsc_itm20<-factor(v2_idsc_itm20, ordered=T)
descT(v2_idsc_itm20)
## 0 1 2 3 <NA>
## [1,] No. cases 571 234 112 14 612 1543
## [2,] Percent 37 15.2 7.3 0.9 39.7 100
Item 21 Pleasure/enjoyment (exclude sexual activities) (ordinal [0,1,2,3], v2_idsc_itm21)
v2_idsc_itm21<-c(v2_clin$v2_ids_c_s3_ids21_vergn_genuss,v2_con$v2_ids_c_s3_ids21_vergn_genuss)
v2_idsc_itm21<-factor(v2_idsc_itm21, ordered=T)
descT(v2_idsc_itm21)
## 0 1 2 3 <NA>
## [1,] No. cases 760 119 44 7 613 1543
## [2,] Percent 49.3 7.7 2.9 0.5 39.7 100
Item 22 Sexual interest (ordinal [0,1,2,3], v2_idsc_itm22)
v2_idsc_itm22<-c(v2_clin$v2_ids_c_s3_ids22_sex_interesse,v2_con$v2_ids_c_s3_ids22_sex_interesse)
v2_idsc_itm22<-factor(v2_idsc_itm22, ordered=T)
descT(v2_idsc_itm22)
## 0 1 2 3 <NA>
## [1,] No. cases 667 78 102 77 619 1543
## [2,] Percent 43.2 5.1 6.6 5 40.1 100
Item 23 Psychomotor slowing (ordinal [0,1,2,3], v2_idsc_itm23)
v2_idsc_itm23<-c(v2_clin$v2_ids_c_s3_ids23_psymo_hemm,v2_con$v2_ids_c_s3_ids23_psymo_hemm)
v2_idsc_itm23<-factor(v2_idsc_itm23, ordered=T)
descT(v2_idsc_itm23)
## 0 1 2 3 <NA>
## [1,] No. cases 725 161 43 1 613 1543
## [2,] Percent 47 10.4 2.8 0.1 39.7 100
Item 24 Psychomotor agitation (ordinal [0,1,2,3], v2_idsc_itm24)
v2_idsc_itm24<-c(v2_clin$v2_ids_c_s3_ids24_psymo_agitht,v2_con$v2_ids_c_s3_ids24_psymo_agitht)
v2_idsc_itm24<-factor(v2_idsc_itm24, ordered=T)
descT(v2_idsc_itm24)
## 0 1 2 3 <NA>
## [1,] No. cases 764 110 50 5 614 1543
## [2,] Percent 49.5 7.1 3.2 0.3 39.8 100
Item 25 Somatic complaints (ordinal [0,1,2,3], v2_idsc_itm25)
v2_idsc_itm25<-c(v2_clin$v2_ids_c_s3_ids25_som_beschw,v2_con$v2_ids_c_s3_ids25_som_beschw)
v2_idsc_itm25<-factor(v2_idsc_itm25, ordered=T)
descT(v2_idsc_itm25)
## 0 1 2 3 <NA>
## [1,] No. cases 621 242 46 21 613 1543
## [2,] Percent 40.2 15.7 3 1.4 39.7 100
Item 26 Sympathetic arousal (ordinal [0,1,2,3], v2_idsc_itm26)
v2_idsc_itm26<-c(v2_clin$v2_ids_c_s3_ids26_veg_erreg,v2_con$v2_ids_c_s3_ids26_veg_erreg)
v2_idsc_itm26<-factor(v2_idsc_itm26, ordered=T)
descT(v2_idsc_itm26)
## 0 1 2 3 <NA>
## [1,] No. cases 659 219 45 7 613 1543
## [2,] Percent 42.7 14.2 2.9 0.5 39.7 100
Item 27 Panic/phobic symptoms (ordinal [0,1,2,3], v2_idsc_itm27)
v2_idsc_itm27<-c(v2_clin$v2_ids_c_s3_ids27_panik_phob,v2_con$v2_ids_c_s3_ids27_panik_phob)
v2_idsc_itm27<-factor(v2_idsc_itm27, ordered=T)
descT(v2_idsc_itm27)
## 0 1 2 3 <NA>
## [1,] No. cases 816 73 32 9 613 1543
## [2,] Percent 52.9 4.7 2.1 0.6 39.7 100
Item 28 Gastrointestinal (ordinal [0,1,2,3], v2_idsc_itm28)
v2_idsc_itm28<-c(v2_clin$v2_ids_c_s3_ids28_verdauung,v2_con$v2_ids_c_s3_ids28_verdauung)
v2_idsc_itm28<-factor(v2_idsc_itm28, ordered=T)
descT(v2_idsc_itm28)
## 0 1 2 3 <NA>
## [1,] No. cases 763 101 49 15 615 1543
## [2,] Percent 49.4 6.5 3.2 1 39.9 100
Item 29 Interpersonal sensitivity (ordinal [0,1,2,3], v2_idsc_itm29)
v2_idsc_itm29<-c(v2_clin$v2_ids_c_s3_ids29_pers_bezieh,v2_con$v2_ids_c_s3_ids29_pers_bezieh)
v2_idsc_itm29<-factor(v2_idsc_itm29, ordered=T)
descT(v2_idsc_itm29)
## 0 1 2 3 <NA>
## [1,] No. cases 758 111 46 16 612 1543
## [2,] Percent 49.1 7.2 3 1 39.7 100
Item 30 Leaden paralysis/physical energy (ordinal [0,1,2,3], v2_idsc_itm30)
v2_idsc_itm30<-c(v2_clin$v2_ids_c_s3_ids30_schwgf_k_energ,v2_con$v2_ids_c_s3_ids30_schwgf_k_energ)
v2_idsc_itm30<-factor(v2_idsc_itm30, ordered=T)
descT(v2_idsc_itm30)
## 0 1 2 3 <NA>
## [1,] No. cases 761 119 33 16 614 1543
## [2,] Percent 49.3 7.7 2.1 1 39.8 100
Create IDS-C30 total score (continuous [0-84], v2_idsc_sum) Please note that calculation of the sum score involves selecting either item 11 or item 12 and selecting either item 13 or item 14. If both items are coded, the higher one is taken, according to the official rating instructions.
v2_idsc_sum<-as.numeric.factor(v2_idsc_itm1)+
as.numeric.factor(v2_idsc_itm2)+
as.numeric.factor(v2_idsc_itm3)+
as.numeric.factor(v2_idsc_itm4)+
as.numeric.factor(v2_idsc_itm5)+
as.numeric.factor(v2_idsc_itm6)+
as.numeric.factor(v2_idsc_itm7)+
as.numeric.factor(v2_idsc_itm8)+
as.numeric.factor(v2_idsc_itm9)+
as.numeric.factor(v2_idsc_itm10)+
ifelse(is.na(v2_idsc_itm11)==T & is.na(v2_idsc_itm12)==T, NA,
ifelse((v2_idsc_itm11==-999 & v2_idsc_itm12!=-999), v2_idsc_itm12,
ifelse((v2_idsc_itm11!=-999 & v2_idsc_itm12==-999),v2_idsc_itm11, NA)))+
ifelse(is.na(v2_idsc_itm13)==T & is.na(v2_idsc_itm14)==T, NA,
ifelse((v2_idsc_itm13==-999 & v2_idsc_itm14!=-999), v2_idsc_itm14,
ifelse((v2_idsc_itm13!=-999 & v2_idsc_itm14==-999),v2_idsc_itm13, NA)))+
as.numeric.factor(v2_idsc_itm15)+
as.numeric.factor(v2_idsc_itm16)+
as.numeric.factor(v2_idsc_itm17)+
as.numeric.factor(v2_idsc_itm18)+
as.numeric.factor(v2_idsc_itm19)+
as.numeric.factor(v2_idsc_itm20)+
as.numeric.factor(v2_idsc_itm21)+
as.numeric.factor(v2_idsc_itm22)+
as.numeric.factor(v2_idsc_itm23)+
as.numeric.factor(v2_idsc_itm24)+
as.numeric.factor(v2_idsc_itm25)+
as.numeric.factor(v2_idsc_itm26)+
as.numeric.factor(v2_idsc_itm27)+
as.numeric.factor(v2_idsc_itm28)+
as.numeric.factor(v2_idsc_itm29)+
as.numeric.factor(v2_idsc_itm30)
summary(v2_idsc_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0 3.0 8.0 10.9 16.0 55.0 693
Code itm 11, 12, 13 and 14 as factors (omitted before due to ifelse condition)
v2_idsc_itm11<-factor(v2_idsc_itm11,ordered=T)
v2_idsc_itm12<-factor(v2_idsc_itm12,ordered=T)
v2_idsc_itm13<-factor(v2_idsc_itm13,ordered=T)
v2_idsc_itm14<-factor(v2_idsc_itm14,ordered=T)
Create dataset
v2_symp_ids_c<-data.frame(v2_idsc_itm1,v2_idsc_itm2,v2_idsc_itm3,v2_idsc_itm4,v2_idsc_itm5,v2_idsc_itm6,v2_idsc_itm7,
v2_idsc_itm8,v2_idsc_itm9,v2_idsc_itm9a,v2_idsc_itm9b,v2_idsc_itm10,v2_idsc_itm11,v2_idsc_itm12,
v2_idsc_itm13,v2_idsc_itm14,v2_idsc_itm15,v2_idsc_itm16,v2_idsc_itm17,v2_idsc_itm18,v2_idsc_itm19,
v2_idsc_itm20,v2_idsc_itm21,v2_idsc_itm22,v2_idsc_itm23,v2_idsc_itm24,v2_idsc_itm25,v2_idsc_itm26,
v2_idsc_itm27,v2_idsc_itm28,v2_idsc_itm29,v2_idsc_itm30,v2_idsc_sum)
For more information on the scale, please see Visit 1
Item 1 Elevated mood (ordinal [0,1,2,3,4], v2_ymrs_itm1)
v2_ymrs_itm1<-c(v2_clin$v2_ymrs_ymrs1_gehob_stimm,v2_con$v2_ymrs_ymrs1_gehob_stimm)
v2_ymrs_itm1<-factor(v2_ymrs_itm1, ordered=T)
descT(v2_ymrs_itm1)
## 0 1 2 3 4 <NA>
## [1,] No. cases 782 108 36 4 1 612 1543
## [2,] Percent 50.7 7 2.3 0.3 0.1 39.7 100
Item 2 Increased motor activity or energy (ordinal [0,1,2,3,4], v2_ymrs_itm2)
v2_ymrs_itm2<-c(v2_clin$v2_ymrs_ymrs2_gest_aktiv,v2_con$v2_ymrs_ymrs2_gest_aktiv)
v2_ymrs_itm2<-factor(v2_ymrs_itm2, ordered=T)
descT(v2_ymrs_itm2)
## 0 1 2 3 4 <NA>
## [1,] No. cases 818 72 32 4 1 616 1543
## [2,] Percent 53 4.7 2.1 0.3 0.1 39.9 100
Item 3 Sexual interest (ordinal [0,1,2,3,4], v2_ymrs_itm3)
v2_ymrs_itm3<-c(v2_clin$v2_ymrs_ymrs3_sex_interesse,v2_con$v2_ymrs_ymrs3_sex_interesse)
v2_ymrs_itm3<-factor(v2_ymrs_itm3, ordered=T)
descT(v2_ymrs_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 887 27 14 1 614 1543
## [2,] Percent 57.5 1.7 0.9 0.1 39.8 100
Item 4 Sleep (ordinal [0,1,2,3,4], v2_ymrs_itm4)
v2_ymrs_itm4<-c(v2_clin$v2_ymrs_ymrs4_schlaf,v2_con$v2_ymrs_ymrs4_schlaf)
v2_ymrs_itm4<-factor(v2_ymrs_itm4, ordered=T)
descT(v2_ymrs_itm4)
## 0 1 2 3 <NA>
## [1,] No. cases 859 37 23 12 612 1543
## [2,] Percent 55.7 2.4 1.5 0.8 39.7 100
Item 5 Irritability (ordinal [0,2,4,6,8], v2_ymrs_itm5)
v2_ymrs_itm5<-c(v2_clin$v2_ymrs_ymrs5_reizbarkeit,v2_con$v2_ymrs_ymrs5_reizbarkeit)
v2_ymrs_itm5<-factor(v2_ymrs_itm5, ordered=T)
descT(v2_ymrs_itm5)
## 0 2 4 6 <NA>
## [1,] No. cases 796 114 17 4 612 1543
## [2,] Percent 51.6 7.4 1.1 0.3 39.7 100
Item 6 Speech: rate & amount (ordinal [0,2,4,6,8], v2_ymrs_itm6)
v2_ymrs_itm6<-c(v2_clin$v2_ymrs_ymrs6_sprechweise,v2_con$v2_ymrs_ymrs6_sprechweise)
v2_ymrs_itm6<-factor(v2_ymrs_itm6, ordered=T)
descT(v2_ymrs_itm6)
## 0 2 4 6 <NA>
## [1,] No. cases 808 71 41 9 614 1543
## [2,] Percent 52.4 4.6 2.7 0.6 39.8 100
Item 7 Language: thought disorder (ordinal [0,1,2,3,4], v2_ymrs_itm7)
v2_ymrs_itm7<-c(v2_clin$v2_ymrs_ymrs7_sprachstoer,v2_con$v2_ymrs_ymrs7_sprachstoer)
v2_ymrs_itm7<-factor(v2_ymrs_itm7, ordered=T)
descT(v2_ymrs_itm7)
## 0 1 2 3 <NA>
## [1,] No. cases 823 86 17 4 613 1543
## [2,] Percent 53.3 5.6 1.1 0.3 39.7 100
Item 8 Content (ordinal [0,2,4,6,8], v2_ymrs_itm8)
v2_ymrs_itm8<-c(v2_clin$v2_ymrs_ymrs8_inhalte,v2_con$v2_ymrs_ymrs8_inhalte)
v2_ymrs_itm8<-factor(v2_ymrs_itm8, ordered=T)
descT(v2_ymrs_itm8)
## 0 2 4 6 8 <NA>
## [1,] No. cases 887 25 3 7 8 613 1543
## [2,] Percent 57.5 1.6 0.2 0.5 0.5 39.7 100
Item 9 Disruptive or aggressive behavior (ordinal [0,2,4,6,8], v2_ymrs_itm9)
v2_ymrs_itm9<-c(v2_clin$v2_ymrs_ymrs9_exp_aggr_verh,v2_con$v2_ymrs_ymrs9_exp_aggr_verh)
v2_ymrs_itm9<-factor(v2_ymrs_itm9, ordered=T)
descT(v2_ymrs_itm9)
## 0 2 4 6 <NA>
## [1,] No. cases 893 29 3 1 617 1543
## [2,] Percent 57.9 1.9 0.2 0.1 40 100
Item 10 Appearance (ordinal [0,1,2,3,4], v2_ymrs_itm10)
v2_ymrs_itm10<-c(v2_clin$v2_ymrs_ymrs10_erscheinung,v2_con$v2_ymrs_ymrs10_erscheinung)
v2_ymrs_itm10<-factor(v2_ymrs_itm10, ordered=T)
descT(v2_ymrs_itm10)
## 0 1 2 3 4 <NA>
## [1,] No. cases 840 71 13 2 1 616 1543
## [2,] Percent 54.4 4.6 0.8 0.1 0.1 39.9 100
Item 11 Insight (ordinal [0,1,2,3,4], v2_ymrs_itm11)
v2_ymrs_itm11<-c(v2_clin$v2_ymrs_ymrs11_krkh_einsicht,v2_con$v2_ymrs_ymrs11_krkh_einsicht)
v2_ymrs_itm11<-factor(v2_ymrs_itm11, ordered=T)
descT(v2_ymrs_itm11)
## 0 1 2 3 4 <NA>
## [1,] No. cases 897 13 9 3 3 618 1543
## [2,] Percent 58.1 0.8 0.6 0.2 0.2 40.1 100
Create YMRS total score (continuous [0-60], v2_ymrs_sum)
v2_ymrs_sum<-(as.numeric.factor(v2_ymrs_itm1)+
as.numeric.factor(v2_ymrs_itm2)+
as.numeric.factor(v2_ymrs_itm3)+
as.numeric.factor(v2_ymrs_itm4)+
as.numeric.factor(v2_ymrs_itm5)+
as.numeric.factor(v2_ymrs_itm6)+
as.numeric.factor(v2_ymrs_itm7)+
as.numeric.factor(v2_ymrs_itm8)+
as.numeric.factor(v2_ymrs_itm9)+
as.numeric.factor(v2_ymrs_itm10)+
as.numeric.factor(v2_ymrs_itm11))
summary(v2_ymrs_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 1.873 2.000 36.000 627
Create dataset
v2_symp_ymrs<-data.frame(v2_ymrs_itm1,
v2_ymrs_itm2,
v2_ymrs_itm3,
v2_ymrs_itm4,
v2_ymrs_itm5,
v2_ymrs_itm6,
v2_ymrs_itm7,
v2_ymrs_itm8,
v2_ymrs_itm9,
v2_ymrs_itm10,
v2_ymrs_itm11,
v2_ymrs_sum)
Please see Visit 1 for more details and explicit rating instructions. A zero on this scale means “not assessable” (both of the following two items) and was coded as “-999”, as were all control participants.
v2_cgi_s<-c(v2_clin$v2_cgi1_cgi1_schweregrad,rep(-999,dim(v2_con)[1]))
v2_cgi_s[v2_cgi_s==0]<- -999
v2_cgi_s<-factor(v2_cgi_s, ordered=T)
descT(v2_cgi_s)
## -999 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 324 30 72 219 238 127 40 1 492 1543
## [2,] Percent 21 1.9 4.7 14.2 15.4 8.2 2.6 0.1 31.9 100
During follow-up visits, the interviewer is supposed to comprehensively assess change in illness state since the last study visit. These range from “very much improved”-1 to “very much worse”-7.
v2_cgi_c<-c(v2_clin$v2_cgi1_cgi2_gesamt_urteil,rep(-999,dim(v2_con)[1]))
v2_cgi_c[v2_cgi_c==0]<- -999
v2_cgi_c<-factor(v2_cgi_c, ordered=T)
descT(v2_cgi_c)
## -999 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 336 30 136 191 206 79 19 2 544 1543
## [2,] Percent 21.8 1.9 8.8 12.4 13.4 5.1 1.2 0.1 35.3 100
Please see Visit 1 for more details and explicit rating instructions. A zero on this scale means “not assessable” and was coded as “-999”.
v2_gaf<-c(v2_clin$v2_gaf_gaf_code,v2_con$v2_gaf_gaf_code)
v2_gaf[v2_gaf==0]<- -999
summary(v2_gaf[v2_gaf>0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 20.00 55.00 67.00 67.17 81.00 100.00 598
Boxplot of GAF scores of both CLINICAL and CONTROL study participants
boxplot(v2_gaf[v2_gaf>0 & v1_stat=="CLINICAL"], v2_gaf[v2_gaf>0 & v1_stat=="CONTROL"],ylab="GAF score",ylim=c(0,100),names=c("Clinical","Control"))
Create dataset
v2_ill_sev<-data.frame(v2_cgi_s,v2_cgi_c,v2_gaf)
There are two differences compared to the test battery assessed in Visit 1:
The “Verbaler Lern- und Merkfähigkeitstest” is added (assesses learning and memory). This test is also implemented in all following visits. Parallel versions of the test are alternately used to avoid recall bias.
The MWT-B is omitted as results of this test are not expected to vary much during the timeframe of the study.
General comments on the testing (character, v2_nrpsy_com) If there were no comments, this item was coded -999.
Language proficiency of the participant (ordinal [“mother tongue”,“good”,“sufficient”,“not sufficient”], v2_nrpsy_lng)
v2_nrpsy_lng<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_nrpsy_lng<-ifelse(c(v2_clin$v2_npu1_np_sprach,v2_con$v2_npu_folge_np_sprach)==0, "mother tongue",
ifelse(c(v2_clin$v2_npu1_np_sprach,v2_con$v2_npu_folge_np_sprach)==1, "good",
ifelse(c(v2_clin$v2_npu1_np_sprach,v2_con$v2_npu_folge_np_sprach)==2, "sufficient",
ifelse(c(v2_clin$v2_npu1_np_sprach,v2_con$v2_npu_folge_np_sprach)==3, "not sufficient",v2_nrpsy_lng))))
v2_nrpsy_lng<-factor(v2_nrpsy_lng, ordered=T, levels=c("mother tongue","good",
"sufficient","not sufficient"))
descT(v2_nrpsy_lng)
## mother tongue good sufficient not sufficient <NA>
## [1,] No. cases 895 63 6 1 578 1543
## [2,] Percent 58 4.1 0.4 0.1 37.5 100
Motivation of the participant (ordinal [“poor”,“average”,“good”], v2_nrpsy_mtv)
v2_nrpsy_mtv_pre<-c(v2_clin$v2_npu1_np_mot,v2_con$v2_npu_folge_np_mot)
v2_nrpsy_mtv<-ifelse(v2_nrpsy_mtv_pre==0, "poor",
ifelse(v2_nrpsy_mtv_pre==1, "average",
ifelse(v2_nrpsy_mtv_pre==2, "good", NA)))
v2_nrpsy_mtv<-factor(v2_nrpsy_mtv, ordered=T, levels=c("poor","average","good"))
descT(v2_nrpsy_mtv)
## poor average good <NA>
## [1,] No. cases 12 85 854 592 1543
## [2,] Percent 0.8 5.5 55.3 38.4 100
The VLMT (Helmstaedter, Lendt, & Lux, 2001) assesses learning and memory. A list of 15 words (list 1) is verbally presented to the participant for five times. After each presentation, the subject is required to recall as many words from the list as he remembers and the interviewer writes those down. After the fifth time, another list of words (list 2; distraction) is presented to the subject, with the same instruction (“recall as many words as possible from the list after I read it to you”). After writing down the recalled words from list 2, the interviewer asks the participant to recall the words from list 1 and writes those down. After a time interval of 25-30 minutes, during which other tests are performed, the interviewer asks the participant again and writes down the recalled words form list 1. Following this free recall phase, the interviewer tests recognition of the words from list 1 by verbally presenting 50 words (from list 1, list 2 and completely new words) and asking the participant whether each word belongs to list 1 or not.
Re-coding of incomplete VLMT Tests To be able to use the maximum number of tests available, we have now also included the data of incomplete tests (see variable “VLMT_introcheck”). Our expert team has checked every incompletete test and assessed the scores that are usable. Here, we set certain subscores of the VLMT to the appropriate scores.
VLMT_introcheck (categorical [0, 1, 9], v2_nrpsy_vlmt_check) This variable indicates whether a test was:
In contrast to previous versions of the dataset, data are not filtered according to this item but all tests are included.
v2_nrpsy_vlmt_check<-c(v2_clin$v2_vlmt_vlmt_introcheck1,v2_con$v2_npu_folge_np_vlmt)
descT(v2_nrpsy_vlmt_check)
## 0 1 9 <NA>
## [1,] No. cases 72 858 45 568 1543
## [2,] Percent 4.7 55.6 2.9 36.8 100
Sum of correctly recalled words across all five presentations of list 1 (continuous [number of words], v2_nrpsy_vlmt_corr)
v2_nrpsy_vlmt_corr<-c(v2_clin$v2_vlmt_vlmt3_sw_a5d,v2_con$v2_npu_folge_np_vlmt_gl)
summary(v2_nrpsy_vlmt_corr)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 40.00 50.00 48.74 59.00 75.00 638
Loss of recalled words (compared to recall after last presentation of list 1) from list 1 after distraction (presentation and recall of list 2) (continuous [number of words], v2_nrpsy_vlmt_lss_d)
v2_nrpsy_vlmt_lss_d<-c(v2_clin$v2_vlmt_vlmt5_aw_ilsd6,v2_con$v2_npu_folge_np_vlmt_vni)
summary(v2_nrpsy_vlmt_lss_d)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -6.000 0.000 2.000 1.779 3.000 9.000 642
Loss of recalled words (compared to recall after last presentation of list 1) after time interval (25-30 min.) (continuous [number of words], v2_nrpsy_vlmt_lss_t)
v2_nrpsy_vlmt_lss_t<-c(v2_clin$v2_vlmt_vlmt6_aw_vwd7,v2_con$v2_npu_folge_np_vlmt_vnzv)
summary(v2_nrpsy_vlmt_lss_t)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -5.000 0.000 2.000 1.889 3.000 13.000 655
Recognition performance (corrected for falsely recognized words) (continuous [number of words], v2_nrpsy_vlmt_rec)
v2_nrpsy_vlmt_rec<-c(v2_clin$v2_vlmt_vlmt8_kwl,v2_con$v2_npu_folge_np_vlmt_kw)
summary(v2_nrpsy_vlmt_rec)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -12.00 10.00 13.00 11.62 15.00 15.00 665
For a description of the test, see Visit 1.
TMT Part A, time (continuous [seconds], v2_nrpsy_tmt_A_rt)
v2_nrpsy_tmt_A_rt<-c(v2_clin$v2_npu1_tmt_001,v2_con$v2_npu_folge_np_tmt_001)
summary(v2_nrpsy_tmt_A_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 10.00 21.00 28.00 32.07 38.00 142.00 576
TMT Part A, errors (continuous [number of errors], v2_nrpsy_tmt_A_err) We did not impose any cut-off value to errors (see Visit 1).
v2_nrpsy_tmt_A_err<-c(v2_clin$v2_npu1_tmt_af_001,v2_con$v2_npu_folge_np_tmtfehler_001)
summary(v2_nrpsy_tmt_A_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 0.146 0.000 4.000 584
TMT Part B, time (continuous [seconds], v2_nrpsy_tmt_B_rt) As recommended by Strauss (2006), paricipants with a time >300s were set to 300s. We checked for values <10s, but there were none present.
v2_nrpsy_tmt_B_rt<-c(v2_clin$v2_npu1_tmt_002,v2_con$v2_npu_folge_tmt_002)
v2_nrpsy_tmt_B_rt[v2_nrpsy_tmt_B_rt>300]<-300
summary(v2_nrpsy_tmt_B_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 22.00 49.00 64.00 74.33 89.00 300.00 626
TMT Part B, errors (continuous [number of errors], v2_nrpsy_tmt_B_err)
v2_nrpsy_tmt_B_err<-c(v2_clin$v2_npu1_tmt_af_002,v2_con$v2_npu_folge_tmt_af_002)
summary(v2_nrpsy_tmt_B_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.5011 1.0000 20.0000 633
For a description of the test, see Visit 1.
Forward (continuous [number of items], v2_nrpsy_dgt_sp_frw)
v2_nrpsy_dgt_sp_frw<-c(v2_clin$v2_npu1_zns_001,v2_con$v2_npu_folge_np_wie_001)
summary(v2_nrpsy_dgt_sp_frw)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 8.00 10.00 9.69 11.00 16.00 585
Backward (continuous [number of items], v2_nrpsy_dgt_sp_bck)
v2_nrpsy_dgt_sp_bck<-c(v2_clin$v2_npu1_zns_002,v2_con$v2_npu_folge_np_wie_002)
summary(v2_nrpsy_dgt_sp_bck)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.000 6.000 6.535 8.000 14.000 588
For a description of the test and the coding of incompletet tests, see Visit 1.
v2_introcheck3<-c(v2_clin$v2_npu1_np_introcheck3,v2_con$v2_npu_folge_np_hawier)
v2_nrpsy_dg_sym_pre<-c(v2_clin$v2_npu1_zst_001,v2_con$v2_npu_folge_np_hawier_001)
v2_nrpsy_dg_sym<-ifelse(v2_introcheck3==1, v2_nrpsy_dg_sym_pre,
ifelse(v2_introcheck3==9,-999,
ifelse(v2_introcheck3==0,NA,NA)))
summary(subset(v2_nrpsy_dg_sym,v2_nrpsy_dg_sym>=0))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 17.00 51.00 66.00 66.27 82.00 133.00
Create dataset
v2_nrpsy<-data.frame(v2_nrpsy_com,
v2_nrpsy_lng,
v2_nrpsy_mtv,
v2_nrpsy_vlmt_check,
v2_nrpsy_vlmt_corr,
v2_nrpsy_vlmt_lss_d,
v2_nrpsy_vlmt_lss_t,
v2_nrpsy_vlmt_rec,
v2_nrpsy_tmt_A_rt,
v2_nrpsy_tmt_A_err,
v2_nrpsy_tmt_B_rt,
v2_nrpsy_tmt_B_err,
v2_nrpsy_dgt_sp_frw,
v2_nrpsy_dgt_sp_bck,
v2_nrpsy_dg_sym)
All participants were asked to fill out questionnaires on the following topics: current depressive symptoms (BDI-II), current manic symptoms (ASRM and MSS), life events in the past six months (LEQ), and current quality of life (WHOQOL-BREF). Additionally, interviews of clinical participants included questions on whether experienced life events during the past six months are attributed to the development of an illness episode (if any occured in between Visit 1 and 2) and medication adherence (compliance). Control participants additionally completed the Short Form Health Survey (SF-12). As in Visit 1, all questionnaires were checked on whether they were filled out correctly or not and only those correctly filled-out are included in this dataset.
For explanation, please refer to the section in Visit 1
“How satisfied are you currently with your overall life” (ordinal [1,2,3,4,5,6,7,8,9,10], v2_sf12_itm0) Answering alternatives are the following: “Very dissatisfied”-1 to “Completely satisfied”-10.
v2_sf12_recode(v2_con$v2_sf12_sf_allgemein,"v2_sf12_itm0")
## -999 1 2 3 4 5 6 7 8 9 10 <NA>
## [1,] No. cases 1223 1 2 6 6 8 9 32 94 58 30 74 1543
## [2,] Percent 79.3 0.1 0.1 0.4 0.4 0.5 0.6 2.1 6.1 3.8 1.9 4.8 100
“In general, would you say your health is…” (ordinal [1,2,3,4,5], v2_sf12_itm1) Answering alternatives are the following: “Excellent”-1, “Very Good”-2, “Good”-3, “Fair”-4, “Poor”-5.
v2_sf12_recode(v2_con$v2_sf12_sf1,"v2_sf12_itm1")
## -999 1 2 3 4 <NA>
## [1,] No. cases 1223 49 114 83 11 63 1543
## [2,] Percent 79.3 3.2 7.4 5.4 0.7 4.1 100
“The following questions are about activities you might do during a typical day. Does YOUR HEALTH NOW LIMIT YOU in these activities? If so, how much?”
“MODERATE ACTIVITIES, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf” (ordinal [1,2,3], v2_sf12_itm2)
Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v2_sf12_recode(v2_con$v2_sf12_sf2,"v2_sf12_itm2")
## -999 1 2 3 <NA>
## [1,] No. cases 1223 3 30 223 64 1543
## [2,] Percent 79.3 0.2 1.9 14.5 4.1 100
“Climbing SEVERAL flights of stairs” (ordinal [1,2,3], v2_sf12_itm3) Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v2_sf12_recode(v2_con$v2_sf12_sf3,"v2_sf12_itm3")
## -999 1 2 3 <NA>
## [1,] No. cases 1223 5 35 215 65 1543
## [2,] Percent 79.3 0.3 2.3 13.9 4.2 100
During the PAST 4 WEEKS have you had any of the following problems with your work or other regular activities AS A RESULT OF YOUR PHYSICAL HEALTH?
“ACCOMPLISHED LESS than you would like” (dichotomous [1,2], v2_sf12_itm4) Answering alternatives are the following: “Yes”-1, “No”-2.
v2_sf12_recode(v2_con$v2_sf12_sf4,"v2_sf12_itm4")
## -999 1 2 <NA>
## [1,] No. cases 1223 35 219 66 1543
## [2,] Percent 79.3 2.3 14.2 4.3 100
“Didn’t do work or other activities as carefully as usual” (dichotomous [1,2], v2_sf12_itm5) Answering alternatives are the following: “Yes”-1, “No”-2.
v2_sf12_recode(v2_con$v2_sf12_sf5,"v2_sf12_itm5")
## -999 1 2 <NA>
## [1,] No. cases 1223 21 233 66 1543
## [2,] Percent 79.3 1.4 15.1 4.3 100
During the PAST 4 WEEKS, were you limited in the kind of work you do or other regular activities AS A RESULT OF ANY EMOTIONAL PROBLEMS (such as feeling depressed or anxious)?
“ACCOMPLISHED LESS than you would like:” (dichotomous [1,2], v2_sf12_itm6) Answering alternatives are the following: “Yes”-1, “No”-2.
v2_sf12_recode(v2_con$v2_sf12_sf6,"v2_sf12_itm6")
## -999 1 2 <NA>
## [1,] No. cases 1223 24 231 65 1543
## [2,] Percent 79.3 1.6 15 4.2 100
“Didn’t do work or other activities as CAREFULLY as usual” (dichotomous [1,2], v2_sf12_itm7) Answering alternatives are the following: “Yes”-1, “No”-2.
v2_sf12_recode(v2_con$v2_sf12_sf7,"v2_sf12_itm7")
## -999 1 2 <NA>
## [1,] No. cases 1223 16 240 64 1543
## [2,] Percent 79.3 1 15.6 4.1 100
“During the PAST 4 WEEKS, how much did PAIN interfere with your normal work (including both work outside the home and housework)?” (ordinal [1,2,3], v2_sf12_itm8) Answering alternatives are the following: “Not At All”-1, “A Little Bit”-2, “Moderately”-3, “Quite A Bit”-4, “Extremely”-5.
v2_sf12_recode(v2_con$v2_sf12_st8,"v2_sf12_itm8")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 132 53 33 24 9 2 67 1543
## [2,] Percent 79.3 8.6 3.4 2.1 1.6 0.6 0.1 4.3 100
The next three questions are about how you feel and how things have been DURING THE PAST 4 WEEKS. For each question, please give the one answer that comes closest to the way you have been feeling. How much of the time during the PAST 4 WEEKS
Answering alternatives are the following: “All of the Time”-1, “Most of the Time”-2, “A Good Bit of the Time”-3, “Some of the Time”-4, “A Little of the Time”-5, “None of the Time”-6.
“Have you felt calm and peaceful?” (ordinal [1,2,3,4,5,6], v2_sf12_itm9)
v2_sf12_recode(v2_con$v2_sf12_st9,"v2_sf12_itm9")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 16 166 48 17 8 1 64 1543
## [2,] Percent 79.3 1 10.8 3.1 1.1 0.5 0.1 4.1 100
“Did you have a lot of energy?” (ordinal [1,2,3,4,5,6], v2_sf12_itm10)
v2_sf12_recode(v2_con$v2_sf12_st10,"v2_sf12_itm10")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 10 96 81 55 13 1 64 1543
## [2,] Percent 79.3 0.6 6.2 5.2 3.6 0.8 0.1 4.1 100
“Have you felt downhearted and blue?” (ordinal [1,2,3,4,5,6], v2_sf12_itm11)
v2_sf12_recode(v2_con$v2_sf12_st11,"v2_sf12_itm11")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 1 4 9 30 125 87 64 1543
## [2,] Percent 79.3 0.1 0.3 0.6 1.9 8.1 5.6 4.1 100
“During the PAST 4 WEEKS, how much of the time has your PHYSICAL HEALTH OR EMOTIONAL PROBLEMS interfered with your social activities (like visiting with friends, relatives, etc.)?” (ordinal [0,1,2,3], v2_sf12_itm12) Answering alternatives are the following: “All of the Time”-1 to “None of the Time”-5.
ATTENTION: there appears to be something wrong with the coding of this item, i.e. the export of the item and the display in the GUI of the database are inconsistent. NOT CONTAINED IN DATASET FOR NOW
v2_sf12_recode(v2_con$v2_sf12_st12,"v2_sf12_itm12")
Create dataset
v2_sf12<-data.frame(v2_sf12_itm0,
v2_sf12_itm1,
v2_sf12_itm2,
v2_sf12_itm3,
v2_sf12_itm4,
v2_sf12_itm5,
v2_sf12_itm6,
v2_sf12_itm7,
v2_sf12_itm8,
v2_sf12_itm9,
v2_sf12_itm10,
v2_sf12_itm11)
#INCLUDE v2_sf12_itm12 when issues are settled
For a description of the questionnaire, see Visit 1.
Past seven days (ordinal [1,2,3,4,5,6], v2_med_pst_wk)
v2_med_chk<-c(v2_clin$v2_compl_verwer_fragebogen,rep(1,dim(v2_con)[1]))
v2_med_pst_wk_pre<-c(v2_clin$v2_compl_psychopharm_7_tag,rep(-999,dim(v2_con)[1]))
v2_med_pst_wk<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_med_pst_wk<-ifelse((is.na(v2_med_chk) | v2_med_chk!=2),
v2_med_pst_wk_pre, v2_med_pst_wk)
descT(v2_med_pst_wk)
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 320 574 71 27 3 1 18 529 1543
## [2,] Percent 20.7 37.2 4.6 1.7 0.2 0.1 1.2 34.3 100
Past six months (ordinal [1,2,3,4,5,6], v2_med_pst_sx_mths)
v2_med_pre<-c(v2_clin$v2_compl_psychopharm_6_mon,rep(-999,dim(v2_con)[1]))
v2_med_pst_sx_mths<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_med_pst_sx_mths<-ifelse((is.na(v2_med_chk) | v2_med_chk!=2),
v2_med_pre, v2_med_pst_sx_mths)
descT(v2_med_pst_sx_mths)
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 320 510 105 57 8 5 10 528 1543
## [2,] Percent 20.7 33.1 6.8 3.7 0.5 0.3 0.6 34.2 100
Create dataset
v2_med_adh<-data.frame(v2_med_pst_wk,v2_med_pst_sx_mths)
For explanation, please refer to the section in Visit 1
1. Sadness (ordinal [0,1,2,3], v2_bdi2_itm1)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi1_traurigkeit,v2_con$v2_bdi2_s1_bdi1,"v2_bdi2_itm1")
## 0 1 2 3 <NA>
## [1,] No. cases 671 241 21 22 588 1543
## [2,] Percent 43.5 15.6 1.4 1.4 38.1 100
2. Pessimism (ordinal [0,1,2,3], v2_bdi2_itm2)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi2_pessimismus,v2_con$v2_bdi2_s1_bdi2,"v2_bdi2_itm2")
## 0 1 2 3 <NA>
## [1,] No. cases 729 125 86 14 589 1543
## [2,] Percent 47.2 8.1 5.6 0.9 38.2 100
3. Past failure (ordinal [0,1,2,3], v2_bdi2_itm3)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi3_versagensgef,v2_con$v2_bdi2_s1_bdi3,"v2_bdi2_itm3")
## 0 1 2 3 <NA>
## [1,] No. cases 633 166 136 18 590 1543
## [2,] Percent 41 10.8 8.8 1.2 38.2 100
4. Loss of pleasure (ordinal [0,1,2,3], v2_bdi2_itm4)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi4_verlust_freude,v2_con$v2_bdi2_s1_bdi4,"v2_bdi2_itm4")
## 0 1 2 3 <NA>
## [1,] No. cases 592 266 68 22 595 1543
## [2,] Percent 38.4 17.2 4.4 1.4 38.6 100
5. Guilty feelings (ordinal [0,1,2,3], v2_bdi2_itm5)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi5_schuldgef,v2_con$v2_bdi2_s1_bdi5,"v2_bdi2_itm5")
## 0 1 2 3 <NA>
## [1,] No. cases 678 237 18 18 592 1543
## [2,] Percent 43.9 15.4 1.2 1.2 38.4 100
6. Punishment feelings (ordinal [0,1,2,3], v2_bdi2_itm6)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi6_bestrafungsgef,v2_con$v2_bdi2_s1_bdi6,"v2_bdi2_itm6")
## 0 1 2 3 <NA>
## [1,] No. cases 789 105 14 46 589 1543
## [2,] Percent 51.1 6.8 0.9 3 38.2 100
7. Self-dislike (ordinal [0,1,2,3], v2_bdi2_itm7)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi7_selbstablehnung,v2_con$v2_bdi2_s1_bdi7,"v2_bdi2_itm7")
## 0 1 2 3 <NA>
## [1,] No. cases 713 140 81 17 592 1543
## [2,] Percent 46.2 9.1 5.2 1.1 38.4 100
8. Self-criticalness (ordinal [0,1,2,3], v2_bdi2_itm8)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi8_selbstvorwuerfe,v2_con$v2_bdi2_s1_bdi8,"v2_bdi2_itm8")
## 0 1 2 3 <NA>
## [1,] No. cases 623 230 77 22 591 1543
## [2,] Percent 40.4 14.9 5 1.4 38.3 100
9. Suicidal thoughts or wishes (ordinal [0,1,2,3], v2_bdi2_itm9)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi9_selbstmordged,v2_con$v2_bdi2_s1_bdi9,"v2_bdi2_itm9")
## 0 1 2 3 <NA>
## [1,] No. cases 775 167 11 1 589 1543
## [2,] Percent 50.2 10.8 0.7 0.1 38.2 100
10. Crying (ordinal [0,1,2,3], v2_bdi2_itm10)
v2_bdi2_recode(v2_clin$v2_bdi2_s1_bdi10_weinen,v2_con$v2_bdi2_s1_bdi10,"v2_bdi2_itm10")
## 0 1 2 3 <NA>
## [1,] No. cases 780 80 22 72 589 1543
## [2,] Percent 50.6 5.2 1.4 4.7 38.2 100
11. Agitation (ordinal [0,1,2,3], v2_bdi2_itm11)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi11_unruhe,v2_con$v2_bdi2_s2_bdi11,"v2_bdi2_itm11")
## 0 1 2 3 <NA>
## [1,] No. cases 669 232 27 15 600 1543
## [2,] Percent 43.4 15 1.7 1 38.9 100
12. Loss of interest (ordinal [0,1,2,3], v2_bdi2_itm12)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi12_interessverl,v2_con$v2_bdi2_s2_bdi12,"v2_bdi2_itm12")
## 0 1 2 3 <NA>
## [1,] No. cases 664 203 47 28 601 1543
## [2,] Percent 43 13.2 3 1.8 39 100
13. Indecisiveness (ordinal [0,1,2,3], v2_bdi2_itm13)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi13_entschlussunf,v2_con$v2_bdi2_s2_bdi13,"v2_bdi2_itm13")
## 0 1 2 3 <NA>
## [1,] No. cases 638 218 50 36 601 1543
## [2,] Percent 41.3 14.1 3.2 2.3 39 100
14. Worthlessness (ordinal [0,1,2,3], v2_bdi2_itm14)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi14_wertlosigkeit,v2_con$v2_bdi2_s2_bdi14,"v2_bdi2_itm14")
## 0 1 2 3 <NA>
## [1,] No. cases 729 129 61 24 600 1543
## [2,] Percent 47.2 8.4 4 1.6 38.9 100
15. Loss of energy (ordinal [0,1,2,3], v2_bdi2_itm15)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi15_energieverlust,v2_con$v2_bdi2_s2_bdi15,"v2_bdi2_itm15")
## 0 1 2 3 <NA>
## [1,] No. cases 528 312 89 15 599 1543
## [2,] Percent 34.2 20.2 5.8 1 38.8 100
16. Changes in sleeping pattern (ordinal [0,1,2,3], v2_bdi2_itm16) Here, there are seven answer alternatives: “I have not experienced changes in sleeping patterns”, “I sleep somewhat less than usual”,“I sleep somewhat more than usual”, “I sleep a lot less than usual”, “I sleep a lot more than usual”, “I sleep most of the day”, I wake up 1-2 hours early and can’t get back to sleep“. There is a thus a distinction between sleeping more and sleeping less. We have coded the questionaire so that sleep difficulties (sleeping more or slepping less) receive the same points. The distinction between whether somebody slept more or less is therefore lost.
v2_itm_bdi2_chk<-c(v2_clin$v2_bdi2_s1_verwer_fragebogen,v2_con$v2_bdi2_s1_bdi_korrekt)
v2_itm_bdi2_itm16_clin_con<-c(v2_clin$v2_bdi2_s2_bdi16_schlafgewohn,v2_con$v2_bdi2_s2_bdi16)
v2_bdi2_itm16<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_bdi2_itm16<-ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) & v2_itm_bdi2_itm16_clin_con==0, 0,
ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) &
(v2_itm_bdi2_itm16_clin_con==1 | v2_itm_bdi2_itm16_clin_con==100), 1,
ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) &
(v2_itm_bdi2_itm16_clin_con==2 | v2_itm_bdi2_itm16_clin_con==200), 2,
ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) &
(v2_itm_bdi2_itm16_clin_con==3 | v2_itm_bdi2_itm16_clin_con==300), 3, v2_bdi2_itm16))))
v2_bdi2_itm16<-factor(v2_bdi2_itm16,ordered=T)
descT(v2_bdi2_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 495 330 75 41 602 1543
## [2,] Percent 32.1 21.4 4.9 2.7 39 100
17. Irritability (ordinal [0,1,2,3], v2_bdi2_itm17)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi17_reizbarkeit,v2_con$v2_bdi2_s2_bdi17,"v2_bdi2_itm17")
## 0 1 2 3 <NA>
## [1,] No. cases 740 162 31 10 600 1543
## [2,] Percent 48 10.5 2 0.6 38.9 100
18. Change in appetite (ordinal [0,1,2,3], v2_bdi2_itm18)
As above (item 16), there are several answer alternatives: “I have not experienced any change in my appetite”, “My appetite is somewhat less than usual”, “My appetite is somewhat more than usual”, “My appetite is much less than before”, “My appetite is much more than before”, “I have no appetite at all”, “I crave food all the time”. More explicity, there is a distinction between more and less appetite. We have coded the questionaire so that changes in appetite receive the same points. The distinction between whether somebody had more or less appetite is therefore lost.
v2_itm_bdi2_itm18_clin_con<-c(v2_clin$v2_bdi2_s2_bdi18_appetit,v2_con$v2_bdi2_s2_bdi18)
v2_bdi2_itm18<-rep(NA,dim(v2_clin)[1]+dim(v2_con)[1])
v2_bdi2_itm18<-ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) & v2_itm_bdi2_itm18_clin_con==0, 0,
ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) &
(v2_itm_bdi2_itm18_clin_con==1 | v2_itm_bdi2_itm18_clin_con==100), 1,
ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) &
(v2_itm_bdi2_itm18_clin_con==2 | v2_itm_bdi2_itm18_clin_con==200), 2,
ifelse((is.na(v2_itm_bdi2_chk) | v2_itm_bdi2_chk!=2) &
(v2_itm_bdi2_itm18_clin_con==3 | v2_itm_bdi2_itm18_clin_con==300), 3, v2_bdi2_itm18))))
v2_bdi2_itm18<-factor(v2_bdi2_itm18,ordered=T)
descT(v2_bdi2_itm18)
## 0 1 2 3 <NA>
## [1,] No. cases 625 247 46 25 600 1543
## [2,] Percent 40.5 16 3 1.6 38.9 100
19. Concentration difficulty (ordinal [0,1,2,3], v2_bdi2_itm19)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi19_konzschw,v2_con$v2_bdi2_s2_bdi19,"v2_bdi2_itm19")
## 0 1 2 3 <NA>
## [1,] No. cases 554 249 127 9 604 1543
## [2,] Percent 35.9 16.1 8.2 0.6 39.1 100
20. Tiredness or fatigue (ordinal [0,1,2,3], v2_bdi2_itm20)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi20_ermued_ersch,v2_con$v2_bdi2_s2_bdi20,"v2_bdi2_itm20")
## 0 1 2 3 <NA>
## [1,] No. cases 554 293 78 18 600 1543
## [2,] Percent 35.9 19 5.1 1.2 38.9 100
21. Loss of interest in sex (ordinal [0,1,2,3], v2_bdi2_itm21)
v2_bdi2_recode(v2_clin$v2_bdi2_s2_bdi21_sex_interess,v2_con$v2_bdi2_s2_bdi21,"v2_bdi2_itm21")
## 0 1 2 3 <NA>
## [1,] No. cases 652 161 42 81 607 1543
## [2,] Percent 42.3 10.4 2.7 5.2 39.3 100
BDI-II sum score calculation (continuous [0-63], v2_bdi2_sum)
v2_bdi2_sum<-as.numeric.factor(v2_bdi2_itm1)+
as.numeric.factor(v2_bdi2_itm2)+
as.numeric.factor(v2_bdi2_itm3)+
as.numeric.factor(v2_bdi2_itm4)+
as.numeric.factor(v2_bdi2_itm5)+
as.numeric.factor(v2_bdi2_itm6)+
as.numeric.factor(v2_bdi2_itm7)+
as.numeric.factor(v2_bdi2_itm8)+
as.numeric.factor(v2_bdi2_itm9)+
as.numeric.factor(v2_bdi2_itm10)+
as.numeric.factor(v2_bdi2_itm11)+
as.numeric.factor(v2_bdi2_itm12)+
as.numeric.factor(v2_bdi2_itm13)+
as.numeric.factor(v2_bdi2_itm14)+
as.numeric.factor(v2_bdi2_itm15)+
as.numeric.factor(v2_bdi2_itm16)+
as.numeric.factor(v2_bdi2_itm17)+
as.numeric.factor(v2_bdi2_itm18)+
as.numeric.factor(v2_bdi2_itm19)+
as.numeric.factor(v2_bdi2_itm20)+
as.numeric.factor(v2_bdi2_itm21)
summary(v2_bdi2_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 1.000 5.000 8.831 13.000 54.000 643
Create dataset
v2_bdi2<-data.frame(v2_bdi2_itm1,v2_bdi2_itm2,v2_bdi2_itm3,v2_bdi2_itm4,v2_bdi2_itm5,
v2_bdi2_itm6,v2_bdi2_itm7,v2_bdi2_itm8,v2_bdi2_itm9,v2_bdi2_itm10,
v2_bdi2_itm11,v2_bdi2_itm12,v2_bdi2_itm13,v2_bdi2_itm14,
v2_bdi2_itm15,v2_bdi2_itm16,v2_bdi2_itm17,v2_bdi2_itm18,
v2_bdi2_itm19,v2_bdi2_itm20,v2_bdi2_itm21, v2_bdi2_sum)
For explanation, please refer to the section in Visit 1
1. Positive Mood (ordinal [0,1,2,3,4], v2_asrm_itm1)
v2_asrm_recode(v2_clin$v2_asrm_asrm1_gluecklich,v2_con$v2_asrm_asrm1,"v2_asrm_itm1")
## 0 1 2 3 4 <NA>
## [1,] No. cases 674 208 39 23 8 591 1543
## [2,] Percent 43.7 13.5 2.5 1.5 0.5 38.3 100
2 Self-Confidence (ordinal [0,1,2,3,4], v2_asrm_itm2)
v2_asrm_recode(v2_clin$v2_asrm_asrm2_selbstbewusst,v2_con$v2_asrm_asrm2,"v2_asrm_itm2")
## 0 1 2 3 4 <NA>
## [1,] No. cases 713 184 37 13 7 589 1543
## [2,] Percent 46.2 11.9 2.4 0.8 0.5 38.2 100
3. Sleep (ordinal [0,1,2,3,4], v2_asrm_itm3)
v2_asrm_recode(v2_clin$v2_asrm_asrm3_schlaf,v2_con$v2_asrm_asrm3,"v2_asrm_itm3")
## 0 1 2 3 4 <NA>
## [1,] No. cases 803 107 27 8 9 589 1543
## [2,] Percent 52 6.9 1.7 0.5 0.6 38.2 100
4. Speech (ordinal [0,1,2,3,4], v2_asrm_itm4)
v2_asrm_recode(v2_clin$v2_asrm_asrm4_reden,v2_con$v2_asrm_asrm4,"v2_asrm_itm4")
## 0 1 2 3 4 <NA>
## [1,] No. cases 743 174 24 10 2 590 1543
## [2,] Percent 48.2 11.3 1.6 0.6 0.1 38.2 100
5. Activity Level (ordinal [0,1,2,3,4], v2_asrm_itm5)
v2_asrm_recode(v2_clin$v2_asrm_asrm5_aktiv,v2_con$v2_asrm_asrm5,"v2_asrm_itm5")
## 0 1 2 3 4 <NA>
## [1,] No. cases 696 193 40 14 10 590 1543
## [2,] Percent 45.1 12.5 2.6 0.9 0.6 38.2 100
Create ASRM sum score (continuous [0-20],v2_asrm_sum)
v2_asrm_sum<-as.numeric.factor(v2_asrm_itm1)+
as.numeric.factor(v2_asrm_itm2)+
as.numeric.factor(v2_asrm_itm3)+
as.numeric.factor(v2_asrm_itm4)+
as.numeric.factor(v2_asrm_itm5)
summary(v2_asrm_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 1.000 1.616 3.000 16.000 593
Create dataset
v2_asrm<-data.frame(v2_asrm_itm1,v2_asrm_itm2,v2_asrm_itm3,v2_asrm_itm4,v2_asrm_itm5,v2_asrm_sum)
For explanation, please refer to the section in Visit 1
1. “I had more energy” (dichotomous, v2_mss_itm1)
v2_mss_recode(v2_clin$v2_mss_s1_mss1_energie,v2_con$v2_mss_s1_mss1,"v2_mss_itm1")
## N Y <NA>
## [1,] No. cases 751 190 602 1543
## [2,] Percent 48.7 12.3 39 100
2. “I had trouble sitting still” (dichotomous, v2_mss_itm2)
v2_mss_recode(v2_clin$v2_mss_s1_mss2_ruhig_sitzen,v2_con$v2_mss_s1_mss2,"v2_mss_itm2")
## N Y <NA>
## [1,] No. cases 800 138 605 1543
## [2,] Percent 51.8 8.9 39.2 100
3. “I drove faster” (dichotomous, v2_mss_itm3)
v2_mss_recode(v2_clin$v2_mss_s1_mss3_auto_fahren,v2_con$v2_mss_s1_mss3,"v2_mss_itm3")
## N Y <NA>
## [1,] No. cases 880 35 628 1543
## [2,] Percent 57 2.3 40.7 100
4. “I drank more alcoholic beverages” (dichotomous, v2_mss_itm4)
v2_mss_recode(v2_clin$v2_mss_s1_mss4_alkohol,v2_con$v2_mss_s1_mss4,"v2_mss_itm4")
## N Y <NA>
## [1,] No. cases 866 72 605 1543
## [2,] Percent 56.1 4.7 39.2 100
5. “I changed clothes several times a day” (dichotomous, v2_mss_itm5)
v2_mss_recode(v2_clin$v2_mss_s1_mss5_umziehen, v2_con$v2_mss_s1_mss5,"v2_mss_itm5")
## N Y <NA>
## [1,] No. cases 875 62 606 1543
## [2,] Percent 56.7 4 39.3 100
6. “I wore brighter clothes/make-up” (dichotomous, v2_mss_itm6)
v2_mss_recode(v2_clin$v2_mss_s1_mss6_bunter,v2_con$v2_mss_s1_mss6,"v2_mss_itm6")
## N Y <NA>
## [1,] No. cases 888 50 605 1543
## [2,] Percent 57.6 3.2 39.2 100
7. “I played music louder” (dichotomous, v2_mss_itm7)
v2_mss_recode(v2_clin$v2_mss_s1_mss7_musik_lauter,v2_con$v2_mss_s1_mss7,"v2_mss_itm7")
## N Y <NA>
## [1,] No. cases 815 127 601 1543
## [2,] Percent 52.8 8.2 39 100
8. “I ate faster than usual” (dichotomous, v2_mss_itm8)
v2_mss_recode(v2_clin$v2_mss_s1_mss8_hastiger_essen,v2_con$v2_mss_s1_mss8,"v2_mss_itm8")
## N Y <NA>
## [1,] No. cases 822 117 604 1543
## [2,] Percent 53.3 7.6 39.1 100
9. “I ate more than usual” (dichotomous, v2_mss_itm9)
v2_mss_recode(v2_clin$v2_mss_s1_mss9_mehr_essen,v2_con$v2_mss_s1_mss9,"v2_mss_itm9")
## N Y <NA>
## [1,] No. cases 728 211 604 1543
## [2,] Percent 47.2 13.7 39.1 100
10. “I slept fewer hours than usual” (dichotomous, v2_mss_itm10)
v2_mss_recode(v2_clin$v2_mss_s1_mss10_weniger_schlaf,v2_con$v2_mss_s1_mss10,"v2_mss_itm10")
## N Y <NA>
## [1,] No. cases 843 92 608 1543
## [2,] Percent 54.6 6 39.4 100
11. “I started things that I didn’t finish” (dichotomous, v2_mss_itm11)
v2_mss_recode(v2_clin$v2_mss_s1_mss11_unbeendet,v2_con$v2_mss_s1_mss11,"v2_mss_itm11")
## N Y <NA>
## [1,] No. cases 749 191 603 1543
## [2,] Percent 48.5 12.4 39.1 100
12. “I gave away my own possessions” (dichotomous, v2_mss_itm12)
v2_mss_recode(v2_clin$v2_mss_s1_mss12_weggeben,v2_con$v2_mss_s1_mss12,"v2_mss_itm12")
## N Y <NA>
## [1,] No. cases 850 89 604 1543
## [2,] Percent 55.1 5.8 39.1 100
13. “I bought gifts for people” (dichotomous, v2_mss_itm13)
v2_mss_recode(v2_clin$v2_mss_s1_mss13_geschenke,v2_con$v2_mss_s1_mss13,"v2_mss_itm13")
## N Y <NA>
## [1,] No. cases 854 84 605 1543
## [2,] Percent 55.3 5.4 39.2 100
14. “I spent money more freely” (dichotomous, v2_mss_itm14)
v2_mss_recode(v2_clin$v2_mss_s1_mss14_mehr_geld,v2_con$v2_mss_s1_mss14,"v2_mss_itm14")
## N Y <NA>
## [1,] No. cases 736 205 602 1543
## [2,] Percent 47.7 13.3 39 100
15. “I accumulated debts” (dichotomous, v2_mss_itm15)
v2_mss_recode(v2_clin$v2_mss_s1_mss15_schulden,v2_con$v2_mss_s1_mss15,"v2_mss_itm15")
## N Y <NA>
## [1,] No. cases 890 51 602 1543
## [2,] Percent 57.7 3.3 39 100
16. “I made unwise business decisions” (dichotomous, v2_mss_itm16)
v2_mss_recode(v2_clin$v2_mss_s1_mss16_unkluge_entsch,v2_con$v2_mss_s1_mss16,"v2_mss_itm16")
## N Y <NA>
## [1,] No. cases 899 37 607 1543
## [2,] Percent 58.3 2.4 39.3 100
17. “I partied more” (dichotomous, v2_mss_itm17)
v2_mss_recode(v2_clin$v2_mss_s1_mss17_parties,v2_con$v2_mss_s1_mss17,"v2_mss_itm17")
## N Y <NA>
## [1,] No. cases 881 57 605 1543
## [2,] Percent 57.1 3.7 39.2 100
18. “I enjoyed flirting” (dichotomous, v2_mss_itm18)
v2_mss_recode(v2_clin$v2_mss_s1_mss18_flirten,v2_con$v2_mss_s1_mss18,"v2_mss_itm18")
## N Y <NA>
## [1,] No. cases 864 75 604 1543
## [2,] Percent 56 4.9 39.1 100
19. “I masturbated more often” (dichotomous, v2_mss_itm19)
v2_mss_recode(v2_clin$v2_mss_s2_mss19_selbstbefried,v2_con$v2_mss_s2_mss19,"v2_mss_itm19")
## N Y <NA>
## [1,] No. cases 889 40 614 1543
## [2,] Percent 57.6 2.6 39.8 100
20. “I was more interested in sex than usual” (dichotomous, v2_mss_itm20)
v2_mss_recode(v2_clin$v2_mss_s2_mss20_sex_interess,v2_con$v2_mss_s2_mss20,"v2_mss_itm20")
## N Y <NA>
## [1,] No. cases 845 77 621 1543
## [2,] Percent 54.8 5 40.2 100
21. “I had sex with people that I usually wouldn’t have sex with” (dichotomous, v2_mss_itm21)
v2_mss_recode(v2_clin$v2_mss_s2_mss21_sexpartner,v2_con$v2_mss_s2_mss21,"v2_mss_itm21")
## N Y <NA>
## [1,] No. cases 915 14 614 1543
## [2,] Percent 59.3 0.9 39.8 100
22. “I spent more time on the phone” (dichotomous, v2_mss_itm22)
v2_mss_recode(v2_clin$v2_mss_s2_mss22_mehr_telefon,v2_con$v2_mss_s2_mss22,"v2_mss_itm22")
## N Y <NA>
## [1,] No. cases 821 110 612 1543
## [2,] Percent 53.2 7.1 39.7 100
23. “I spoke louder than usual” (dichotomous, v2_mss_itm23)
v2_mss_recode(v2_clin$v2_mss_s2_mss23_sprache_lauter,v2_con$v2_mss_s2_mss23,"v2_mss_itm23")
## N Y <NA>
## [1,] No. cases 850 77 616 1543
## [2,] Percent 55.1 5 39.9 100
24. “I spoke so fast that people said they couldn’t understand me” (dichotomous, v2_mss_itm24)
v2_mss_recode(v2_clin$v2_mss_s2_mss24_spr_schneller,v2_con$v2_mss_s2_mss24,"v2_mss_itm24")
## N Y <NA>
## [1,] No. cases 876 55 612 1543
## [2,] Percent 56.8 3.6 39.7 100
25. “1 enjoyed punning or rhyming” (dichotomous, v2_mss_itm25)
v2_mss_recode(v2_clin$v2_mss_s2_mss25_witze,v2_con$v2_mss_s2_mss25,"v2_mss_itm25")
## N Y <NA>
## [1,] No. cases 856 75 612 1543
## [2,] Percent 55.5 4.9 39.7 100
26. “I butted into conversations” (dichotomous, v2_mss_itm26)
v2_mss_recode(v2_clin$v2_mss_s2_mss26_einmischen,v2_con$v2_mss_s2_mss26,"v2_mss_itm26")
## N Y <NA>
## [1,] No. cases 874 59 610 1543
## [2,] Percent 56.6 3.8 39.5 100
27. “I spoke on and on and couldn’t be interrupted” (dichotomous, v2_mss_itm27)
v2_mss_recode(v2_clin$v2_mss_s2_mss27_red_pausenlos,v2_con$v2_mss_s2_mss27,"v2_mss_itm27")
## N Y <NA>
## [1,] No. cases 906 25 612 1543
## [2,] Percent 58.7 1.6 39.7 100
28. “I enjoyed being the centre of attention” (dichotomous, v2_mss_itm28)
v2_mss_recode(v2_clin$v2_mss_s2_mss28_mittelpunkt,v2_con$v2_mss_s2_mss28,"v2_mss_itm28")
## N Y <NA>
## [1,] No. cases 884 48 611 1543
## [2,] Percent 57.3 3.1 39.6 100
29. “I liked to joke and laugh” (dichotomous, v2_mss_itm29)
v2_mss_recode(v2_clin$v2_mss_s2_mss29_herumalbern,v2_con$v2_mss_s2_mss29,"v2_mss_itm29")
## N Y <NA>
## [1,] No. cases 803 126 614 1543
## [2,] Percent 52 8.2 39.8 100
30. “People found me entertaining” (dichotomous, v2_mss_itm30)
v2_mss_recode(v2_clin$v2_mss_s2_mss30_unterhaltsamer,v2_con$v2_mss_s2_mss30,"v2_mss_itm30")
## N Y <NA>
## [1,] No. cases 857 71 615 1543
## [2,] Percent 55.5 4.6 39.9 100
31. “I felt as if I was on top of the world” (dichotomous, v2_mss_itm31)
v2_mss_recode(v2_clin$v2_mss_s2_mss31_obenauf,v2_con$v2_mss_s2_mss31,"v2_mss_itm31")
## N Y <NA>
## [1,] No. cases 855 75 613 1543
## [2,] Percent 55.4 4.9 39.7 100
32. “I was more cheerful than my usual self” (dichotomous, v2_mss_itm32)
v2_mss_recode(v2_clin$v2_mss_s2_mss32_froehlicher,v2_con$v2_mss_s2_mss32,"v2_mss_itm32")
## N Y <NA>
## [1,] No. cases 764 167 612 1543
## [2,] Percent 49.5 10.8 39.7 100
33. “Other people got on my nerves” (dichotomous, v2_mss_itm33)
v2_mss_recode(v2_clin$v2_mss_s2_mss33_ungeduldiger,v2_con$v2_mss_s2_mss33,"v2_mss_itm33")
## N Y <NA>
## [1,] No. cases 728 202 613 1543
## [2,] Percent 47.2 13.1 39.7 100
34. “I was getting into arguments” (dichotomous, v2_mss_itm34)
v2_mss_recode(v2_clin$v2_mss_s2_mss34_streiten,v2_con$v2_mss_s2_mss34,"v2_mss_itm34")
## N Y <NA>
## [1,] No. cases 863 65 615 1543
## [2,] Percent 55.9 4.2 39.9 100
35. “I had so many ideas that I couldn’t get around to doing them all” (dichotomous, v2_mss_itm35)
v2_mss_recode(v2_clin$v2_mss_s2_mss35_ideen,v2_con$v2_mss_s2_mss35,"v2_mss_itm35")
## N Y <NA>
## [1,] No. cases 765 167 611 1543
## [2,] Percent 49.6 10.8 39.6 100
36. “My thoughts raced through my mind” (dichotomous, v2_mss_itm36)
v2_mss_recode(v2_clin$v2_mss_s2_mss36_gedanken,v2_con$v2_mss_s2_mss36,"v2_mss_itm36")
## N Y <NA>
## [1,] No. cases 697 234 612 1543
## [2,] Percent 45.2 15.2 39.7 100
37. “I couldn’t concentrate on a single topic for longer than a minute” (dichotomous, v2_mss_itm37)
v2_mss_recode(v2_clin$v2_mss_s2_mss37_konzentration,v2_con$v2_mss_s2_mss37,"v2_mss_itm37")
## N Y <NA>
## [1,] No. cases 796 136 611 1543
## [2,] Percent 51.6 8.8 39.6 100
38. “I thought I was an especially important person” (dichotomous, v2_mss_itm38)
v2_mss_recode(v2_clin$v2_mss_s2_mss38_etw_besonderes,v2_con$v2_mss_s2_mss38,"v2_mss_itm38")
## N Y <NA>
## [1,] No. cases 870 57 616 1543
## [2,] Percent 56.4 3.7 39.9 100
39. “I thought I could change the world” (dichotomous, v2_mss_itm39)
v2_mss_recode(v2_clin$v2_mss_s2_mss39_welt_veraender,v2_con$v2_mss_s2_mss39,"v2_mss_itm39")
## N Y <NA>
## [1,] No. cases 880 52 611 1543
## [2,] Percent 57 3.4 39.6 100
40. “I thought I was right most of the time” (dichotomous, v2_mss_itm40)
v2_mss_recode(v2_clin$v2_mss_s2_mss40_recht_haben,v2_con$v2_mss_s2_mss40,"v2_mss_itm40")
## N Y <NA>
## [1,] No. cases 892 41 610 1543
## [2,] Percent 57.8 2.7 39.5 100
41. “I thought I was superior to others” (dichotomous, v2_mss_itm41)
v2_mss_recode(v2_clin$v2_mss_s3_mss41_ueberlegen,v2_con$v2_mss_s3_mss41,"v2_mss_itm41")
## N Y <NA>
## [1,] No. cases 905 29 609 1543
## [2,] Percent 58.7 1.9 39.5 100
42. “I wanted to take on jobs that I was not trained to handle” (dichotomous, v2_mss_itm42)
v2_mss_recode(v2_clin$v2_mss_s3_mss42_uebermut,v2_con$v2_mss_s3_mss42,"v2_mss_itm42")
## N Y <NA>
## [1,] No. cases 870 65 608 1543
## [2,] Percent 56.4 4.2 39.4 100
43. “I thought I knew what other people were thinking” (dichotomous, v2_mss_itm43)
v2_mss_recode(v2_clin$v2_mss_s3_mss43_ged_lesen_akt,v2_con$v2_mss_s3_mss43,"v2_mss_itm43")
## N Y <NA>
## [1,] No. cases 849 84 610 1543
## [2,] Percent 55 5.4 39.5 100
44. “I thought other people knew what I was thinking” (dichotomous, v2_mss_itm44)
v2_mss_recode(v2_clin$v2_mss_s3_mss44_ged_lesen_pas,v2_con$v2_mss_s3_mss44,"v2_mss_itm44")
## N Y <NA>
## [1,] No. cases 876 58 609 1543
## [2,] Percent 56.8 3.8 39.5 100
45. “I thought someone wanted to harm me” (dichotomous, v2_mss_itm45)
v2_mss_recode(v2_clin$v2_mss_s3_mss45_etw_antun,v2_con$v2_mss_s3_mss45,"v2_mss_itm45")
## N Y <NA>
## [1,] No. cases 886 49 608 1543
## [2,] Percent 57.4 3.2 39.4 100
46. “I heard voices when people weren’t there” (dichotomous, v2_mss_itm46)
v2_mss_recode(v2_clin$v2_mss_s3_mss46_stimmen,v2_con$v2_mss_s3_mss46,"v2_mss_itm46")
## N Y <NA>
## [1,] No. cases 871 61 611 1543
## [2,] Percent 56.4 4 39.6 100
47. “I had false beliefs concerning who I was” (dichotomous, v2_mss_itm47)
v2_mss_recode(v2_clin$v2_mss_s3_mss47_jmd_anders,v2_con$v2_mss_s3_mss47,"v2_mss_itm47")
## N Y <NA>
## [1,] No. cases 911 24 608 1543
## [2,] Percent 59 1.6 39.4 100
48. “I knew I was getting ill” (dichotomous, v2_mss_itm48)
v2_mss_recode(v2_clin$v2_mss_s3_mss48_krank_einsicht,v2_con$v2_mss_s3_mss48,"v2_mss_itm48")
## N Y <NA>
## [1,] No. cases 813 111 619 1543
## [2,] Percent 52.7 7.2 40.1 100
Create MSS sum score (continuous [0-48],v2_mss_sum)
v2_mss_sum<-ifelse(v2_mss_itm1=="Y",1,0)+
ifelse(v2_mss_itm2=="Y",1,0)+
ifelse(v2_mss_itm3=="Y",1,0)+
ifelse(v2_mss_itm4=="Y",1,0)+
ifelse(v2_mss_itm5=="Y",1,0)+
ifelse(v2_mss_itm6=="Y",1,0)+
ifelse(v2_mss_itm7=="Y",1,0)+
ifelse(v2_mss_itm8=="Y",1,0)+
ifelse(v2_mss_itm9=="Y",1,0)+
ifelse(v2_mss_itm10=="Y",1,0)+
ifelse(v2_mss_itm11=="Y",1,0)+
ifelse(v2_mss_itm12=="Y",1,0)+
ifelse(v2_mss_itm13=="Y",1,0)+
ifelse(v2_mss_itm14=="Y",1,0)+
ifelse(v2_mss_itm15=="Y",1,0)+
ifelse(v2_mss_itm16=="Y",1,0)+
ifelse(v2_mss_itm17=="Y",1,0)+
ifelse(v2_mss_itm18=="Y",1,0)+
ifelse(v2_mss_itm19=="Y",1,0)+
ifelse(v2_mss_itm20=="Y",1,0)+
ifelse(v2_mss_itm21=="Y",1,0)+
ifelse(v2_mss_itm22=="Y",1,0)+
ifelse(v2_mss_itm23=="Y",1,0)+
ifelse(v2_mss_itm24=="Y",1,0)+
ifelse(v2_mss_itm25=="Y",1,0)+
ifelse(v2_mss_itm26=="Y",1,0)+
ifelse(v2_mss_itm27=="Y",1,0)+
ifelse(v2_mss_itm28=="Y",1,0)+
ifelse(v2_mss_itm29=="Y",1,0)+
ifelse(v2_mss_itm30=="Y",1,0)+
ifelse(v2_mss_itm31=="Y",1,0)+
ifelse(v2_mss_itm32=="Y",1,0)+
ifelse(v2_mss_itm33=="Y",1,0)+
ifelse(v2_mss_itm34=="Y",1,0)+
ifelse(v2_mss_itm35=="Y",1,0)+
ifelse(v2_mss_itm36=="Y",1,0)+
ifelse(v2_mss_itm37=="Y",1,0)+
ifelse(v2_mss_itm38=="Y",1,0)+
ifelse(v2_mss_itm39=="Y",1,0)+
ifelse(v2_mss_itm40=="Y",1,0)+
ifelse(v2_mss_itm41=="Y",1,0)+
ifelse(v2_mss_itm42=="Y",1,0)+
ifelse(v2_mss_itm43=="Y",1,0)+
ifelse(v2_mss_itm44=="Y",1,0)+
ifelse(v2_mss_itm45=="Y",1,0)+
ifelse(v2_mss_itm46=="Y",1,0)+
ifelse(v2_mss_itm47=="Y",1,0)+
ifelse(v2_mss_itm48=="Y",1,0)
summary(v2_mss_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.500 2.000 4.487 7.000 37.000 720
Create dataset
v2_mss<-data.frame(v2_mss_itm1,v2_mss_itm2,v2_mss_itm3,v2_mss_itm4,v2_mss_itm5,v2_mss_itm6,
v2_mss_itm7,v2_mss_itm8,v2_mss_itm9,v2_mss_itm10,v2_mss_itm11,
v2_mss_itm12,v2_mss_itm13,v2_mss_itm14,v2_mss_itm15,v2_mss_itm16,
v2_mss_itm17,v2_mss_itm18,v2_mss_itm19,v2_mss_itm20,v2_mss_itm21,
v2_mss_itm22,v2_mss_itm23,v2_mss_itm24,v2_mss_itm25,v2_mss_itm26,
v2_mss_itm27,v2_mss_itm28,v2_mss_itm29,v2_mss_itm30,v2_mss_itm31,
v2_mss_itm32,v2_mss_itm33,v2_mss_itm34,v2_mss_itm35,v2_mss_itm36,
v2_mss_itm37,v2_mss_itm38,v2_mss_itm39,v2_mss_itm40,v2_mss_itm41,
v2_mss_itm42,v2_mss_itm43,v2_mss_itm44,v2_mss_itm45,v2_mss_itm46,
v2_mss_itm47,v2_mss_itm48,v2_mss_sum)
For explanation, please refer to the section in Visit 1
1. “Major personal illness or injury”
1A Nature (dichotomous [“good”,“bad”], v2_leq_A_1A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq1a_schw_krankh,v2_con$v2_leq_a_leq1a,"v2_leq_A_1A")
## -999 bad good <NA>
## [1,] No. cases 628 235 40 640 1543
## [2,] Percent 40.7 15.2 2.6 41.5 100
1B Impact (ordinal [0,1,2,3], v2_leq_A_1B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq1e_schw_krankh,v2_con$v2_leq_a_leq1e,"v2_leq_A_1B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 626 15 37 76 149 640 1543
## [2,] Percent 40.6 1 2.4 4.9 9.7 41.5 100
2. “Major change in eating habits”
2A Nature (dichotomous [“good”,“bad”], v2_leq_A_2A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq2a_ernaehrung,v2_con$v2_leq_a_leq2a,"v2_leq_A_2A")
## -999 bad good <NA>
## [1,] No. cases 636 136 131 640 1543
## [2,] Percent 41.2 8.8 8.5 41.5 100
2B Impact (ordinal [0,1,2,3], v2_leq_A_2B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq2e_ernaehrung,v2_con$v2_leq_a_leq2e,"v2_leq_A_2B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 631 16 62 112 82 640 1543
## [2,] Percent 40.9 1 4 7.3 5.3 41.5 100
3. “Major change in sleeping habits”
3A Nature (dichotomous [“good”,“bad”], v2_leq_A_3A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq3a_schlaf,v2_con$v2_leq_a_leq3a,"v2_leq_A_3A")
## -999 bad good <NA>
## [1,] No. cases 637 175 91 640 1543
## [2,] Percent 41.3 11.3 5.9 41.5 100
3B Impact (ordinal [0,1,2,3], v2_leq_A_3B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq3e_schlaf,v2_con$v2_leq_a_leq3e,"v2_leq_A_3B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 634 15 59 103 92 640 1543
## [2,] Percent 41.1 1 3.8 6.7 6 41.5 100
4. “Major change in usual type and/or amount of recreation”
4A Nature (dichotomous [“good”,“bad”], v2_leq_A_4A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq4a_freizeit,v2_con$v2_leq_a_leq4a,"v2_leq_A_4A")
## -999 bad good <NA>
## [1,] No. cases 572 125 206 640 1543
## [2,] Percent 37.1 8.1 13.4 41.5 100
4B Impact (ordinal [0,1,2,3], v2_leq_A_4B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq4e_freizeit,v2_con$v2_leq_a_leq4e,"v2_leq_A_4B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 568 17 70 137 111 640 1543
## [2,] Percent 36.8 1.1 4.5 8.9 7.2 41.5 100
5. “Major dental work”
5A Nature (dichotomous [“good”,“bad”], v2_leq_A_5A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq5a_zahnarzt,v2_con$v2_leq_a_leq5a,"v2_leq_A_5A")
## -999 bad good <NA>
## [1,] No. cases 767 52 84 640 1543
## [2,] Percent 49.7 3.4 5.4 41.5 100
5B Impact (ordinal [0,1,2,3], v2_leq_A_5B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq5e_zahnarzt,v2_con$v2_leq_a_leq5e,"v2_leq_A_5B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 764 30 42 33 34 640 1543
## [2,] Percent 49.5 1.9 2.7 2.1 2.2 41.5 100
6. “(Female) Pregnancy”
6A Nature (dichotomous [“good”,“bad”], v2_leq_A_6A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq6a_schwanger,v2_con$v2_leq_a_leq6a,"v2_leq_A_6A")
## -999 bad good <NA>
## [1,] No. cases 894 2 7 640 1543
## [2,] Percent 57.9 0.1 0.5 41.5 100
6B Impact (ordinal [0,1,2,3], v2_leq_A_6B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq6e_schwanger,v2_con$v2_leq_a_leq6e,"v2_leq_A_6B")
## -999 0 2 3 <NA>
## [1,] No. cases 894 2 2 5 640 1543
## [2,] Percent 57.9 0.1 0.1 0.3 41.5 100
7. “(Female) Miscarriage or abortion”
7A Nature (dichotomous [“good”,“bad”], v2_leq_A_7A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq7a_fehlg_abtr,v2_con$v2_leq_a_leq7a,"v2_leq_A_7A")
## -999 bad <NA>
## [1,] No. cases 899 4 640 1543
## [2,] Percent 58.3 0.3 41.5 100
7B Impact (ordinal [0,1,2,3], v2_leq_A_7B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq7e_fehlg_abtr,v2_con$v2_leq_a_leq7e,"v2_leq_A_7B")
## -999 0 3 <NA>
## [1,] No. cases 898 2 3 640 1543
## [2,] Percent 58.2 0.1 0.2 41.5 100
8. “(Female) Started menopause”
8A Nature (dichotomous [“good”,“bad”], v2_leq_A_8A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq8a_wechseljahre,v2_con$v2_leq_a_leq8a,"v2_leq_A_8A")
## -999 bad good <NA>
## [1,] No. cases 874 24 5 640 1543
## [2,] Percent 56.6 1.6 0.3 41.5 100
8B Impact (ordinal [0,1,2,3], v2_leq_A_8B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq8e_wechseljahre,v2_con$v2_leq_a_leq8e,"v2_leq_A_8B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 872 2 7 16 6 640 1543
## [2,] Percent 56.5 0.1 0.5 1 0.4 41.5 100
9. “Major difficulties with birth control pills or devices”
9A Nature (dichotomous [“good”,“bad”], v2_leq_A_9A)
v2_leq_a_recode(v2_clin$v2_leq_a_leq9a_verhuetung,v2_con$v2_leq_a_leq9a,"v2_leq_A_9A")
## -999 bad good <NA>
## [1,] No. cases 886 14 3 640 1543
## [2,] Percent 57.4 0.9 0.2 41.5 100
9B Impact (ordinal [0,1,2,3], v2_leq_A_9B)
v2_leq_b_recode(v2_clin$v2_leq_a_leq9e_verhuetung,v2_con$v2_leq_a_leq9e,"v2_leq_A_9B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 885 6 4 1 7 640 1543
## [2,] Percent 57.4 0.4 0.3 0.1 0.5 41.5 100
Create dataset
v2_leq_A<-data.frame(v2_leq_A_1A,v2_leq_A_1B,v2_leq_A_2A,v2_leq_A_2B,v2_leq_A_3A,
v2_leq_A_3B,v2_leq_A_4A,v2_leq_A_4B,v2_leq_A_5A,v2_leq_A_5B,
v2_leq_A_6A,v2_leq_A_6B,v2_leq_A_7A,v2_leq_A_7B,v2_leq_A_8A,
v2_leq_A_8B,v2_leq_A_9A,v2_leq_A_9B)
10. “Difficulty finding a job”
10A Nature (dichotomous [“good”,“bad”], v2_leq_B_10A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq10a_arbeitssuche,v2_con$v2_leq_b_leq10a,"v2_leq_B_10A")
## -999 bad good <NA>
## [1,] No. cases 755 119 29 640 1543
## [2,] Percent 48.9 7.7 1.9 41.5 100
10B Impact (ordinal [0,1,2,3], v2_leq_B_10B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq10e_arbeitssuche,v2_con$v2_leq_b_leq10e,"v2_leq_B_10B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 753 12 35 41 62 640 1543
## [2,] Percent 48.8 0.8 2.3 2.7 4 41.5 100
11. “Beginning work outside the home”
11A Nature (dichotomous [“good”,“bad”], v2_leq_B_11A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq11a_arbeit_aussen,v2_con$v2_leq_b_leq11a,"v2_leq_B_11A")
## -999 bad good <NA>
## [1,] No. cases 769 26 108 640 1543
## [2,] Percent 49.8 1.7 7 41.5 100
11B Impact (ordinal [0,1,2,3], v2_leq_B_11B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq11e_arbeit_aussen,v2_con$v2_leq_b_leq11e,"v2_leq_B_11B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 767 8 26 49 53 640 1543
## [2,] Percent 49.7 0.5 1.7 3.2 3.4 41.5 100
12. “Changing to a new type of work” 12A Nature (dichotomous [“good”,“bad”], v2_leq_B_12A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq12a_arbeitswechs,v2_con$v2_leq_b_leq12a,"v2_leq_B_12A")
## -999 bad good <NA>
## [1,] No. cases 785 21 97 640 1543
## [2,] Percent 50.9 1.4 6.3 41.5 100
12B Impact (ordinal [0,1,2,3], v2_leq_B_12B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq12e_arbeitswechs,v2_con$v2_leq_b_leq12e,"v2_leq_B_12B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 783 5 21 39 55 640 1543
## [2,] Percent 50.7 0.3 1.4 2.5 3.6 41.5 100
13. “Changing your work hours or conditions”
13A Nature (dichotomous [“good”,“bad”], v2_leq_B_13A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq13a_veraend_arb,v2_con$v2_leq_b_leq13a,"v2_leq_B_13A")
## -999 bad good <NA>
## [1,] No. cases 733 46 124 640 1543
## [2,] Percent 47.5 3 8 41.5 100
13B Impact (ordinal [0,1,2,3], v2_leq_B_13B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq13e_veraend_arb,v2_con$v2_leq_b_leq13e,"v2_leq_B_13B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 731 7 43 69 53 640 1543
## [2,] Percent 47.4 0.5 2.8 4.5 3.4 41.5 100
14. “Change in your responsibilities at work” 14A Nature (dichotomous [“good”,“bad”], v2_leq_B_14A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq14a_veraend_ba,v2_con$v2_leq_b_leq14a,"v2_leq_B_14A")
## -999 bad good <NA>
## [1,] No. cases 743 40 120 640 1543
## [2,] Percent 48.2 2.6 7.8 41.5 100
14B Impact (ordinal [0,1,2,3], v2_leq_B_14B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq14e_veraend_ba,v2_con$v2_leq_b_leq14e,"v2_leq_B_14B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 742 8 41 63 49 640 1543
## [2,] Percent 48.1 0.5 2.7 4.1 3.2 41.5 100
15. “Troubles at work with your employer or co-worker”
15A Nature (dichotomous [“good”,“bad”], v2_leq_B_15A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq15a_schw_arbeit,v2_con$v2_leq_b_leq15a,"v2_leq_B_15A")
## -999 bad good <NA>
## [1,] No. cases 797 88 18 640 1543
## [2,] Percent 51.7 5.7 1.2 41.5 100
15B Impact (ordinal [0,1,2,3], v2_leq_B_15B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq15e_schw_arbeit,v2_con$v2_leq_b_leq15e,"v2_leq_B_15B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 795 10 40 32 26 640 1543
## [2,] Percent 51.5 0.6 2.6 2.1 1.7 41.5 100
16. “Major business readjustment”
16A Nature (dichotomous [“good”,“bad”], v2_leq_B_16A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq16a_betr_reorg,v2_con$v2_leq_b_leq16a,"v2_leq_B_16A")
## -999 bad good <NA>
## [1,] No. cases 860 23 20 640 1543
## [2,] Percent 55.7 1.5 1.3 41.5 100
16B Impact (ordinal [0,1,2,3], v2_leq_B_16B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq16e_betr_reorg,v2_con$v2_leq_b_leq16e,"v2_leq_B_16B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 859 8 12 13 11 640 1543
## [2,] Percent 55.7 0.5 0.8 0.8 0.7 41.5 100
17. “Being fired or laid off from work”
17A Nature (dichotomous [“good”,“bad”], v2_leq_B_17A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq17a_kuendigung,v2_con$v2_leq_b_leq17a,"v2_leq_B_17A")
## -999 bad good <NA>
## [1,] No. cases 850 31 22 640 1543
## [2,] Percent 55.1 2 1.4 41.5 100
17B Impact (ordinal [0,1,2,3], v2_leq_B_17B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq17e_kuendigung,v2_con$v2_leq_b_leq17e,"v2_leq_B_17B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 849 5 9 14 26 640 1543
## [2,] Percent 55 0.3 0.6 0.9 1.7 41.5 100
18. “Retirement from work”
18A Nature (dichotomous [“good”,“bad”], v2_leq_B_18A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq18a_ende_beruf,v2_con$v2_leq_b_leq18a,"v2_leq_B_18A")
## -999 bad good <NA>
## [1,] No. cases 866 18 19 640 1543
## [2,] Percent 56.1 1.2 1.2 41.5 100
18B Impact (ordinal [0,1,2,3], v2_leq_B_18B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq18e_ende_beruf,v2_con$v2_leq_b_leq18e,"v2_leq_B_18B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 864 5 7 6 21 640 1543
## [2,] Percent 56 0.3 0.5 0.4 1.4 41.5 100
19. “Taking courses by mail or studying at home to help you in your work”
19A Nature (dichotomous [“good”,“bad”], v2_leq_B_19A)
v2_leq_a_recode(v2_clin$v2_leq_b_leq19a_fortbildung,v2_con$v2_leq_b_leq19a,"v2_leq_B_19A")
## -999 bad good <NA>
## [1,] No. cases 845 12 46 640 1543
## [2,] Percent 54.8 0.8 3 41.5 100
19B Impact (ordinal [0,1,2,3], v2_leq_B_19B)
v2_leq_b_recode(v2_clin$v2_leq_b_leq19e_fortbildung,v2_con$v2_leq_b_leq19e,"v2_leq_B_19B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 842 4 15 26 16 640 1543
## [2,] Percent 54.6 0.3 1 1.7 1 41.5 100
v2_leq_B<-data.frame(v2_leq_B_10A,v2_leq_B_10B,v2_leq_B_11A,v2_leq_B_11B,v2_leq_B_12A,
v2_leq_B_12B,v2_leq_B_13A,v2_leq_B_13B,v2_leq_B_14A,v2_leq_B_14B,
v2_leq_B_15A,v2_leq_B_15B,v2_leq_B_16A,v2_leq_B_16B,v2_leq_B_17A,
v2_leq_B_17B,v2_leq_B_18A,v2_leq_B_18B,v2_leq_B_19A,v2_leq_B_19B)
20. “Beginning or ceasing school, college, or training program”
20A Nature (dichotomous [“good”,“bad”], v2_leq_C_20A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq20a_beginn_ende,v2_con$v2_leq_c_d_leq20a,"v2_leq_C_20A")
## -999 bad good <NA>
## [1,] No. cases 842 8 53 640 1543
## [2,] Percent 54.6 0.5 3.4 41.5 100
20B Impact (ordinal [0,1,2,3], v2_leq_C_20B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq20e_beginn_ende,v2_con$v2_leq_c_d_leq20e,"v2_leq_C_20B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 841 5 6 23 28 640 1543
## [2,] Percent 54.5 0.3 0.4 1.5 1.8 41.5 100
21. “Change of school, college, or training program”
21A Nature (dichotomous [“good”,“bad”], v2_leq_C_21A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq21a_schulwechsel,v2_con$v2_leq_c_d_leq21a,"v2_leq_C_21A")
## -999 bad good <NA>
## [1,] No. cases 889 4 10 640 1543
## [2,] Percent 57.6 0.3 0.6 41.5 100
21B Impact (ordinal [0,1,2,3], v2_leq_C_21B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq21e_schulwechsel,v2_con$v2_leq_c_d_leq21e,"v2_leq_C_21B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 888 4 1 9 1 640 1543
## [2,] Percent 57.6 0.3 0.1 0.6 0.1 41.5 100
22. “Change in career goal or academic major”
A Nature (dichotomous [“good”,“bad”], v2_leq_C_22A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq22a_aend_karriere,v2_con$v2_leq_c_d_leq22a,"v2_leq_C_22A")
## -999 bad good <NA>
## [1,] No. cases 866 8 29 640 1543
## [2,] Percent 56.1 0.5 1.9 41.5 100
B Impact (ordinal [0,1,2,3], v2_leq_C_22B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq22e_aend_karriere,v2_con$v2_leq_c_d_leq22e,"v2_leq_C_22B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 865 3 6 17 12 640 1543
## [2,] Percent 56.1 0.2 0.4 1.1 0.8 41.5 100
23. “Problem in school, college, or training program”
23A Nature (dichotomous [“good”,“bad”], v2_leq_C_23A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq23a_schulprob,v2_con$v2_leq_c_d_leq23a,"v2_leq_C_23A")
## -999 bad good <NA>
## [1,] No. cases 876 25 2 640 1543
## [2,] Percent 56.8 1.6 0.1 41.5 100
23B Impact (ordinal [0,1,2,3], v2_leq_C_23B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq23e_schulprob,v2_con$v2_leq_c_d_leq23e,"v2_leq_C_23B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 875 1 10 10 7 640 1543
## [2,] Percent 56.7 0.1 0.6 0.6 0.5 41.5 100
Create dataset
v2_leq_C<-data.frame(v2_leq_C_20A,v2_leq_C_20B,v2_leq_C_21A,v2_leq_C_21B,v2_leq_C_22A,v2_leq_C_22B,v2_leq_C_23A,v2_leq_C_23B)
24. “Difficulty finding housing”
24A Nature (dichotomous [“good”,“bad”], v2_leq_D_24A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq24a_schw_wsuche,v2_con$v2_leq_c_d_leq24a,"v2_leq_D_24A")
## -999 bad good <NA>
## [1,] No. cases 829 58 16 640 1543
## [2,] Percent 53.7 3.8 1 41.5 100
24B Impact (ordinal [0,1,2,3], v2_leq_D_24B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq24e_schw_wsuche,v2_con$v2_leq_c_d_leq24e,"v2_leq_D_24B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 828 4 20 15 36 640 1543
## [2,] Percent 53.7 0.3 1.3 1 2.3 41.5 100
25. “Changing residence within the same town or city”
A Nature (dichotomous [“good”,“bad”], v2_leq_D_25A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq25a_umzug_nah,v2_con$v2_leq_c_d_leq25a,"v2_leq_D_25A")
## -999 bad good <NA>
## [1,] No. cases 841 15 47 640 1543
## [2,] Percent 54.5 1 3 41.5 100
B Impact (ordinal [0,1,2,3], v2_leq_D_25B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq25e_umzug_nah,v2_con$v2_leq_c_d_leq25e,"v2_leq_D_25B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 840 3 9 14 37 640 1543
## [2,] Percent 54.4 0.2 0.6 0.9 2.4 41.5 100
26. “Moving to a different town, city, state, or country”
26A Nature (dichotomous [“good”,“bad”], v2_leq_D_26A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq26a_umzug_fern,v2_con$v2_leq_c_d_leq26a,"v2_leq_D_26A")
## -999 bad good <NA>
## [1,] No. cases 859 9 35 640 1543
## [2,] Percent 55.7 0.6 2.3 41.5 100
26B Impact (ordinal [0,1,2,3], v2_leq_D_26B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq26e_umzug_fern,v2_con$v2_leq_c_d_leq26e,"v2_leq_D_26B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 858 4 4 13 24 640 1543
## [2,] Percent 55.6 0.3 0.3 0.8 1.6 41.5 100
27. “Major change in your life conditions (home improvements or a decline in your home or neighborhood)”
27A Nature (dichotomous [“good”,“bad”], v2_leq_D_27A)
v2_leq_a_recode(v2_clin$v2_leq_c_d_leq27a_veraend_lu,v2_con$v2_leq_c_d_leq27a,"v2_leq_D_27A")
## -999 bad good <NA>
## [1,] No. cases 757 46 100 640 1543
## [2,] Percent 49.1 3 6.5 41.5 100
27B Impact (ordinal [0,1,2,3], v2_leq_D_27B)
v2_leq_b_recode(v2_clin$v2_leq_c_d_leq27e_veraend_lu,v2_con$v2_leq_c_d_leq27e,"v2_leq_D_27B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 756 8 32 50 57 640 1543
## [2,] Percent 49 0.5 2.1 3.2 3.7 41.5 100
Create dataset
v2_leq_D<-data.frame(v2_leq_D_24A,v2_leq_D_24B,v2_leq_D_25A,v2_leq_D_25B,v2_leq_D_26A,
v2_leq_D_26B,v2_leq_D_27A,v2_leq_D_27B)
28. “Began a new, close, personal relationship”
28A Nature (dichotomous [“good”,“bad”], v2_leq_E_28A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq28a_neue_bez,v2_con$v2_leq_e_leq28a,"v2_leq_E_28A")
## -999 bad good <NA>
## [1,] No. cases 818 10 75 640 1543
## [2,] Percent 53 0.6 4.9 41.5 100
28B Impact (ordinal [0,1,2,3], v2_leq_E_28B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq28e_neue_bez,v2_con$v2_leq_e_leq28e,"v2_leq_E_28B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 817 4 8 30 44 640 1543
## [2,] Percent 52.9 0.3 0.5 1.9 2.9 41.5 100
29. “Became engaged”
29A Nature (dichotomous [“good”,“bad”], v2_leq_E_29A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq29a_verlobung,v2_con$v2_leq_e_leq29a,"v2_leq_E_29A")
## -999 bad good <NA>
## [1,] No. cases 889 4 10 640 1543
## [2,] Percent 57.6 0.3 0.6 41.5 100
29B Impact (ordinal [0,1,2,3], v2_leq_E_29B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq29e_verlobung,v2_con$v2_leq_e_leq29e,"v2_leq_E_29B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 888 4 4 4 3 640 1543
## [2,] Percent 57.6 0.3 0.3 0.3 0.2 41.5 100
30. “Girlfriend or boyfriend problems”
30A Nature (dichotomous [“good”,“bad”], v2_leq_E_30A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq30a_prob_partner,v2_con$v2_leq_e_leq30a,"v2_leq_E_30A")
## -999 bad good <NA>
## [1,] No. cases 809 83 11 640 1543
## [2,] Percent 52.4 5.4 0.7 41.5 100
30B Impact (ordinal [0,1,2,3], v2_leq_E_30B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq30e_prob_partner,v2_con$v2_leq_e_leq30e,"v2_leq_E_30B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 808 4 29 33 29 640 1543
## [2,] Percent 52.4 0.3 1.9 2.1 1.9 41.5 100
31. “Breaking up with a girlfriend or breaking an engagement”
31A Nature (dichotomous [“good”,“bad”], v2_leq_E_31A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq31a_trennung,v2_con$v2_leq_e_leq31a,"v2_leq_E_31A")
## -999 bad good <NA>
## [1,] No. cases 858 31 14 640 1543
## [2,] Percent 55.6 2 0.9 41.5 100
31B Impact (ordinal [0,1,2,3], v2_leq_E_31B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq31e_trennung,v2_con$v2_leq_e_leq31e,"v2_leq_E_31B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 858 2 5 13 25 640 1543
## [2,] Percent 55.6 0.1 0.3 0.8 1.6 41.5 100
32. “(Male) Wife or girlfriend’s pregnancy”
32A Nature (dichotomous [“good”,“bad”], v2_leq_E_32A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq32a_schwanger_p,v2_con$v2_leq_e_leq32a,"v2_leq_E_32A")
## -999 bad good <NA>
## [1,] No. cases 893 2 8 640 1543
## [2,] Percent 57.9 0.1 0.5 41.5 100
32B Impact (ordinal [0,1,2,3], v2_leq_E_32B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq32e_schwanger_p,v2_con$v2_leq_e_leq32e,"v2_leq_E_32B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 893 3 2 2 3 640 1543
## [2,] Percent 57.9 0.2 0.1 0.1 0.2 41.5 100
33. “(Male) Wife or girlfriend having a miscarriage or abortion”
33A Nature (dichotomous [“good”,“bad”], v2_leq_E_33A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq33a_fehlg_abtr_p,v2_con$v2_leq_e_leq33a,"v2_leq_E_33A")
## -999 bad <NA>
## [1,] No. cases 902 1 640 1543
## [2,] Percent 58.5 0.1 41.5 100
33B Impact (ordinal [0,1,2,3], v2_leq_E_33B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq33e_fehlg_abtr_p,v2_con$v2_leq_e_leq33e,"v2_leq_E_33B")
## -999 0 <NA>
## [1,] No. cases 902 1 640 1543
## [2,] Percent 58.5 0.1 41.5 100
34. “Getting married (or beginning to live with someone)”
34A Nature (dichotomous [“good”,“bad”], v2_leq_E_34A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq34a_heirat,v2_con$v2_leq_e_leq34a,"v2_leq_E_34A")
## -999 bad good <NA>
## [1,] No. cases 888 2 13 640 1543
## [2,] Percent 57.6 0.1 0.8 41.5 100
34B Impact (ordinal [0,1,2,3], v2_leq_E_34B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq34e_heirat,v2_con$v2_leq_e_leq34e,"v2_leq_E_34B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 887 2 5 1 8 640 1543
## [2,] Percent 57.5 0.1 0.3 0.1 0.5 41.5 100
35. “A change in closeness with your partner”
35A Nature (dichotomous [“good”,“bad”], v2_leq_E_35A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq35a_veraend_naehe,v2_con$v2_leq_e_leq35a,"v2_leq_E_35A")
## -999 bad good <NA>
## [1,] No. cases 791 43 69 640 1543
## [2,] Percent 51.3 2.8 4.5 41.5 100
35B Impact (ordinal [0,1,2,3], v2_leq_E_35B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq35e_veraend_naehe,v2_con$v2_leq_e_leq35e,"v2_leq_E_35B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 790 3 24 44 42 640 1543
## [2,] Percent 51.2 0.2 1.6 2.9 2.7 41.5 100
36. “Infidelity”
36A Nature (dichotomous [“good”,“bad”], v2_leq_E_36A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq36a_untreue,v2_con$v2_leq_e_leq36a,"v2_leq_E_36A")
## -999 bad good <NA>
## [1,] No. cases 878 19 6 640 1543
## [2,] Percent 56.9 1.2 0.4 41.5 100
36B Impact (ordinal [0,1,2,3], v2_leq_E_36B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq36e_untreue,v2_con$v2_leq_e_leq36e,"v2_leq_E_36B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 877 3 7 5 11 640 1543
## [2,] Percent 56.8 0.2 0.5 0.3 0.7 41.5 100
37. “Trouble with in-laws”
37A Nature (dichotomous [“good”,“bad”], v2_leq_E_37A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq37a_konf_schwiege,v2_con$v2_leq_e_leq37a,"v2_leq_E_37A")
## -999 bad good <NA>
## [1,] No. cases 880 21 2 640 1543
## [2,] Percent 57 1.4 0.1 41.5 100
37B Impact (ordinal [0,1,2,3], v2_leq_E_37B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq37e_konf_schwiege,v2_con$v2_leq_e_leq37e,"v2_leq_E_37B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 879 4 9 6 5 640 1543
## [2,] Percent 57 0.3 0.6 0.4 0.3 41.5 100
38. “Separation from spouse or partner due to conflict”
38A Nature (dichotomous [“good”,“bad”], v2_leq_E_38A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq38a_trennung_str,v2_con$v2_leq_e_leq38a,"v2_leq_E_38A")
## -999 bad good <NA>
## [1,] No. cases 881 14 8 640 1543
## [2,] Percent 57.1 0.9 0.5 41.5 100
38B Impact (ordinal [0,1,2,3], v2_leq_E_38B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq38e_trennung_str,v2_con$v2_leq_e_leq38e,"v2_leq_E_38B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 880 4 5 3 11 640 1543
## [2,] Percent 57 0.3 0.3 0.2 0.7 41.5 100
39. “Separation from spouse or partner due to work, travel, etc.”
39A Nature (dichotomous [“good”,“bad”], v2_leq_E_39A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq39a_trennung_ber,v2_con$v2_leq_e_leq39a,"v2_leq_E_39A")
## -999 bad good <NA>
## [1,] No. cases 895 7 1 640 1543
## [2,] Percent 58 0.5 0.1 41.5 100
39B Impact (ordinal [0,1,2,3], v2_leq_E_39B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq39e_trennung_ber,v2_con$v2_leq_e_leq39e,"v2_leq_E_39B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 894 2 1 2 4 640 1543
## [2,] Percent 57.9 0.1 0.1 0.1 0.3 41.5 100
40. “Reconciliation with spouse or partner”
40A Nature (dichotomous [“good”,“bad”], v2_leq_E_40A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq40a_versoehnung,v2_con$v2_leq_e_leq40a,"v2_leq_E_40A")
## -999 bad good <NA>
## [1,] No. cases 878 2 23 640 1543
## [2,] Percent 56.9 0.1 1.5 41.5 100
40B Impact (ordinal [0,1,2,3], v2_leq_E_40B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq40a_versoehnung,v2_con$v2_leq_e_leq40e,"v2_leq_E_40B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 878 2 21 1 1 640 1543
## [2,] Percent 56.9 0.1 1.4 0.1 0.1 41.5 100
41. “Divorce”
41A Nature (dichotomous [“good”,“bad”], v2_leq_E_41A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq41a_scheidung,v2_con$v2_leq_e_leq41a,"v2_leq_E_41A")
## -999 bad good <NA>
## [1,] No. cases 894 4 5 640 1543
## [2,] Percent 57.9 0.3 0.3 41.5 100
41B Impact (ordinal [0,1,2,3], v2_leq_E_41B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq41e_scheidung,v2_con$v2_leq_e_leq41e,"v2_leq_E_41B")
## -999 0 2 3 <NA>
## [1,] No. cases 892 4 2 5 640 1543
## [2,] Percent 57.8 0.3 0.1 0.3 41.5 100
42. “Change in your spouse or partner’s work outside the home (beginning work, ceasing work, changing jobs, retirement, etc.”
42A Nature (dichotomous [“good”,“bad”], v2_leq_E_42A)
v2_leq_a_recode(v2_clin$v2_leq_e_leq42a_veraend_taet,v2_con$v2_leq_e_leq42a,"v2_leq_E_42A")
## -999 bad good <NA>
## [1,] No. cases 863 12 28 640 1543
## [2,] Percent 55.9 0.8 1.8 41.5 100
42B Impact (ordinal [0,1,2,3], v2_leq_E_42B)
v2_leq_b_recode(v2_clin$v2_leq_e_leq42e_veraend_taet,v2_con$v2_leq_e_leq42e,"v2_leq_E_42B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 862 5 14 8 14 640 1543
## [2,] Percent 55.9 0.3 0.9 0.5 0.9 41.5 100
Create dataset
v2_leq_E<-data.frame(v2_leq_E_28A,v2_leq_E_28B,v2_leq_E_29A,v2_leq_E_29B,v2_leq_E_30A,
v2_leq_E_30B,v2_leq_E_31A,v2_leq_E_31B,v2_leq_E_32A,v2_leq_E_32B,
v2_leq_E_33A,v2_leq_E_33B,v2_leq_E_34A,v2_leq_E_34B,v2_leq_E_35A,
v2_leq_E_35B,v2_leq_E_36A,v2_leq_E_36B,v2_leq_E_37A,v2_leq_E_37B,
v2_leq_E_38A,v2_leq_E_38B,v2_leq_E_39A,v2_leq_E_39B,v2_leq_E_40A,
v2_leq_E_40B,v2_leq_E_41A,v2_leq_E_41B,v2_leq_E_42A,v2_leq_E_42B)
43. “Gain of a new family member (through birth, adoption, relative moving in, etc)”
43A Nature (dichotomous [“good”,“bad”], v2_leq_F_43A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq43a_neu_fmitglied,v2_con$v2_leq_f_g_leq43a,"v2_leq_F_43A")
## -999 bad good <NA>
## [1,] No. cases 844 1 58 640 1543
## [2,] Percent 54.7 0.1 3.8 41.5 100
43B Impact (ordinal [0,1,2,3], v2_leq_F_43B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq43e_neu_fmitglied,v2_con$v2_leq_f_g_leq43e,"v2_leq_F_43B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 843 10 14 17 19 640 1543
## [2,] Percent 54.6 0.6 0.9 1.1 1.2 41.5 100
44. “Child or family member leaving home (due to marriage, to attend college, or for some other reason)”
44A Nature (dichotomous [“good”,“bad”], v2_leq_F_44A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq44a_auszug_fm,v2_con$v2_leq_f_g_leq44a,"v2_leq_F_44A")
## -999 bad good <NA>
## [1,] No. cases 868 19 16 640 1543
## [2,] Percent 56.3 1.2 1 41.5 100
44B Impact (ordinal [0,1,2,3], v2_leq_F_44B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq44e_auszug_fm,v2_con$v2_leq_f_g_leq44e,"v2_leq_F_44B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 867 7 7 15 7 640 1543
## [2,] Percent 56.2 0.5 0.5 1 0.5 41.5 100
45. “Major change in the health or behavior of a family member or close friend (illness, accidents, drug or disciplinary problems, etc.)”
45A Nature (dichotomous [“good”,“bad”], v2_leq_F_45A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq45a_gz_verh_fm,v2_con$v2_leq_f_g_leq45a,"v2_leq_F_45A")
## -999 bad good <NA>
## [1,] No. cases 771 126 6 640 1543
## [2,] Percent 50 8.2 0.4 41.5 100
45B Impact (ordinal [0,1,2,3], v2_leq_F_45B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq45e_gz_verh_fm,v2_con$v2_leq_f_g_leq45e,"v2_leq_F_45B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 771 5 27 59 41 640 1543
## [2,] Percent 50 0.3 1.7 3.8 2.7 41.5 100
46. “Death of spouse or partner”
46A Nature (dichotomous [“good”,“bad”], v2_leq_F_46A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq46a_tod_partner,v2_con$v2_leq_f_g_leq46a,"v2_leq_F_46A")
## -999 bad <NA>
## [1,] No. cases 896 7 640 1543
## [2,] Percent 58.1 0.5 41.5 100
46B Impact (ordinal [0,1,2,3], v2_leq_F_46B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq46e_tod_partner,v2_con$v2_leq_f_g_leq46e,"v2_leq_F_46B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 895 1 1 1 5 640 1543
## [2,] Percent 58 0.1 0.1 0.1 0.3 41.5 100
47. “Death of a child”
47A Nature (dichotomous [“good”,“bad”], v2_leq_F_47A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq47a_tod_kind,v2_con$v2_leq_f_g_leq47a,"v2_leq_F_47A")
## -999 bad good <NA>
## [1,] No. cases 897 5 1 640 1543
## [2,] Percent 58.1 0.3 0.1 41.5 100
47B Impact (ordinal [0,1,2,3], v2_leq_F_47B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq47e_tod_kind,v2_con$v2_leq_f_g_leq47e,"v2_leq_F_47B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 896 1 1 1 4 640 1543
## [2,] Percent 58.1 0.1 0.1 0.1 0.3 41.5 100
48. “Death of family member or close friend”
48A Nature (dichotomous [“good”,“bad”], v2_leq_F_48A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq48a_tod_fm_ef,v2_con$v2_leq_f_g_leq48a,"v2_leq_F_48A")
## -999 bad good <NA>
## [1,] No. cases 834 63 6 640 1543
## [2,] Percent 54.1 4.1 0.4 41.5 100
48B Impact (ordinal [0,1,2,3], v2_leq_F_48B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq48e_tod_fm_ef,v2_con$v2_leq_f_g_leq48e,"v2_leq_F_48B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 833 5 24 20 21 640 1543
## [2,] Percent 54 0.3 1.6 1.3 1.4 41.5 100
49. “Birth of a grandchild”
49A Nature (dichotomous [“good”,“bad”], v2_leq_F_49A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq49a_geb_enkel,v2_con$v2_leq_f_g_leq49a,"v2_leq_F_49A")
## -999 bad good <NA>
## [1,] No. cases 879 3 21 640 1543
## [2,] Percent 57 0.2 1.4 41.5 100
49B Impact (ordinal [0,1,2,3], v2_leq_F_49B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq49e_geb_enkel,v2_con$v2_leq_f_g_leq49e,"v2_leq_F_49B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 878 4 5 7 9 640 1543
## [2,] Percent 56.9 0.3 0.3 0.5 0.6 41.5 100
50. “Change in marital status of your parents”
50A Nature (dichotomous [“good”,“bad”], v2_leq_F_50A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq50a_fstand_eltern,v2_con$v2_leq_f_g_leq50a,"v2_leq_F_50A")
## -999 bad good <NA>
## [1,] No. cases 891 5 7 640 1543
## [2,] Percent 57.7 0.3 0.5 41.5 100
50B Impact (ordinal [0,1,2,3], v2_leq_F_50B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq50e_fstand_eltern,v2_con$v2_leq_f_g_leq50e,"v2_leq_F_50B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 890 1 6 2 4 640 1543
## [2,] Percent 57.7 0.1 0.4 0.1 0.3 41.5 100
Create dataset
v2_leq_F<-data.frame(v2_leq_F_43A,v2_leq_F_43B,v2_leq_F_44A,v2_leq_F_44B,v2_leq_F_45A,
v2_leq_F_45B,v2_leq_F_46A,v2_leq_F_46B,v2_leq_F_47A,v2_leq_F_47B,
v2_leq_F_48A,v2_leq_F_48B,v2_leq_F_49A,v2_leq_F_49B,v2_leq_F_50A,
v2_leq_F_50B)
51. “Change in child care arrangements”
51A Nature (dichotomous [“good”,“bad”], v2_leq_G_51A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq51a_kindbetr,v2_con$v2_leq_f_g_leq51a,"v2_leq_G_51A")
## -999 bad good <NA>
## [1,] No. cases 880 8 15 640 1543
## [2,] Percent 57 0.5 1 41.5 100
51B Impact (ordinal [0,1,2,3], v2_leq_G_51B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq51e_kindbetr,v2_con$v2_leq_f_g_leq51e,"v2_leq_G_51B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 879 2 5 9 8 640 1543
## [2,] Percent 57 0.1 0.3 0.6 0.5 41.5 100
52. “Conflicts with spouse or partner about parenting”
52A Nature (dichotomous [“good”,“bad”], v2_leq_G_52A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq52a_konf_eschaft,v2_con$v2_leq_f_g_leq52a,"v2_leq_G_52A")
## -999 bad good <NA>
## [1,] No. cases 880 16 7 640 1543
## [2,] Percent 57 1 0.5 41.5 100
52B Impact (ordinal [0,1,2,3], v2_leq_G_52B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq52e_konf_eschaft,v2_con$v2_leq_f_g_leq52e,"v2_leq_G_52B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 879 3 5 8 8 640 1543
## [2,] Percent 57 0.2 0.3 0.5 0.5 41.5 100
53. “Conflicts with child’s grandparents (or other important person) about parenting”
53A Nature (dichotomous [“good”,“bad”], v2_leq_G_53A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq53a_konf_geltern,v2_con$v2_leq_f_g_leq53a,"v2_leq_G_53A")
## -999 bad good <NA>
## [1,] No. cases 895 6 2 640 1543
## [2,] Percent 58 0.4 0.1 41.5 100
53B Impact (ordinal [0,1,2,3], v2_leq_G_53B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq53e_konf_geltern,v2_con$v2_leq_f_g_leq53e,"v2_leq_G_53B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 894 3 3 2 1 640 1543
## [2,] Percent 57.9 0.2 0.2 0.1 0.1 41.5 100
54. “Taking on full responsibility for parenting as a single parent”
54A Nature (dichotomous [“good”,“bad”], v2_leq_G_54A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq54a_alleinerz,v2_con$v2_leq_f_g_leq54a,"v2_leq_G_54A")
## -999 bad good <NA>
## [1,] No. cases 896 4 3 640 1543
## [2,] Percent 58.1 0.3 0.2 41.5 100
54B Impact (ordinal [0,1,2,3], v2_leq_G_54B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq54e_alleinerz,v2_con$v2_leq_f_g_leq54e,"v2_leq_G_54B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 895 2 1 3 2 640 1543
## [2,] Percent 58 0.1 0.1 0.2 0.1 41.5 100
55. “Custody battles with former spouse or partner”
55A Nature (dichotomous [“good”,“bad”], v2_leq_G_55A)
v2_leq_a_recode(v2_clin$v2_leq_f_g_leq55a_sorgerecht,v2_con$v2_leq_f_g_leq55a,"v2_leq_G_55A")
## -999 bad good <NA>
## [1,] No. cases 889 9 5 640 1543
## [2,] Percent 57.6 0.6 0.3 41.5 100
55B Impact (ordinal [0,1,2,3], v2_leq_G_55B)
v2_leq_b_recode(v2_clin$v2_leq_f_g_leq55e_sorgerecht,v2_con$v2_leq_f_g_leq55e,"v2_leq_G_55B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 888 3 1 6 5 640 1543
## [2,] Percent 57.6 0.2 0.1 0.4 0.3 41.5 100
Create dataset
v2_leq_G<-data.frame(v2_leq_G_51A,v2_leq_G_51B,v2_leq_G_52A,v2_leq_G_52B,v2_leq_G_53A,
v2_leq_G_53B,v2_leq_G_54A,v2_leq_G_54B,v2_leq_G_55A,v2_leq_G_55B)
69. “Major change in finances (increased or decreased income)”
69A Nature (dichotomous [“good”,“bad”], v2_leq_I_69A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq69a_finanz_sit,v2_con$v2_leq_i_j_k_leq69a,"v2_leq_I_69A")
## -999 bad good <NA>
## [1,] No. cases 657 121 125 640 1543
## [2,] Percent 42.6 7.8 8.1 41.5 100
69B Impact (ordinal [0,1,2,3], v2_leq_I_69B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq69e_finanz_sit,v2_con$v2_leq_i_j_k_leq69e,"v2_leq_I_69B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 655 7 67 86 88 640 1543
## [2,] Percent 42.4 0.5 4.3 5.6 5.7 41.5 100
70. “Took on a moderate purchase, such as TV, car, freezer, etc.”
70A Nature (dichotomous [“good”,“bad”], v2_leq_I_70A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq70a_finanz_verpfl,v2_con$v2_leq_i_j_k_leq70a,"v2_leq_I_70A")
## -999 bad good <NA>
## [1,] No. cases 827 23 53 640 1543
## [2,] Percent 53.6 1.5 3.4 41.5 100
70B Impact (ordinal [0,1,2,3], v2_leq_I_70B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq70e_finanz_verpfl,v2_con$v2_leq_i_j_k_leq70e,"v2_leq_I_70B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 825 9 32 27 10 640 1543
## [2,] Percent 53.5 0.6 2.1 1.7 0.6 41.5 100
71. “Took on a major purchase or a mortgage loan, such as a home, business, property, etc”
71A Nature (dichotomous [“good”,“bad”], v2_leq_I_71A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq71a_hypothek,v2_con$v2_leq_i_j_k_leq71a,"v2_leq_I_71A")
## -999 bad good <NA>
## [1,] No. cases 882 11 10 640 1543
## [2,] Percent 57.2 0.7 0.6 41.5 100
71B Impact (ordinal [0,1,2,3], v2_leq_I_71B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq71e_hypothek,v2_con$v2_leq_i_j_k_leq71e,"v2_leq_I_71B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 881 3 7 7 5 640 1543
## [2,] Percent 57.1 0.2 0.5 0.5 0.3 41.5 100
72. “Experienced a foreclosure on a mortgage or loan”
72A Nature (dichotomous [“good”,“bad”], v2_leq_I_72A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq72a_hypoth_kuend,v2_con$v2_leq_i_j_k_leq72a,"v2_leq_I_72A")
## -999 bad good <NA>
## [1,] No. cases 892 2 9 640 1543
## [2,] Percent 57.8 0.1 0.6 41.5 100
72B Impact (ordinal [0,1,2,3], v2_leq_I_72B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq72e_hypoth_kuend,v2_con$v2_leq_i_j_k_leq72e,"v2_leq_I_72B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 891 3 6 1 2 640 1543
## [2,] Percent 57.7 0.2 0.4 0.1 0.1 41.5 100
73. “Credit rating difficulties”
73A Nature (dichotomous [“good”,“bad”], v2_leq_I_73A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq73a_kreditwuerdk,v2_con$v2_leq_i_j_k_leq73a,"v2_leq_I_73A")
## -999 bad <NA>
## [1,] No. cases 874 29 640 1543
## [2,] Percent 56.6 1.9 41.5 100
73B Impact (ordinal [0,1,2,3], v2_leq_I_73B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq73e_kreditwuerdk,v2_con$v2_leq_i_j_k_leq73e,"v2_leq_I_73B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 874 3 12 8 6 640 1543
## [2,] Percent 56.6 0.2 0.8 0.5 0.4 41.5 100
Create dataset
v2_leq_I<-data.frame(v2_leq_I_69A,v2_leq_I_69B,v2_leq_I_70A,v2_leq_I_70B,v2_leq_I_71A,
v2_leq_I_71B,v2_leq_I_72A,v2_leq_I_72B,v2_leq_I_73A,v2_leq_I_73B)
74. “Being robbed or victim of identity theft”
74A Nature (dichotomous [“good”,“bad”], v2_leq_J_74A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq74a_opf_diebstahl,v2_con$v2_leq_i_j_k_leq74a,"v2_leq_J_74A")
## -999 bad good <NA>
## [1,] No. cases 870 30 3 640 1543
## [2,] Percent 56.4 1.9 0.2 41.5 100
74B Impact (ordinal [0,1,2,3], v2_leq_J_74B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq74e_opf_diebstahl,v2_con$v2_leq_i_j_k_leq74e,"v2_leq_J_74B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 869 2 13 13 6 640 1543
## [2,] Percent 56.3 0.1 0.8 0.8 0.4 41.5 100
75. “Being a victim of a violent act (rape, assault, etc.)”
75A Nature (dichotomous [“good”,“bad”], v2_leq_J_75A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq75a_opf_gewalttat,v2_con$v2_leq_i_j_k_leq75a,"v2_leq_J_75A")
## -999 bad <NA>
## [1,] No. cases 892 11 640 1543
## [2,] Percent 57.8 0.7 41.5 100
75B Impact (ordinal [0,1,2,3], v2_leq_J_75B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq75e_opf_gewalttat,v2_con$v2_leq_i_j_k_leq75e,"v2_leq_J_75B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 891 2 2 3 5 640 1543
## [2,] Percent 57.7 0.1 0.1 0.2 0.3 41.5 100
76. “Involved in an accident”
76A Nature (dichotomous [“good”,“bad”], v2_leq_J_76A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq76a_unfall,v2_con$v2_leq_i_j_k_leq76a,"v2_leq_J_76A")
## -999 bad good <NA>
## [1,] No. cases 861 40 2 640 1543
## [2,] Percent 55.8 2.6 0.1 41.5 100
76B Impact (ordinal [0,1,2,3], v2_leq_J_76B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq76e_unfall,v2_con$v2_leq_i_j_k_leq76e,"v2_leq_J_76B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 860 6 18 13 6 640 1543
## [2,] Percent 55.7 0.4 1.2 0.8 0.4 41.5 100
77. “Involved in a law suit”
77A Nature (dichotomous [“good”,“bad”], v2_leq_J_77A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq77a_rechtsstreit,v2_con$v2_leq_i_j_k_leq77a,"v2_leq_J_77A")
## -999 bad good <NA>
## [1,] No. cases 845 42 16 640 1543
## [2,] Percent 54.8 2.7 1 41.5 100
77B Impact (ordinal [0,1,2,3], v2_leq_J_77B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq77e_rechtsstreit,v2_con$v2_leq_i_j_k_leq77e,"v2_leq_J_77B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 844 6 18 16 19 640 1543
## [2,] Percent 54.7 0.4 1.2 1 1.2 41.5 100
78. “Involved in a minor violation of the law (traffic tickets, disturbing the peace, etc)”
78A Nature (dichotomous [“good”,“bad”], v2_leq_J_78A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq78a_owi,v2_con$v2_leq_i_j_k_leq78a,"v2_leq_J_78A")
## -999 bad good <NA>
## [1,] No. cases 864 36 3 640 1543
## [2,] Percent 56 2.3 0.2 41.5 100
78B Impact (ordinal [0,1,2,3], v2_leq_J_78B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq78e_owi,v2_con$v2_leq_i_j_k_leq78e,"v2_leq_J_78B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 862 9 20 9 3 640 1543
## [2,] Percent 55.9 0.6 1.3 0.6 0.2 41.5 100
79. “Legal troubles resulting in your being arrested or held in jail”
79A Nature (dichotomous [“good”,“bad”], v2_leq_J_79A)
v2_leq_a_recode(v2_clin$v2_leq_i_j_k_leq79a_konf_gesetz,v2_con$v2_leq_i_j_k_leq79a,"v2_leq_J_79A")
## -999 bad <NA>
## [1,] No. cases 898 5 640 1543
## [2,] Percent 58.2 0.3 41.5 100
79B Impact (ordinal [0,1,2,3], v2_leq_J_79B)
v2_leq_b_recode(v2_clin$v2_leq_i_j_k_leq79e_konf_gesetz,v2_con$v2_leq_i_j_k_leq79e,"v2_leq_J_79B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 897 1 1 2 2 640 1543
## [2,] Percent 58.1 0.1 0.1 0.1 0.1 41.5 100
Create dataset
v2_leq_J<-data.frame(v2_leq_J_74A,v2_leq_J_74B,v2_leq_J_75A,v2_leq_J_75B,v2_leq_J_76A,
v2_leq_J_76B,v2_leq_J_77A,v2_leq_J_77B,v2_leq_J_78A,v2_leq_J_78B,
v2_leq_J_79A,v2_leq_J_79B)
Create LEQ dataset
v2_leq<-data.frame(v2_leq_A,v2_leq_B,v2_leq_C,v2_leq_D,v2_leq_E,v2_leq_F,v2_leq_G,
v2_leq_H,v2_leq_I,v2_leq_J)
For explanation, please refer to the section in Visit 1
1. “How would you rate your quality of life?” (ordinal [1,2,3,4,5], v2_whoqol_itm1)
v2_quol_recode(v2_clin$v2_whoqol_bref_who1_lebensqualitaet,v2_con$v2_whoqol_bref_who1,"v2_whoqol_itm1",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 25 64 261 411 179 603 1543
## [2,] Percent 1.6 4.1 16.9 26.6 11.6 39.1 100
2. “How satisfied are you with your health? (ordinal [1,2,3,4,5], v2_whoqol_itm2)”
v2_quol_recode(v2_clin$v2_whoqol_bref_who2_gesundheit,v2_con$v2_whoqol_bref_who2,"v2_whoqol_itm2",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 43 176 208 386 127 603 1543
## [2,] Percent 2.8 11.4 13.5 25 8.2 39.1 100
3. “To what extent do you feel that physical pain prevents you from doing what you need to do?” (ordinal [1,2,3,4,5], v2_whoqol_itm3)
Coding reversed so that higher scores mean less impairment by pain.
v2_quol_recode(v2_clin$v2_whoqol_bref_who3_schmerzen,v2_con$v2_whoqol_bref_who3,"v2_whoqol_itm3",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 10 53 88 195 583 614 1543
## [2,] Percent 0.6 3.4 5.7 12.6 37.8 39.8 100
4. “How much do you need any medical treatment to function in your daily life? (ordinal [1,2,3,4,5], v2_whoqol_itm4)”
Coding reversed so that higher scores mean less dependence on medical treatment.
v2_quol_recode(v2_clin$v2_whoqol_bref_who4_med_behand,v2_con$v2_whoqol_bref_who4,"v2_whoqol_itm4",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 85 183 136 176 350 613 1543
## [2,] Percent 5.5 11.9 8.8 11.4 22.7 39.7 100
5. “How much do you enjoy life?” (ordinal [1,2,3,4,5], v2_whoqol_itm5)
v2_quol_recode(v2_clin$v2_whoqol_bref_who5_lebensgenuss,v2_con$v2_whoqol_bref_who5,"v2_whoqol_itm5",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 45 115 241 397 130 615 1543
## [2,] Percent 2.9 7.5 15.6 25.7 8.4 39.9 100
6. “To what extent do ou feel your life to be meaningful?” (ordinal [1,2,3,4,5], v2_whoqol_itm6)
v2_quol_recode(v2_clin$v2_whoqol_bref_who6_lebenssinn,v2_con$v2_whoqol_bref_who6,"v2_whoqol_itm6",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 56 114 166 348 234 625 1543
## [2,] Percent 3.6 7.4 10.8 22.6 15.2 40.5 100
7. “How well are you able to concentrate?” (ordinal [1,2,3,4,5], v2_whoqol_itm7)
v2_quol_recode(v2_clin$v2_whoqol_bref_who7_konzentration,v2_con$v2_whoqol_bref_who7,"v2_whoqol_itm7",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 18 128 363 362 58 614 1543
## [2,] Percent 1.2 8.3 23.5 23.5 3.8 39.8 100
8. “How safe do you feel in your daily life?” (ordinal [1,2,3,4,5], v2_whoqol_itm8)
v2_quol_recode(v2_clin$v2_whoqol_bref_who8_sicherheit,v2_con$v2_whoqol_bref_who8,"v2_whoqol_itm8",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 22 70 237 410 189 615 1543
## [2,] Percent 1.4 4.5 15.4 26.6 12.2 39.9 100
9. “How healthy is your physical environment?” (ordinal [1,2,3,4,5], v2_whoqol_itm9)
v2_quol_recode(v2_clin$v2_whoqol_bref_who9_umweltbed,v2_con$v2_whoqol_bref_who9,"v2_whoqol_itm9",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 15 33 203 443 229 620 1543
## [2,] Percent 1 2.1 13.2 28.7 14.8 40.2 100
10. “Do you have enough energy for everyday life?” (ordinal [1,2,3,4,5], v2_whoqol_itm10)
v2_quol_recode(v2_clin$v2_whoqol_bref_who10_energie,v2_con$v2_whoqol_bref_who10,"v2_whoqol_itm10",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 17 96 212 400 206 612 1543
## [2,] Percent 1.1 6.2 13.7 25.9 13.4 39.7 100
11. “Are you able to accept your bodily appearance?” (ordinal [1,2,3,4,5], v2_whoqol_itm11)
v2_quol_recode(v2_clin$v2_whoqol_bref_who11_aussehen,v2_con$v2_whoqol_bref_who11,"v2_whoqol_itm11",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 19 69 214 400 227 614 1543
## [2,] Percent 1.2 4.5 13.9 25.9 14.7 39.8 100
12. “Have you enough money to meet your needs?” (ordinal [1,2,3,4,5], v2_whoqol_itm12)
v2_quol_recode(v2_clin$v2_whoqol_bref_who12_genug_geld,v2_con$v2_whoqol_bref_who12,"v2_whoqol_itm12",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 52 115 224 314 225 613 1543
## [2,] Percent 3.4 7.5 14.5 20.3 14.6 39.7 100
13. “How available to you is the information that you need in your day-to-day life?” (ordinal [1,2,3,4,5], v2_whoqol_itm13)
v2_quol_recode(v2_clin$v2_whoqol_bref_who13_infozugang,v2_con$v2_whoqol_bref_who13,"v2_whoqol_itm13",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 9 20 107 336 458 613 1543
## [2,] Percent 0.6 1.3 6.9 21.8 29.7 39.7 100
14. “To what extent do you have the opportunity for leisure activities?” (ordinal [1,2,3,4,5], v2_whoqol_itm14)
v2_quol_recode(v2_clin$v2_whoqol_bref_who14_freizeitaktiv,v2_con$v2_whoqol_bref_who14,"v2_whoqol_itm14",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 12 54 189 352 321 615 1543
## [2,] Percent 0.8 3.5 12.2 22.8 20.8 39.9 100
15. “How well are you able to get around? (ordinal [1,2,3,4,5], v2_whoqol_itm15)”
v2_quol_recode(v2_clin$v2_whoqol_bref_who15_fortbewegung,v2_con$v2_whoqol_bref_who15,"v2_whoqol_itm15",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 4 37 141 327 420 614 1543
## [2,] Percent 0.3 2.4 9.1 21.2 27.2 39.8 100
16. “How satisfied are you with your sleep?” (ordinal [1,2,3,4,5], v2_whoqol_itm16)
v2_quol_recode(v2_clin$v2_whoqol_bref_who16_schlaf,v2_con$v2_whoqol_bref_who16,"v2_whoqol_itm16",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 45 147 164 409 176 602 1543
## [2,] Percent 2.9 9.5 10.6 26.5 11.4 39 100
17. “How satisfied are you with your ability to perform your daily living activities?” (ordinal [1,2,3,4,5], v2_whoqol_itm17)
v2_quol_recode(v2_clin$v2_whoqol_bref_who17_alltag,v2_con$v2_whoqol_bref_who17,"v2_whoqol_itm17",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 29 110 181 408 211 604 1543
## [2,] Percent 1.9 7.1 11.7 26.4 13.7 39.1 100
18. “How satisfied are you with your capacity for work?” (ordinal [1,2,3,4,5], v2_whoqol_itm18)
v2_quol_recode(v2_clin$v2_whoqol_bref_who18_arbeitsfhgk,v2_con$v2_whoqol_bref_who18,"v2_whoqol_itm18",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 67 192 171 318 182 613 1543
## [2,] Percent 4.3 12.4 11.1 20.6 11.8 39.7 100
19. “How satisfied are you with yourself?” (ordinal [1,2,3,4,5], v2_whoqol_itm19)
v2_quol_recode(v2_clin$v2_whoqol_bref_who19_selbstzufried,v2_con$v2_whoqol_bref_who19,"v2_whoqol_itm19",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 45 128 214 417 137 602 1543
## [2,] Percent 2.9 8.3 13.9 27 8.9 39 100
20. “How satisfied are you with your personal relationships?” (ordinal [1,2,3,4,5], v2_whoqol_itm20)
v2_quol_recode(v2_clin$v2_whoqol_bref_who20_pers_bezieh,v2_con$v2_whoqol_bref_who20,"v2_whoqol_itm20",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 32 101 212 422 168 608 1543
## [2,] Percent 2.1 6.5 13.7 27.3 10.9 39.4 100
21. “How satisfied are you with your sex life?” (ordinal [1,2,3,4,5], v2_whoqol_itm21)
v2_quol_recode(v2_clin$v2_whoqol_bref_who21_sexualleben,v2_con$v2_whoqol_bref_who21,"v2_whoqol_itm21",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 91 170 262 284 115 621 1543
## [2,] Percent 5.9 11 17 18.4 7.5 40.2 100
22. “How satisfied are you with the support you get from your friends?” (ordinal [1,2,3,4,5], v2_whoqol_itm22)
v2_quol_recode(v2_clin$v2_whoqol_bref_who22_freunde,v2_con$v2_whoqol_bref_who22,"v2_whoqol_itm22",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 34 60 204 423 213 609 1543
## [2,] Percent 2.2 3.9 13.2 27.4 13.8 39.5 100
23. “How satisfied are you with the conditions of your living place?” (ordinal [1,2,3,4,5], v2_whoqol_itm23)
v2_quol_recode(v2_clin$v2_whoqol_bref_who23_wohnbeding,v2_con$v2_whoqol_bref_who23,"v2_whoqol_itm23",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 43 59 144 420 275 602 1543
## [2,] Percent 2.8 3.8 9.3 27.2 17.8 39 100
24. “How satisfied are you with your access to health services?” (ordinal [1,2,3,4,5], v2_whoqol_itm24)
v2_quol_recode(v2_clin$v2_whoqol_bref_who24_gesundhdiens,v2_con$v2_whoqol_bref_who24,"v2_whoqol_itm24",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 14 19 114 438 352 606 1543
## [2,] Percent 0.9 1.2 7.4 28.4 22.8 39.3 100
25. “How satisfied are you with your mode of transportation?” (ordinal [1,2,3,4,5], v2_whoqol_itm25)
v2_quol_recode(v2_clin$v2_whoqol_bref_who25_transport,v2_con$v2_whoqol_bref_who25,"v2_whoqol_itm25",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 16 40 108 407 366 606 1543
## [2,] Percent 1 2.6 7 26.4 23.7 39.3 100
26. “How often do you have negative feelings, such as blue mood, despair, anxiety, depression?” (ordinal [1,2,3,4,5], v2_whoqol_itm26)
Coding reversed so that higher scores mean symptoms less often.
v2_quol_recode(v2_clin$v2_whoqol_bref_who26_neg_gefuehle,v2_con$v2_whoqol_bref_who26,"v2_whoqol_itm26",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 25 139 222 352 192 613 1543
## [2,] Percent 1.6 9 14.4 22.8 12.4 39.7 100
Here, domain scores for Physical Health, Psychological, Social relationships and Environment are calculated from the WHOQOL single items, according to the scoring instructions given in Angermeyer et al. (2000).
Global (continuous [4-20],v2_whoqol_dom_glob)
v2_whoqol_dom_glob_df<-data.frame(as.numeric(v2_whoqol_itm1),as.numeric(v2_whoqol_itm2))
v2_who_glob_no_nas<-rowSums(is.na(v2_whoqol_dom_glob_df))
v2_whoqol_dom_glob<-ifelse((v2_who_glob_no_nas==0) | (v2_who_glob_no_nas==1),
rowMeans(v2_whoqol_dom_glob_df,na.rm=T)*4,NA)
v2_whoqol_dom_glob<-round(v2_whoqol_dom_glob,2)
summary(v2_whoqol_dom_glob)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.0 12.0 14.0 14.2 16.0 20.0 602
Physical Health (continuous [4-20],v2_whoqol_dom_phys)
v2_whoqol_dom_phys_df<-data.frame(as.numeric(v2_whoqol_itm3),as.numeric(v2_whoqol_itm10),as.numeric(v2_whoqol_itm16),as.numeric(v2_whoqol_itm15),as.numeric(v2_whoqol_itm17),as.numeric(v2_whoqol_itm4),as.numeric(v2_whoqol_itm18))
v2_who_phys_no_nas<-rowSums(is.na(v2_whoqol_dom_phys_df))
v2_whoqol_dom_phys<-ifelse((v2_who_phys_no_nas==0) | (v2_who_phys_no_nas==1),
rowMeans(v2_whoqol_dom_phys_df,na.rm=T)*4,NA)
v2_whoqol_dom_phys<-round(v2_whoqol_dom_phys,2)
summary(v2_whoqol_dom_phys)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 5.71 13.14 15.43 15.16 17.71 20.00 616
Psychological (continuous [4-20],v2_whoqol_dom_psy)
v2_whoqol_dom_psy_df<-data.frame(as.numeric(v2_whoqol_itm5),as.numeric(v2_whoqol_itm7),as.numeric(v2_whoqol_itm19),as.numeric(v2_whoqol_itm11),as.numeric(v2_whoqol_itm26),as.numeric(v2_whoqol_itm6))
v2_who_psy_no_nas<-rowSums(is.na(v2_whoqol_dom_psy_df))
v2_whoqol_dom_psy<-ifelse((v2_who_psy_no_nas==0) | (v2_who_psy_no_nas==1),
rowMeans(v2_whoqol_dom_psy_df,na.rm=T)*4,NA)
v2_whoqol_dom_psy<-round(v2_whoqol_dom_psy,2)
summary(v2_whoqol_dom_psy)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 5.33 12.00 14.67 14.25 16.67 20.00 616
Social relationships (continuous [4-20],v2_whoqol_dom_soc)
v2_whoqol_dom_soc_df<-data.frame(as.numeric(v2_whoqol_itm20),as.numeric(v2_whoqol_itm22),as.numeric(v2_whoqol_itm21))
v2_who_soc_no_nas<-rowSums(is.na(v2_whoqol_dom_soc_df))
v2_whoqol_dom_soc<-ifelse((v2_who_soc_no_nas==0) | (v2_who_soc_no_nas==1),
rowMeans(v2_whoqol_dom_soc_df,na.rm=T)*4,NA)
v2_whoqol_dom_soc<-round(v2_whoqol_dom_soc,2)
summary(v2_whoqol_dom_soc)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 12.00 14.67 14.11 16.00 20.00 603
Environment (continuous [4-20],v2_whoqol_dom_env)
v2_whoqol_dom_env_df<-data.frame(as.numeric(v2_whoqol_itm8),as.numeric(v2_whoqol_itm23),as.numeric(v2_whoqol_itm12),as.numeric(v2_whoqol_itm24),as.numeric(v2_whoqol_itm13),as.numeric(v2_whoqol_itm14),as.numeric(v2_whoqol_itm9),as.numeric(v2_whoqol_itm25))
v2_who_env_no_nas<-rowSums(is.na(v2_whoqol_dom_env_df))
v2_whoqol_dom_env<-ifelse((v2_who_env_no_nas==0) | (v2_who_env_no_nas==1),
rowMeans(v2_whoqol_dom_env_df,na.rm=T)*4,NA)
v2_whoqol_dom_env<-round(v2_whoqol_dom_env,2)
summary(v2_whoqol_dom_env)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 6.00 14.50 16.00 15.85 18.00 20.00 614
Create dataset
v2_whoqol<-data.frame(v2_whoqol_itm1,v2_whoqol_itm2,v2_whoqol_itm3,v2_whoqol_itm4,
v2_whoqol_itm5,v2_whoqol_itm6,v2_whoqol_itm7,v2_whoqol_itm8,
v2_whoqol_itm9,v2_whoqol_itm10,v2_whoqol_itm11,v2_whoqol_itm12,
v2_whoqol_itm13,v2_whoqol_itm14,v2_whoqol_itm15,v2_whoqol_itm16,
v2_whoqol_itm17,v2_whoqol_itm18,v2_whoqol_itm19,v2_whoqol_itm20,
v2_whoqol_itm21,v2_whoqol_itm22,v2_whoqol_itm23,v2_whoqol_itm24,
v2_whoqol_itm25,v2_whoqol_itm26,v2_whoqol_dom_glob,
v2_whoqol_dom_phys,v2_whoqol_dom_psy,v2_whoqol_dom_soc,
v2_whoqol_dom_env)
v2_df<-data.frame(v2_id,
v2_rec,
v2_clin_ill_ep,
v2_con_problems,
v2_dem,
v2_ev_prc_fst_ep,
v2_suic,
v2_leprcp,
v2_med,
v2_subst,
v2_symp_panss,
v2_symp_ids_c,
v2_symp_ymrs,
v2_ill_sev,
v2_nrpsy,
v2_sf12,
v2_med_adh,
v2_bdi2,
v2_asrm,
v2_mss,
v2_leq,
v2_whoqol)
## [1] 1344
## [1] 329
v3_clin<-subset(v3_clin, as.character(v3_clin$mnppsd)%in%as.character(v1_clin$mnppsd))
dim(v3_clin)[1]
## [1] 1223
v3_con<-subset(v3_con, as.character(v3_con$mnppsd)%in%as.character(v1_con$mnppsd))
dim(v3_con)[1]
## [1] 320
v3_id<-as.factor(c(as.character(v3_clin$mnppsd),as.character(v3_con$mnppsd)))
v3_sep<-rep(as.factor("XXXXX"),(dim(v3_clin)[1]+dim(v3_con)[1]))
v3_interv_date<-c(as.Date(as.character(v3_clin$v3_ausschluss1_rekr_datum), "%Y%m%d"),as.Date(as.character(v3_con$v3_rekru_visit_rekr_datum), "%Y%m%d"))
v3_age_years_clin<-as.numeric(substr(v3_clin$v3_ausschluss1_rekr_datum,1,4))-
as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,1,4))
v3_age_years_con<-as.numeric(substr(v3_con$v3_rekru_visit_rekr_datu,1,4))-
as.numeric(substr(v1_con$v1_demo1_gebdat,1,4))
v3_age_years<-c(v3_age_years_clin,v3_age_years_con)
v3_age<-ifelse(c(as.numeric(substr(v3_clin$v3_ausschluss1_rekr_datum,5,6)),as.numeric(substr(v3_con$v3_rekru_visit_rekr_datu,5,6)))<
c(as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6)),as.numeric(substr(v1_con$v1_demo1_gebdat,5,6))),
v3_age_years-1,v3_age_years)
summary(v3_age)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -1.0 32.0 46.0 45.3 54.0 926.0 773
Create dataset
v3_rec<-data.frame(v3_age,v3_interv_date)
Please see Visit 2 for explanation.
“Did you experience an acute illness episode since the last study visit?” (categorical [Y, N, C], v3_clin_ill_ep_snc_lst)
v3_clin_ill_ep_snc_lst<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_ill_ep_snc_lst<-ifelse(c(v3_clin$v3_aktu_situat_aenderung_akt_sit,rep(-999,dim(v3_con)[1]))==1,"Y",
ifelse(c(v3_clin$v3_aktu_situat_aenderung_akt_sit,rep(-999,dim(v3_con)[1]))==2,"N",
ifelse(c(v3_clin$v3_aktu_situat_aenderung_akt_sit,rep(-999,dim(v3_con)[1]))==3,"C",v3_clin_ill_ep_snc_lst)))
v3_clin_ill_ep_snc_lst<-factor(v3_clin_ill_ep_snc_lst)
descT(v3_clin_ill_ep_snc_lst)
## -999 C N Y <NA>
## [1,] No. cases 320 77 334 148 664 1543
## [2,] Percent 20.7 5 21.6 9.6 43 100
“If yes, how many illness episodes? (continuous [no. illness episodes], v3_clin_no_ep)”
v3_clin_no_ep<-ifelse(v3_clin_ill_ep_snc_lst=="Y",c(v3_clin$v3_aktu_situat_anzahl_episoden,rep(-999,dim(v3_con)[1])),-999)
descT(v3_clin_no_ep)
## -999 1 2 3 4 <NA>
## [1,] No. cases 731 110 28 3 1 670 1543
## [2,] Percent 47.4 7.1 1.8 0.2 0.1 43.4 100
In the following, characteristics of each illness episode are assessed. Checkboxes are supposed to be ticked if a criterion applies. Please note that episodes can have more than one characteristic (e.g. episodes with both manic and psychotic symptoms).
“Did you experience manic symptoms during this illness episode?” (checkbox [Y], v3_clin_fst_ill_ep_man)
v3_clin_fst_ill_ep_man<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_man<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_manisch_31642_1,rep(-999,dim(v3_con)[1]))==1,"Y",
-999)
descT(v3_clin_fst_ill_ep_man)
## -999 Y <NA>
## [1,] No. cases 857 30 656 1543
## [2,] Percent 55.5 1.9 42.5 100
“Did you experience depressive symptoms during this illness episode?” (checkbox [Y], v3_clin_fst_ill_ep_dep)
v3_clin_fst_ill_ep_dep<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_dep<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_depressiv_31642_1,rep(-999,dim(v3_con)[1]))==1,"Y",
-999)
descT(v3_clin_fst_ill_ep_dep)
## -999 Y <NA>
## [1,] No. cases 808 79 656 1543
## [2,] Percent 52.4 5.1 42.5 100
“Did you experience mixed symptoms during this illness episode?” (checkbox [Y], v3_clin_fst_ill_ep_mx) This checkbox assesses whether this was a mixed mood episode (both depressive and manic symptoms present).
v3_clin_fst_ill_ep_mx<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_mx<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_gemischt_31642_1,rep(-999,dim(v3_con)[1]))==1,"Y",
-999)
descT(v3_clin_fst_ill_ep_mx)
## -999 Y <NA>
## [1,] No. cases 877 10 656 1543
## [2,] Percent 56.8 0.6 42.5 100
“Did you experience psychotic symptoms during this illness episode?” (checkbox [Y], v3_clin_fst_ill_ep_psy)
v3_clin_fst_ill_ep_psy<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_psy<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_psych_31642_1,rep(-999,dim(v3_con)[1]))==1,"Y",
-999)
descT(v3_clin_fst_ill_ep_psy)
## -999 Y <NA>
## [1,] No. cases 845 42 656 1543
## [2,] Percent 54.8 2.7 42.5 100
“How long did this episode last?” (ordinal [less than two weeks, two to four weeks, more than four weeks], v3_clin_fst_ill_ep_dur)
v3_clin_fst_ill_ep_dur<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_dur<-ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v3_con)[1]))==1,"less than two weeks",
ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v3_con)[1]))==2,"two to four weeks",
ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v3_con)[1]))==3,"more than four weeks",
ifelse(v3_clin_ill_ep_snc_lst=="N",-999,v3_clin_fst_ill_ep_dur))))
v3_clin_fst_ill_ep_dur<-ordered(v3_clin_fst_ill_ep_dur,
levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v3_clin_fst_ill_ep_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 654 27 38
## [2,] Percent 42.4 1.7 2.5
## more than four weeks <NA>
## [1,] 79 745 1543
## [2,] 5.1 48.3 100
“During this episode, were you hospitalized?” (dichotomous, v3_clin_fst_ill_ep_hsp)
v3_clin_fst_ill_ep_hsp<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_hsp<-ifelse(v3_clin_ill_ep_snc_lst=="N",-999,
ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_aufenthalt_31642_1,rep(-999,dim(v3_con)[1]))==2,"N",
ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_aufenthalt_31642_1,rep(-999,dim(v3_con)[1]))==1,"Y", v3_clin_fst_ill_ep_hsp)))
descT(v3_clin_fst_ill_ep_hsp)
## -999 N Y <NA>
## [1,] No. cases 654 75 72 742 1543
## [2,] Percent 42.4 4.9 4.7 48.1 100
“If yes, for how long?” (ordinal, [less than two weeks, two to four weeks, more than four weeks] v3_clin_fst_ill_ep_hsp_dur)
v3_clin_fst_ill_ep_hsp_dur<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_hsp_dur<-ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v3_con)[1]))==1,"less than two weeks",
ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v3_con)[1]))==2,"two to four weeks",
ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v3_con)[1]))==3,"more than four weeks",
-999)))
v3_clin_fst_ill_ep_hsp_dur<-ordered(v3_clin_fst_ill_ep_hsp_dur, levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v3_clin_fst_ill_ep_hsp_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 806 12 18
## [2,] Percent 52.2 0.8 1.2
## more than four weeks <NA>
## [1,] 36 671 1543
## [2,] 2.3 43.5 100
The following questions ask for the reasons for hospitalization, multiple answers are possible (checkboxes):
Reason for hospitalization: symptom worsensing (checkbox [Y], v3_clin_fst_ill_ep_symp_wrs)
v3_clin_fst_ill_ep_symp_wrs<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_symp_wrs<-ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund1_31642_1,rep(-999,dim(v3_con)[1]))==1,"Y",-999)
descT(v3_clin_fst_ill_ep_symp_wrs)
## -999 Y <NA>
## [1,] No. cases 827 60 656 1543
## [2,] Percent 53.6 3.9 42.5 100
Reason for hospitalization: self-endangerment (checkbox [Y], v3_clin_fst_ill_ep_slf_end)
v3_clin_fst_ill_ep_slf_end<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_slf_end<-ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund2_31642_1,rep(-999,dim(v3_con)[1]))==1, "Y",
-999)
descT(v3_clin_fst_ill_ep_slf_end)
## -999 Y <NA>
## [1,] No. cases 878 9 656 1543
## [2,] Percent 56.9 0.6 42.5 100
Reason for hospitalization: suicidality (checkbox [Y], v3_clin_fst_ill_ep_suic)
v3_clin_fst_ill_ep_suic<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_suic<-ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund3_31642_1,rep(-999,dim(v3_con)[1]))==1, "Y",
-999)
descT(v3_clin_fst_ill_ep_suic)
## -999 Y <NA>
## [1,] No. cases 877 10 656 1543
## [2,] Percent 56.8 0.6 42.5 100
Reason for hospitalization: endangerment of others (checkbox [Y], v3_clin_fst_ill_ep_oth_end)
v3_clin_fst_ill_ep_oth_end<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_oth_end<-ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund4_31642_1,rep(-999,dim(v3_con)[1]))==1, "Y",-999)
descT(v3_clin_fst_ill_ep_oth_end)
## -999 Y <NA>
## [1,] No. cases 885 2 656 1543
## [2,] Percent 57.4 0.1 42.5 100
Reason for hospitalization: medication change (checkbox [Y], v3_clin_fst_ill_ep_med_chg)
v3_clin_fst_ill_ep_med_chg<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_med_chg<-ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund5_31642_1,rep(-999,dim(v3_con)[1]))==1, "Y",-999)
descT(v3_clin_fst_ill_ep_med_chg)
## -999 Y <NA>
## [1,] No. cases 878 9 656 1543
## [2,] Percent 56.9 0.6 42.5 100
Reason for hospitalization: other (checkbox [Y], v3_clin_fst_ill_ep_othr)
v3_clin_fst_ill_ep_othr<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_fst_ill_ep_othr<-ifelse(v3_clin_fst_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_grund6_31642_1,rep(-999,dim(v3_con)[1]))==1, "Y",-999)
descT(v3_clin_fst_ill_ep_othr)
## -999 Y <NA>
## [1,] No. cases 878 9 656 1543
## [2,] Percent 56.9 0.6 42.5 100
“Did you experience manic symptoms during this illness episode?” (checkbox [Y], v3_clin_sec_ill_ep_man)
v3_clin_sec_ill_ep_man<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_man<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_manisch_31642_2,rep(-999,dim(v3_con)[1]))==1,"Y",-999)
descT(v3_clin_sec_ill_ep_man)
## -999 Y <NA>
## [1,] No. cases 750 5 788 1543
## [2,] Percent 48.6 0.3 51.1 100
“Did you experience depressive symptoms during this illness episode?” (checkbox [Y], v3_clin_sec_ill_ep_dep) #frstill
v3_clin_sec_ill_ep_dep<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_dep<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_depressiv_31642_2,rep(-999,dim(v3_con)[1]))==1,"Y",
-999)
descT(v3_clin_sec_ill_ep_dep)
## -999 Y <NA>
## [1,] No. cases 737 18 788 1543
## [2,] Percent 47.8 1.2 51.1 100
“Did you experience mixed symptoms during this illness episode?” (checkbox [Y], v3_clin_sec_ill_ep_mx) This checkbox assesses whether this was a mixed mood episode (both depressive and manic symptoms present).
v3_clin_sec_ill_ep_mx<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_mx<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_gemischt_31642_2,rep(-999,dim(v3_con)[1]))==1,"Y",
-999)
descT(v3_clin_sec_ill_ep_mx)
## -999 <NA>
## [1,] No. cases 755 788 1543
## [2,] Percent 48.9 51.1 100
“Did you experience psychotic symptoms during this illness episode?” (checkbox [Y], v3_clin_sec_ill_ep_psy)
v3_clin_sec_ill_ep_psy<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_psy<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_psych_31642_2,rep(-999,dim(v3_con)[1]))==1,"Y",
-999)
descT(v3_clin_sec_ill_ep_psy)
## -999 Y <NA>
## [1,] No. cases 753 2 788 1543
## [2,] Percent 48.8 0.1 51.1 100
“How long did this episode last?” (ordinal [less than two weeks, two to four weeks, more than four weeks], v3_clin_sec_ill_ep_dur)
v3_clin_sec_ill_ep_dur<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_dur<-ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v3_con)[1]))==1,"less than two weeks",
ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v3_con)[1]))==2,"two to four weeks",
ifelse(v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v3_con)[1]))==3,"more than four weeks",
ifelse(v3_clin_ill_ep_snc_lst=="N",-999,v3_clin_sec_ill_ep_dur))))
v3_clin_sec_ill_ep_dur<-ordered(v3_clin_sec_ill_ep_dur, levels=c("less than two weeks","two to four weeks","more than four weeks"))
descT(v3_clin_sec_ill_ep_dur)
## less than two weeks two to four weeks more than four weeks
## [1,] No. cases 6 7 9
## [2,] Percent 0.4 0.5 0.6
## <NA>
## [1,] 1521 1543
## [2,] 98.6 100
“During this episode, were you hospitalized?” (dichotomous, v3_clin_sec_ill_ep_hsp)
v3_clin_sec_ill_ep_hsp<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_hsp<-ifelse(v3_clin_ill_ep_snc_lst=="N",-999,
ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_aufenthalt_31642_2,rep(-999,dim(v3_con)[1]))==2,"N",
ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_aufenthalt_31642_2,rep(-999,dim(v3_con)[1]))==1,"Y", v3_clin_sec_ill_ep_hsp)))
descT(v3_clin_sec_ill_ep_hsp)
## -999 N Y <NA>
## [1,] No. cases 654 10 10 869 1543
## [2,] Percent 42.4 0.6 0.6 56.3 100
“If yes, for how long?” (ordinal, [less than two weeks, two to four weeks, more than four weeks] v3_clin_sec_ill_ep_hsp_dur)
v3_clin_sec_ill_ep_hsp_dur<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_hsp_dur<-ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v3_con)[1]))==1,"less than two weeks",
ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v3_con)[1]))==2,"two to four weeks",
ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v3_con)[1]))==3,"more than four weeks",
-999)))
v3_clin_sec_ill_ep_hsp_dur<-ordered(v3_clin_sec_ill_ep_hsp_dur, levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v3_clin_sec_ill_ep_hsp_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 741 3 5
## [2,] Percent 48 0.2 0.3
## more than four weeks <NA>
## [1,] 1 793 1543
## [2,] 0.1 51.4 100
The following questions ask for the reasons for hospitalization, multiple answers are possible (checkboxes): Reason for hospitalization: symptom worsensing (checkbox [Y], v3_clin_sec_ill_ep_symp_wrs)
v3_clin_sec_ill_ep_symp_wrs<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_symp_wrs<-ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund1_31642_2,rep(-999,dim(v3_con)[1]))==1,"Y",-999)
descT(v3_clin_sec_ill_ep_symp_wrs)
## -999 Y <NA>
## [1,] No. cases 749 6 788 1543
## [2,] Percent 48.5 0.4 51.1 100
Reason for hospitalization: self-endangerment (checkbox [Y], v3_clin_sec_ill_ep_slf_end)
v3_clin_sec_ill_ep_slf_end<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_slf_end<-ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund2_31642_2,rep(-999,dim(v3_con)[1]))==1, "Y",
-999)
descT(v3_clin_sec_ill_ep_slf_end)
## -999 Y <NA>
## [1,] No. cases 754 1 788 1543
## [2,] Percent 48.9 0.1 51.1 100
Reason for hospitalization: suicidality (checkbox [Y], v3_clin_sec_ill_ep_suic)
v3_clin_sec_ill_ep_suic<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_suic<-ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund3_31642_2,rep(-999,dim(v3_con)[1]))==1, "Y",
-999)
descT(v3_clin_sec_ill_ep_suic)
## -999 Y <NA>
## [1,] No. cases 752 3 788 1543
## [2,] Percent 48.7 0.2 51.1 100
Reason for hospitalization: endangerment of others (checkbox [Y], v3_clin_sec_ill_ep_oth_end)
v3_clin_sec_ill_ep_oth_end<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_oth_end<-ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund4_31642_2,rep(-999,dim(v3_con)[1]))==1, "Y",-999)
descT(v3_clin_sec_ill_ep_oth_end)
## -999 <NA>
## [1,] No. cases 755 788 1543
## [2,] Percent 48.9 51.1 100
Reason for hospitalization: medication change (checkbox [Y], v3_clin_sec_ill_ep_med_chg)
v3_clin_sec_ill_ep_med_chg<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_med_chg<-ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_k_episode_grund5_31642_2,rep(-999,dim(v3_con)[1]))==1, "Y",-999)
descT(v3_clin_sec_ill_ep_med_chg)
## -999 Y <NA>
## [1,] No. cases 752 3 788 1543
## [2,] Percent 48.7 0.2 51.1 100
Reason for hospitalization: other (checkbox [Y], v3_clin_sec_ill_ep_othr)
v3_clin_sec_ill_ep_othr<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_sec_ill_ep_othr<-ifelse(v3_clin_sec_ill_ep_hsp=="Y" & v3_clin_ill_ep_snc_lst=="Y" & c(v3_clin$v3_aktu_situat_k_episode_grund6_31642_2,rep(-999,dim(v3_con)[1]))==1, "Y",-999)
descT(v3_clin_sec_ill_ep_othr)
## -999 <NA>
## [1,] No. cases 755 788 1543
## [2,] Percent 48.9 51.1 100
v3_clin_add_oth_hsp<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_add_oth_hsp<-ifelse(v3_clin_ill_ep_snc_lst=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_aufent,rep(-999,dim(v3_con)[1]))==1,"Y","N")
descT(v3_clin_add_oth_hsp)
## N Y <NA>
## [1,] No. cases 861 14 668 1543
## [2,] Percent 55.8 0.9 43.3 100
v3_clin_oth_hsp_nmb<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_oth_hsp_nmb<-ifelse(v3_clin_add_oth_hsp=="Y",
c(v3_clin$v3_aktu_situat_aenderung_anzahl,rep(-999,dim(v3_con)[1])),-999)
descT(v3_clin_oth_hsp_nmb)
## -999 1 2 <NA>
## [1,] No. cases 861 7 2 673 1543
## [2,] Percent 55.8 0.5 0.1 43.6 100
v3_clin_oth_hsp_dur<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_oth_hsp_dur<-
ifelse(v3_clin_add_oth_hsp=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_dauer,rep(-999,dim(v3_con)[1]))==1,"less than two weeks",
ifelse(v3_clin_add_oth_hsp=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_dauer,rep(-999,dim(v3_con)[1]))==2,"two to four weeks",
ifelse(v3_clin_add_oth_hsp=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_dauer,rep(-999,dim(v3_con)[1]))==3,"more than four weeks",
ifelse(v3_clin_add_oth_hsp=="N",-999,v3_clin_add_oth_hsp))))
v3_clin_oth_hsp_dur<-ordered(v3_clin_oth_hsp_dur, levels=c("less than two weeks","two to four weeks","more than four weeks"))
descT(v3_clin_oth_hsp_dur)
## less than two weeks two to four weeks more than four weeks
## [1,] No. cases 3 6 3
## [2,] Percent 0.2 0.4 0.2
## <NA>
## [1,] 1531 1543
## [2,] 99.2 100
v3_clin_othr_psy_med<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_clin_othr_psy_med<-ifelse(v3_clin_add_oth_hsp=="Y" & v3_clin_add_oth_hsp=="Y" &
c(v3_clin$v3_aktu_situat_aenderung_medikament,rep(-999,dim(v3_con)[1]))==1,"Y",
ifelse(v3_clin_add_oth_hsp=="N",-999,v3_clin_othr_psy_med))
descT(v3_clin_othr_psy_med)
## -999 Y <NA>
## [1,] No. cases 861 4 678 1543
## [2,] Percent 55.8 0.3 43.9 100
This is an ordinal scale with four levels: “no”-1, “yes, outpatient”-2, “yes, day patient”-3, “yes, inpatient”-4.
v3_clin_cur_psy_trm<-rep(NA,dim(v3_clin)[1])
v3_con_cur_psy_trm<-rep(NA,dim(v3_con)[1])
v3_clin_cur_psy_trm<-ifelse(v3_clin$v3_aktu_situat_psybehandlung==0,"1",
ifelse(v3_clin$v3_aktu_situat_psybehandlung==3,"2",
ifelse(v3_clin$v3_aktu_situat_psybehandlung==2,"3",
ifelse(v3_clin$v3_aktu_situat_psybehandlung==1,"4",v3_clin_cur_psy_trm))))
v3_con_cur_psy_trm<-ifelse(v3_con$v3_bildung_beruf_psybehandlung==0,"1",
ifelse(v3_con$v3_bildung_beruf_psybehandlung==3,"2",
ifelse(v3_con$v3_bildung_beruf_psybehandlung==2,"3",
ifelse(v3_con$v3_bildung_beruf_psybehandlung==1,"4",v3_con_cur_psy_trm))))
v3_cur_psy_trm<-factor(c(v3_clin_cur_psy_trm,v3_con_cur_psy_trm),ordered=T)
descT(v3_cur_psy_trm)
## 1 2 3 4 <NA>
## [1,] No. cases 235 471 4 33 800 1543
## [2,] Percent 15.2 30.5 0.3 2.1 51.8 100
Create dataset
v3_clin_ill_ep<-data.frame(v3_clin_ill_ep_snc_lst,
v3_clin_no_ep,
v3_clin_fst_ill_ep_man,
v3_clin_fst_ill_ep_dep,
v3_clin_fst_ill_ep_mx,
v3_clin_fst_ill_ep_psy,
v3_clin_fst_ill_ep_dur,
v3_clin_fst_ill_ep_hsp,
v3_clin_fst_ill_ep_hsp_dur,
v3_clin_fst_ill_ep_symp_wrs,
v3_clin_fst_ill_ep_slf_end,
v3_clin_fst_ill_ep_suic,
v3_clin_fst_ill_ep_oth_end,
v3_clin_fst_ill_ep_med_chg,
v3_clin_fst_ill_ep_othr,
v3_clin_sec_ill_ep_man,
v3_clin_sec_ill_ep_dep,
v3_clin_sec_ill_ep_mx,
v3_clin_sec_ill_ep_psy,
v3_clin_sec_ill_ep_dur,
v3_clin_sec_ill_ep_hsp,
v3_clin_sec_ill_ep_hsp_dur,
v3_clin_sec_ill_ep_symp_wrs,
v3_clin_sec_ill_ep_slf_end,
v3_clin_sec_ill_ep_suic,
v3_clin_sec_ill_ep_oth_end,
v3_clin_sec_ill_ep_med_chg,
v3_clin_sec_ill_ep_othr,
v3_clin_add_oth_hsp,
v3_clin_oth_hsp_nmb,
v3_clin_oth_hsp_dur,
v3_clin_othr_psy_med,
v3_cur_psy_trm)
Did your marital status change since the last study visit? (dichotomous, v3_cng_mar_stat)
v3_clin_cng_mar_stat<-rep(NA,dim(v3_clin)[1])
v3_clin_cng_mar_stat<-ifelse(v3_clin$v3_aktu_situat_fam_stand==1, "Y",
ifelse(v3_clin$v3_aktu_situat_fam_stand==2, "N", v3_clin_cng_mar_stat))
v3_con_cng_mar_stat<-rep(NA,dim(v3_con)[1])
v3_con_cng_mar_stat<-ifelse(v3_con$v3_famil_wohn_fam_stand==1, "Y",
ifelse(v3_con$v3_famil_wohn_fam_stand==2, "N", v3_con_cng_mar_stat))
v3_cng_mar_stat<-factor(c(v3_clin_cng_mar_stat,v3_con_cng_mar_stat))
v3_clin_marital_stat<-rep(NA,dim(v3_clin)[1])
v3_clin_marital_stat<-ifelse(v3_clin$v3_aktu_situat_fam_familienstand==1,"Married",
ifelse(v3_clin$v3_aktu_situat_fam_familienstand==2,"Married_living_sep",
ifelse(v3_clin$v3_aktu_situat_fam_familienstand==3,"Single",
ifelse(v3_clin$v3_aktu_situat_fam_familienstand==4,"Divorced",
ifelse(v3_clin$v3_aktu_situat_fam_familienstand==5,"Widowed",v3_clin_marital_stat)))))
v3_con_marital_stat<-rep(NA,dim(v3_con)[1])
v3_con_marital_stat<-ifelse(v3_con$v3_famil_wohn_fam_famstand==1,"Married",
ifelse(v3_con$v3_famil_wohn_fam_famstand==2,"Married_living_sep",
ifelse(v3_con$v3_famil_wohn_fam_famstand==3,"Single",
ifelse(v3_con$v3_famil_wohn_fam_famstand==4,"Divorced",
ifelse(v3_con$v3_famil_wohn_fam_famstand==5,"Widowed",v3_con_marital_stat)))))
v3_marital_stat<-factor(c(v3_clin_marital_stat,v3_con_marital_stat))
desc(v3_marital_stat)
## Divorced Married Married_living_sep Single Widowed NA's
## [1,] No. cases 104 196 28 418 10 787
## [2,] Percent 6.7 12.7 1.8 27.1 0.6 51
##
## [1,] 1543
## [2,] 100
v3_clin_partner<-rep(NA,dim(v3_clin)[1])
v3_clin_partner<-ifelse(v3_clin$v3_aktu_situat_fam_fest_partner==1,"Y",
ifelse(v3_clin$v3_aktu_situat_fam_fest_partner==2,"N",v3_clin_partner))
v3_con_partner<-rep(NA,dim(v3_con)[1])
v3_con_partner<-ifelse(v3_con$v3_famil_wohn_fam_partner==1,"Y",
ifelse(v3_con$v3_famil_wohn_fam_partner==2,"N",v3_con_partner))
v3_partner<-factor(c(v3_clin_partner,v3_con_partner))
descT(v3_partner)
## N Y <NA>
## [1,] No. cases 360 383 800 1543
## [2,] Percent 23.3 24.8 51.8 100
v3_no_bio_chld<-c(v3_clin$v3_aktu_situat_fam_kind_gesamt,v3_con$v3_famil_wohn_fam_lkind)
descT(v3_no_bio_chld)
## 0 1 2 3 4 5 <NA>
## [1,] No. cases 468 132 93 52 8 2 788 1543
## [2,] Percent 30.3 8.6 6 3.4 0.5 0.1 51.1 100
v3_no_adpt_chld<-c(v3_clin$v3_aktu_situat_fam_adopt_gesamt,v3_con$v3_famil_wohn_fam_adkind)
descT(v3_no_adpt_chld)
## 0 1 2 <NA>
## [1,] No. cases 744 2 1 796 1543
## [2,] Percent 48.2 0.1 0.1 51.6 100
v3_stp_chld<-c(v3_clin$v3_aktu_situat_fam_stift_gesamt,v3_con$v3_famil_wohn_fam_skind)
descT(v3_stp_chld)
## 0 1 2 3 4 <NA>
## [1,] No. cases 672 39 16 4 2 810 1543
## [2,] Percent 43.6 2.5 1 0.3 0.1 52.5 100
v3_clin_chg_hsng<-rep(NA,dim(v3_clin)[1])
v3_clin_chg_hsng<-ifelse(v3_clin$v3_wohnsituation_wohn_aenderung==1,"Y",
ifelse(v3_clin$v3_wohnsituation_wohn_aenderung==2,"N",v3_clin_chg_hsng))
v3_con_chg_hsng<-rep(NA,dim(v3_con)[1])
v3_con_chg_hsng<-ifelse(v3_con$v3_famil_wohn_wohn_stand==1,"Y",
ifelse(v3_con$v3_famil_wohn_wohn_stand==2,"N",v3_con_chg_hsng))
v3_chg_hsng<-factor(c(v3_clin_chg_hsng,v3_con_chg_hsng))
descT(v3_chg_hsng)
## N Y <NA>
## [1,] No. cases 691 75 777 1543
## [2,] Percent 44.8 4.9 50.4 100
v3_clin_liv_aln<-rep(NA,dim(v3_clin)[1])
v3_clin_liv_aln<-ifelse(v3_clin$v3_wohnsituation_wohn_allein==1,"Y",
ifelse(v3_clin$v3_wohnsituation_wohn_allein==0,"N",v3_clin_liv_aln))
v3_con_liv_aln<-rep(NA,dim(v3_con)[1])
v3_con_liv_aln<-ifelse(v3_con$v3_famil_wohn_wohn_allein==1,"Y",
ifelse(v3_con$v3_famil_wohn_wohn_allein==0,"N",v3_con_liv_aln))
v3_liv_aln<-factor(c(v3_clin_liv_aln,v3_con_liv_aln))
descT(v3_liv_aln)
## N Y <NA>
## [1,] No. cases 484 291 768 1543
## [2,] Percent 31.4 18.9 49.8 100
Did your employment situation change since the last study visit?
v3_clin_chg_empl_stat<-rep(NA,dim(v3_clin)[1])
v3_clin_chg_empl_stat<-ifelse(v3_clin$v3_wohnsituation_erwerb_aenderung==1, "Y",
ifelse(v3_clin$v3_wohnsituation_erwerb_aenderung==2, "N",v3_clin_chg_empl_stat))
v3_con_chg_empl_stat<-rep(NA,dim(v3_con)[1])
v3_con_chg_empl_stat<-ifelse(v3_con$v3_bildung_beruf_bild_stand==1, "Y",
ifelse(v3_con$v3_bildung_beruf_bild_stand==2, "N",v3_con_chg_empl_stat))
v3_chg_empl_stat<-factor(c(v3_clin_chg_empl_stat,v3_con_chg_empl_stat))
descT(v3_chg_empl_stat)
## N Y <NA>
## [1,] No. cases 634 109 800 1543
## [2,] Percent 41.1 7.1 51.8 100
Because of several categories that are unique to the Germany labor market, several of answer categories were pooled to arrive at a more clear-cut (Y/N) answer to this question. Thr following transformations were used: “no information”-NA, “full-time”-Y, “part-time”-Y, “partial retirement”-Y, “marginal employment”-Y, “1-euro-job”-Y, “Occassionally/infrequently”-999, “in professional training”-Y, “professional retraining”-Y, “voluntary service/alternative military service”-Y, “maternity leave or other leave”-Y, “not employed”-N.
v3_clin_curr_paid_empl<-rep(NA,dim(v3_clin)[1])
v3_clin_curr_paid_empl<-ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==1,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==2,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==3,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==4,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==5,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==6,-999,
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==7,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==8,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==9,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==10,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerbstaetig==11,"N",v3_clin_curr_paid_empl)))))))))))
v3_con_curr_paid_empl<-rep(NA,dim(v3_con)[1])
v3_con_curr_paid_empl<-ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==1,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==2,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==3,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==4,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==5,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==6,-999,
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==7,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==8,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==9,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==10,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_taetig==11,"N",v3_con_curr_paid_empl)))))))))))
v3_curr_paid_empl<-factor(c(v3_clin_curr_paid_empl,v3_con_curr_paid_empl))
descT(v3_curr_paid_empl)
## -999 N Y <NA>
## [1,] No. cases 14 363 380 786 1543
## [2,] Percent 0.9 23.5 24.6 50.9 100
NB: Not available (-999) in control participants
v3_clin_disabl_pens<-rep(NA,dim(v3_clin)[1])
v3_clin_disabl_pens<-ifelse(v3_clin$v3_wohnsituation_rente_psych==1,"Y",
ifelse(v3_clin$v3_wohnsituation_rente_psych==2,"N",v3_clin_disabl_pens))
v3_con_disabl_pens<-rep(-999,dim(v3_con)[1])
v3_disabl_pens<-factor(c(v3_clin_disabl_pens,v3_con_disabl_pens))
descT(v3_disabl_pens)
## -999 N Y <NA>
## [1,] No. cases 320 202 236 785 1543
## [2,] Percent 20.7 13.1 15.3 50.9 100
v3_clin_spec_emp<-rep(NA,dim(v3_clin)[1])
v3_clin_spec_emp<-ifelse(v3_clin$v3_wohnsituation_erwerb_werk==1,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerb_werk==2,"N",v3_clin_spec_emp))
v3_con_spec_emp<-rep(NA,dim(v3_con)[1])
v3_con_spec_emp<-ifelse(v3_con$v3_bildung_beruf_erwerb_wfbm==1,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_wfbm==2,"N",v3_con_spec_emp))
v3_spec_emp<-factor(c(v3_clin_spec_emp,v3_con_spec_emp))
descT(v3_spec_emp)
## N Y <NA>
## [1,] No. cases 269 55 1219 1543
## [2,] Percent 17.4 3.6 79 100
Cases are set ot -999 in the following cases: 1) Pension, 2) Unknown, 3) Filled out but >26 weeks.
v3_clin_wrk_abs_pst_6_mths<-rep(NA,dim(v3_clin)[1])
v3_clin_wrk_abs_pst_6_mths<-ifelse((v3_clin$v3_wohnsituation_erwerb_unbekannt==1 | v3_clin$v3_wohnsituation_erwerb_rente==1 |
v3_clin$v3_wohnsituation_erwerb_fehlen>26),-999, v3_clin$v3_wohnsituation_erwerb_fehlen)
v3_con_wrk_abs_pst_6_mths<-rep(NA,dim(v3_con)[1])
v3_con_wrk_abs_pst_6_mths<-ifelse((v3_con$v3_bildung_beruf_erwerb_ausfallu==1 | v3_con$v3_bildung_beruf_erwerb_rente==1 |
v3_con$v3_bildung_beruf_erwerb_ausfallm>26),-999, v3_con$v3_bildung_beruf_erwerb_ausfallm)
v3_wrk_abs_pst_6_mths<-c(v3_clin_wrk_abs_pst_6_mths,v3_con_wrk_abs_pst_6_mths)
descT(v3_wrk_abs_pst_6_mths)
## -999 0 1 2 3 4 6 7 8 10 11 12 13 14
## [1,] No. cases 285 199 9 12 8 4 3 2 7 2 1 2 1 1
## [2,] Percent 18.5 12.9 0.6 0.8 0.5 0.3 0.2 0.1 0.5 0.1 0.1 0.1 0.1 0.1
## 15 16 17 20 24 26 <NA>
## [1,] 1 1 1 1 10 2 991 1543
## [2,] 0.1 0.1 0.1 0.1 0.6 0.1 64.2 100
Important: if receiving pension, this question refers to impairments in the household
v3_clin_cur_work_restr<-rep(NA,dim(v3_clin)[1])
v3_clin_cur_work_restr<-ifelse(v3_clin$v3_wohnsituation_erwerb_psysymptom==1,"Y",
ifelse(v3_clin$v3_wohnsituation_erwerb_psysymptom==2,"N",v3_clin_cur_work_restr))
v3_con_cur_work_restr<-rep(NA,dim(v3_con)[1])
v3_con_cur_work_restr<-ifelse(v3_con$v3_bildung_beruf_erwerb_psyeinsch==1,"Y",
ifelse(v3_con$v3_bildung_beruf_erwerb_psyeinsch==2,"N",v3_con_cur_work_restr))
v3_cur_work_restr<-factor(c(v3_clin_cur_work_restr,v3_con_cur_work_restr))
descT(v3_cur_work_restr)
## N Y <NA>
## [1,] No. cases 455 236 852 1543
## [2,] Percent 29.5 15.3 55.2 100
v3_weight<-c(v3_clin$v3_wohnsituation_erwerb_gewicht,v3_con$v3_bildung_beruf_erwerb_gewicht)
summary(v3_weight)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 41.00 68.00 81.00 83.89 97.00 175.00 788
We here provide the body mass index of study participants, calculated as weight in kilograms divided by the squared height in meters.
v3_bmi<-v3_weight/(v1_height/100)^2
summary(v3_bmi)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 16.63 22.91 26.57 27.68 31.22 50.78 790
Create dataset
v3_dem<-data.frame(v3_cng_mar_stat,v3_marital_stat,v3_partner,v3_no_bio_chld,v3_no_adpt_chld,v3_stp_chld,v3_chg_hsng,v3_liv_aln,
v3_chg_empl_stat,v3_curr_paid_empl,v3_disabl_pens,v3_spec_emp,v3_wrk_abs_pst_6_mths,v3_cur_work_restr,
v3_weight,v3_bmi)
Please see Visit 2 for explanation.
**Life events: Occurred before illness episode? (dichotomous, v3_evnt_prcp_b4_*)**
for(i in 1:length(grep("v3_ergaenz_leq_leq_zeit_31055_",names(v3_clin)))){
b4_event_recode_v3(v3_clin[,grep("v3_ergaenz_leq_leq_zeit_31055_",names(v3_clin))[i]],
paste("v3_evnt_prcp_b4_",i,sep=""))
}
**Life events: Was a precipitating factor for illness episode (categorical [N,U,Y], v3_evnt_prcp_f_*)**
for(i in 1:length(grep("v3_ergaenz_leq_leq_ausloeser_31055_",names(v3_clin)))){
prcp_event_recode_v3(v3_clin[,grep("v3_ergaenz_leq_leq_ausloeser_31055_",names(v3_clin))[i]],
paste("v3_evnt_prcp_f_",i,sep=""))
}
**Life events: LEQ item number (categorical [LEQ item number], v3_evnt_prcp_it_*)**
for(i in 1:length(grep("v3_ergaenz_leq_leq_item_31055_",names(v3_clin)))){
leq_event_recode_v3(v3_clin[,grep("v3_ergaenz_leq_leq_item_31055_",names(v3_clin))[i]],
paste("v3_evnt_prcp_it_",i,sep=""))
}
Create dataset
v3_leprcp<-data.frame(v3_evnt_prcp_it_1,v3_evnt_prcp_b4_1,v3_evnt_prcp_f_1,
v3_evnt_prcp_it_2,v3_evnt_prcp_b4_2,v3_evnt_prcp_f_2,
v3_evnt_prcp_it_3,v3_evnt_prcp_b4_3,v3_evnt_prcp_f_3,
v3_evnt_prcp_it_4,v3_evnt_prcp_b4_4,v3_evnt_prcp_f_4,
v3_evnt_prcp_it_5,v3_evnt_prcp_b4_5,v3_evnt_prcp_f_5,
v3_evnt_prcp_it_6,v3_evnt_prcp_b4_6,v3_evnt_prcp_f_6,
v3_evnt_prcp_it_7,v3_evnt_prcp_b4_7,v3_evnt_prcp_f_7,
v3_evnt_prcp_it_8,v3_evnt_prcp_b4_8,v3_evnt_prcp_f_8,
v3_evnt_prcp_it_9,v3_evnt_prcp_b4_9,v3_evnt_prcp_f_9,
v3_evnt_prcp_it_10,v3_evnt_prcp_b4_10,v3_evnt_prcp_f_10,
v3_evnt_prcp_it_11,v3_evnt_prcp_b4_11,v3_evnt_prcp_f_11,
v3_evnt_prcp_it_12,v3_evnt_prcp_b4_12,v3_evnt_prcp_f_12,
v3_evnt_prcp_it_13,v3_evnt_prcp_b4_13,v3_evnt_prcp_f_13,
v3_evnt_prcp_it_14,v3_evnt_prcp_b4_14,v3_evnt_prcp_f_14,
v3_evnt_prcp_it_15,v3_evnt_prcp_b4_15,v3_evnt_prcp_f_15,
v3_evnt_prcp_it_16,v3_evnt_prcp_b4_16,v3_evnt_prcp_f_16,
v3_evnt_prcp_it_17,v3_evnt_prcp_b4_17,v3_evnt_prcp_f_17,
v3_evnt_prcp_it_18,v3_evnt_prcp_b4_18,v3_evnt_prcp_f_18,
v3_evnt_prcp_it_19,v3_evnt_prcp_b4_19,v3_evnt_prcp_f_19,
v3_evnt_prcp_it_20,v3_evnt_prcp_b4_20,v3_evnt_prcp_f_20,
v3_evnt_prcp_it_21,v3_evnt_prcp_b4_21,v3_evnt_prcp_f_21,
v3_evnt_prcp_it_22,v3_evnt_prcp_b4_22,v3_evnt_prcp_f_22,
v3_evnt_prcp_it_23,v3_evnt_prcp_b4_23,v3_evnt_prcp_f_23,
v3_evnt_prcp_it_24,v3_evnt_prcp_b4_24,v3_evnt_prcp_f_24,
v3_evnt_prcp_it_25,v3_evnt_prcp_b4_25,v3_evnt_prcp_f_25,
v3_evnt_prcp_it_26,v3_evnt_prcp_b4_26,v3_evnt_prcp_f_26,
v3_evnt_prcp_it_27,v3_evnt_prcp_b4_27,v3_evnt_prcp_f_27,
v3_evnt_prcp_it_28,v3_evnt_prcp_b4_28,v3_evnt_prcp_f_28,
v3_evnt_prcp_it_29,v3_evnt_prcp_b4_29,v3_evnt_prcp_f_29,
v3_evnt_prcp_it_30,v3_evnt_prcp_b4_30,v3_evnt_prcp_f_30,
v3_evnt_prcp_it_31,v3_evnt_prcp_b4_31,v3_evnt_prcp_f_31)
Please note that all of the following questions refer to suicide attempts and suicidal ideation occurring since the last study visit.
Please not that the following items on suicidal ideation were skipped if this question was not answered positively. If skipped these items are coded -999.
v3_suic_ide_snc_lst_vst<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_suic_ide_snc_lst_vst<-ifelse(c(v3_clin$v3_snx_112_suizged1_x7_suizid_gedanken,rep(-999,dim(v3_con)[1]))==1, "N",
ifelse(c(v3_clin$v3_snx_112_suizged1_x7_suizid_gedanken,rep(-999,dim(v3_con)[1]))==3, "Y", v3_suic_ide_snc_lst_vst))
v3_suic_ide_snc_lst_vst<-factor(v3_suic_ide_snc_lst_vst)
descT(v3_suic_ide_snc_lst_vst)
## -999 N Y <NA>
## [1,] No. cases 320 420 137 666 1543
## [2,] Percent 20.7 27.2 8.9 43.2 100
This is an ordinal item with the following gradation: “only fleeting thoughts”-1, “serious thoughts (details were elaborated)”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v3_scid_suic_ide<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_scid_suic_ide<-ifelse(v3_suic_ide_snc_lst_vst=="Y"&c(v3_clin$v3_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v3_con)[1]))==1, "1",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v3_con)[1]))==2, "2",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v3_con)[1]))==3, "3",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v3_con)[1]))==4, "4",-999))))
v3_scid_suic_ide<-factor(v3_scid_suic_ide,ordered=T)
descT(v3_scid_suic_ide)
## -999 1 2 3 4 <NA>
## [1,] No. cases 740 75 20 22 20 666 1543
## [2,] Percent 48 4.9 1.3 1.4 1.3 43.2 100
This is an ordinal item with the following gradation: “no”-1, “yes, but no details”-2, “yes, including details”-3.
v3_scid_suic_thght_mth<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_scid_suic_thght_mth<-ifelse(v3_suic_ide_snc_lst_vst=="Y"&c(v3_clin$v3_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v3_con)[1]))==1, "1",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v3_con)[1]))==2, "2",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v3_con)[1]))==3, "3",-999)))
v3_scid_suic_thght_mth<-factor(v3_scid_suic_thght_mth,ordered=T)
descT(v3_scid_suic_thght_mth)
## -999 1 2 3 <NA>
## [1,] No. cases 740 59 44 27 673 1543
## [2,] Percent 48 3.8 2.9 1.7 43.6 100
This is an ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v3_scid_suic_note_thgts<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_scid_suic_note_thgts<-ifelse(v3_suic_ide_snc_lst_vst=="Y"&c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==1, "1",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==2, "2",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==3, "3",
ifelse(v3_suic_ide_snc_lst_vst=="Y" & c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==4, "4",-999))))
v3_scid_suic_note_thgts<-factor(v3_scid_suic_note_thgts,ordered=T)
descT(v3_scid_suic_note_thgts)
## -999 1 2 3 4 <NA>
## [1,] No. cases 740 121 4 2 4 672 1543
## [2,] Percent 48 7.8 0.3 0.1 0.3 43.6 100
This is an ordinal item with the following gradation: “no”-1, “interruption of attempt”-2, “yes”-3. Please not that the following items on suicidal attempt were skipped if this question was answered with “no”. In that case, items are coded as -999.
v3_suic_attmpt_snc_lst_vst<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_suic_attmpt_snc_lst_vst<-ifelse(c(v3_clin$v3_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v3_con)[1]))==1, "1",
ifelse(c(v3_clin$v3_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v3_con)[1]))==2, "2",
ifelse(c(v3_clin$v3_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v3_con)[1]))==3, "3",-999)))
v3_suic_attmpt_snc_lst_vst<-factor(v3_suic_attmpt_snc_lst_vst,ordered=T)
descT(v3_suic_attmpt_snc_lst_vst)
## -999 1 2 3 <NA>
## [1,] No. cases 320 536 2 8 677 1543
## [2,] Percent 20.7 34.7 0.1 0.5 43.9 100
This is an ordinal item with the following gradation: “1 time”-1, “2 times”-2, “3-times”-3, “4 times”-4, “5 times”-5, “6 or more times”-6.
v3_no_suic_attmpt<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_no_suic_attmpt<-ifelse(v3_suic_attmpt_snc_lst_vst==1, -999, ifelse(v3_suic_attmpt_snc_lst_vst>1, c(v3_clin$v3_snx_111_suizvrs1_x2_suiz_anz,rep(-999,dim(v3_con)[1])),v3_no_suic_attmpt))
v3_no_suic_attmpt<-factor(v3_no_suic_attmpt,ordered=T)
descT(v3_no_suic_attmpt)
## -999 1 2 <NA>
## [1,] No. cases 856 9 1 677 1543
## [2,] Percent 55.5 0.6 0.1 43.9 100
This is an ordinal item with the following gradation: “no preparation (impulsive attempt)”-1, “little preparation”-2, “moderate preparation”-3, “Extensive, all details planned”-4.
v3_prep_suic_attp_ord<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_prep_suic_attp_ord<-ifelse(v3_suic_attmpt_snc_lst_vst==1, -999,
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v3_con)[1]))==1, "1",
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v3_con)[1]))==2, "2",
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v3_con)[1]))==3, "3",
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v3_con)[1]))==4, "4",
v3_prep_suic_attp_ord)))))
v3_prep_suic_attp_ord<-factor(v3_prep_suic_attp_ord,ordered=T)
descT(v3_prep_suic_attp_ord)
## -999 1 2 3 4 <NA>
## [1,] No. cases 856 5 2 1 2 677 1543
## [2,] Percent 55.5 0.3 0.1 0.1 0.1 43.9 100
This is an ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v3_suic_note_attmpt<-c(rep(NA,dim(v3_clin)[1]),rep(-999,dim(v3_con)[1]))
v3_suic_note_attmpt<-ifelse(v3_suic_attmpt_snc_lst_vst==1, -999,
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==1, "1",
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==2, "2",
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==3, "3",
ifelse(v3_suic_attmpt_snc_lst_vst>1 & c(v3_clin$v3_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v3_con)[1]))==4, "4",
v3_suic_note_attmpt)))))
v3_suic_note_attmpt<-factor(v3_suic_note_attmpt,ordered=T)
descT(v3_suic_note_attmpt)
## -999 1 3 4 <NA>
## [1,] No. cases 856 5 1 1 680 1543
## [2,] Percent 55.5 0.3 0.1 0.1 44.1 100
Create dataset
v3_suic<-data.frame(v3_suic_ide_snc_lst_vst,v3_scid_suic_ide,v3_scid_suic_thght_mth,v3_scid_suic_note_thgts,
v3_suic_attmpt_snc_lst_vst,v3_no_suic_attmpt,v3_prep_suic_attp_ord,
v3_suic_note_attmpt)
PsyCourse 3.1 contains now medication data. The code below creates the following variables for each person:
Number of antidepressants prescribed (continuous [number], v3_Antidepressants) Number of antipsychotics prescribed (continuous [number], v3_Antipsychotics) Number of mood stabilizers prescribed (continuous [number], v3_Mood_stabilizers) Number of tranquilizers prescribed (continuous [number], v3_Tranquilizers) Number of other psychiatric medications (continuous [number], v3_Other_psychiatric)
#get the following variables from v3_clin
#1. Medication name ["_med_medi_1"]
#2. Medication category ["_med_kategorie_1"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_1"]
#6. Bedarf category ["_bedarf_kategorie_1"]
v3_clin_medication_variables_1<-as.data.frame(v3_clin[,grep("mnppsd|_med_medi_1|_med_kategorie_1|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_1|_bedarf_kategorie_1",names(v3_clin))])
dim(v3_clin_medication_variables_1) #[1] 1223 61
## [1] 1223 61
#recode the variables that are coded as characters/logicals in the "v3_clin_medication_variables_1" as factors
v3_clin_medication_variables_1$v3_medikabehand3_med_medi_199998_15<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_med_medi_199998_15)
v3_clin_medication_variables_1$v3_medikabehand3_med_kategorie_199998_15<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_med_kategorie_199998_15)
v3_clin_medication_variables_1$v3_medikabehand3_med_medi_199998_16<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_med_medi_199998_16)
v3_clin_medication_variables_1$v3_medikabehand3_med_kategorie_199998_16<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_med_kategorie_199998_16)
v3_clin_medication_variables_1$v3_medikabehand3_med_medi_199998_17<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_med_medi_199998_17)
v3_clin_medication_variables_1$v3_medikabehand3_med_kategorie_199998_17<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_med_kategorie_199998_17)
v3_clin_medication_variables_1$v3_medikabehand3_depot_medi_200170_3<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_depot_medi_200170_3)
v3_clin_medication_variables_1$v3_medikabehand3_depot_kategorie_200170_3<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_depot_kategorie_200170_3)
v3_clin_medication_variables_1$v3_medikabehand3_bedarf_medi_199584_8<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_bedarf_medi_199584_8)
v3_clin_medication_variables_1$v3_medikabehand3_bedarf_kategorie_199584_8<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_bedarf_kategorie_199584_8)
v3_clin_medication_variables_1$v3_medikabehand3_bedarf_medi_199584_9<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_bedarf_medi_199584_9)
v3_clin_medication_variables_1$v3_medikabehand3_bedarf_kategorie_199584_9<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_bedarf_kategorie_199584_9)
v3_clin_medication_variables_1$v3_medikabehand3_bedarf_medi_199584_10<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_bedarf_medi_199584_10)
v3_clin_medication_variables_1$v3_medikabehand3_bedarf_kategorie_199584_10<-as.factor(v3_clin_medication_variables_1$v3_medikabehand3_bedarf_kategorie_199584_10)
#make the duplicated data frame
v3_clin_medications_duplicated_1<-as.data.frame(t(apply(v3_clin_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v3_clin_medications_duplicated_1) #1223 30
## [1] 1223 30
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v3_clin, not as character
v3_clin_medication_variables_1[,!c(TRUE, FALSE)][v3_clin_medications_duplicated_1=="TRUE"] <- NA
dim(v3_clin_medication_variables_1) #1223 61
## [1] 1223 61
#bind columns id and medication names, but not categories together
v3_clin_medication_name_1<-as.data.frame(cbind("mnppsd"=v3_clin_medication_variables_1[,1], v3_clin_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v3_clin_medication_name_1) #1223 31
## [1] 1223 31
#get the medication categories from the "_medication_variables_1" dataframe
v3_clin_medication_categories_1<-as.data.frame(v3_clin_medication_variables_1[,c(TRUE, FALSE)])
dim(v3_clin_medication_categories_1) #1223 31
## [1] 1223 31
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v3_clin, not as character
#Important: v3_clin_medication_name_1=="NA" replaced with is.na(v3_clin_medication_name_1)
v3_clin_medication_categories_1[is.na(v3_clin_medication_name_1)] <- NA
#write.csv(v3_clin_medication_categories_1, file="v3_clin_medication_group_1.csv")
#Make a count table of medications
v3_clin_med_table<-data.frame("mnppsd"=v3_clin$mnppsd)
v3_clin_med_table$v3_Antidepressants<-rowSums(v3_clin_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v3_clin_med_table$v3_Antipsychotics<-rowSums(v3_clin_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v3_clin_med_table$v3_Mood_stabilizers<-rowSums(v3_clin_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v3_clin_med_table$v3_Tranquilizers<-rowSums(v3_clin_medication_categories_1 == "Sedativa", na.rm = TRUE)
v3_clin_med_table$v3_Other_psychiatric<-rowSums(v3_clin_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
#get the following variables from v3_con
#1. Medication name ["_med_medi_2"]
#2. Medication category ["_med_kategorie_2"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_2"]
#6. Bedarf category ["_bedarf_kategorie_2"]
v3_con_medication_variables_1<-as.data.frame(v3_con[,grep("mnppsd|_med_medi_2|_med_kategorie_2|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_2|_bedarf_kategorie_2",names(v3_con))])
dim(v3_con_medication_variables_1) #[1] 320 29
## [1] 320 29
#recode the variables that are coded as characters/logicals in the "v3_con_medication_variables_1" as factors
v3_con_medication_variables_1$v3_medikabehand3_med_medi_200705_8<-as.factor(v3_con_medication_variables_1$v3_medikabehand3_med_medi_200705_8)
v3_con_medication_variables_1$v3_medikabehand3_med_kategorie_200705_8<-as.factor(v3_con_medication_variables_1$v3_medikabehand3_med_kategorie_200705_8)
v3_con_medication_variables_1$v3_medikabehand3_bedarf_medi_201187_4<-as.factor(v3_con_medication_variables_1$v3_medikabehand3_bedarf_medi_201187_4)
v3_con_medication_variables_1$v3_medikabehand3_bedarf_kategorie_201187_4<-as.factor(v3_con_medication_variables_1$v3_medikabehand3_bedarf_kategorie_201187_4)
#make the duplicated data frame
v3_con_medications_duplicated_1<-as.data.frame(t(apply(v3_con_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v3_con_medications_duplicated_1) #320 14
## [1] 320 14
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v3_con, not as character
v3_con_medication_variables_1[,!c(TRUE, FALSE)][v3_con_medications_duplicated_1=="TRUE"] <- NA
dim(v3_con_medication_variables_1) #320 29
## [1] 320 29
#bind columns id and medication names, but not categories together
v3_con_medication_name_1<-as.data.frame(cbind("mnppsd"=v3_con_medication_variables_1[,1], v3_con_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v3_con_medication_name_1) #320 15
## [1] 320 15
#get the medication categories from the "_medication_variables_1" dataframe
v3_con_medication_categories_1<-as.data.frame(v3_con_medication_variables_1[,c(TRUE, FALSE)])
dim(v3_con_medication_categories_1) #320 15
## [1] 320 15
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v3_con, not as character
#Important: v3_con_medication_name_1=="NA" replaced with is.na(v3_con_medication_name_1)
v3_con_medication_categories_1[is.na(v3_con_medication_name_1)] <- NA
#write.csv(v3_con_medication_categories_1, file="v3_con_medication_group_1.csv")
#Make a count table of medications
v3_con_med_table<-data.frame("mnppsd"=v3_con$mnppsd)
v3_con_med_table$v3_Antidepressants<-rowSums(v3_con_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v3_con_med_table$v3_Antipsychotics<-rowSums(v3_con_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v3_con_med_table$v3_Mood_stabilizers<-rowSums(v3_con_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v3_con_med_table$v3_Tranquilizers<-rowSums(v3_con_medication_categories_1 == "Sedativa", na.rm = TRUE)
v3_con_med_table$v3_Other_psychiatric<-rowSums(v3_con_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
Bind v3_clin and v3_con together by rows
v3_drugs<-rbind(v3_clin_med_table,v3_con_med_table)
dim(v3_drugs) #1543 6
## [1] 1543 6
#check if the id column of v3_drugs and v1_id match
table(droplevels(v3_drugs[,1])==v1_id)
##
## TRUE
## 1543
v3_clin_adv<-ifelse(v3_clin$v3_medikabehand_medi2_nebenwirk==1,"Y","N")
v3_con_adv<-rep("-999",dim(v3_con)[1])
v3_adv<-factor(c(v3_clin_adv,v3_con_adv))
descT(v3_adv)
## -999 N Y <NA>
## [1,] No. cases 320 162 275 786 1543
## [2,] Percent 20.7 10.5 17.8 50.9 100
v3_clin_medchange<-rep(NA,dim(v3_clin)[1])
v3_clin_medchange<-ifelse(v3_clin$v3_medikabehand_medi3_mediaenderung==1,"Y","N")
v3_con_medchange<-rep("-999",dim(v3_con)[1])
v3_medchange<-as.factor(c(v3_clin_medchange,v3_con_medchange))
descT(v3_medchange)
## -999 N Y <NA>
## [1,] No. cases 320 191 250 782 1543
## [2,] Percent 20.7 12.4 16.2 50.7 100
Please see the section in Visit 1 for explanation.
v3_clin_lith<-rep(NA,dim(v3_clin)[1])
v3_clin_lith<-ifelse(v3_clin$v3_medikabehand_med_zusatz_lithium==1,"Y","N")
v3_con_lith<-rep("-999",dim(v3_con)[1])
v3_lith<-as.factor(c(v3_clin_lith,v3_con_lith))
v3_lith<-as.factor(v3_lith)
descT(v3_lith)
## -999 N Y <NA>
## [1,] No. cases 320 151 106 966 1543
## [2,] Percent 20.7 9.8 6.9 62.6 100
Ordinal variable, gradation the following: “less than one year”-1, “one to two years”-2, “two or more years”-3.
v3_clin_lith_prd<-rep(NA,dim(v3_clin)[1])
v3_con_lith_prd<-rep(-999,dim(v3_con)[1])
v3_clin_lith_prd<-ifelse(v3_clin_lith=="N", -999, ifelse(v3_clin$v3_medikabehand_med_zusatz_dauer==2,1,
ifelse(v3_clin$v3_medikabehand_med_zusatz_dauer==1,2,
ifelse(v3_clin$v3_medikabehand_med_zusatz_dauer==0,3,NA))))
v3_lith_prd<-factor(c(v3_clin_lith_prd,v3_con_lith_prd))
descT(v3_lith_prd)
## -999 1 2 3 <NA>
## [1,] No. cases 471 32 24 50 966 1543
## [2,] Percent 30.5 2.1 1.6 3.2 62.6 100
Create dataset
v3_med<-data.frame(v3_drugs[,2:6],v3_adv,v3_medchange,v3_lith,v3_lith_prd)
For more explanation, see Visit 1
This is a categorical item with four optional answers: “no, still smoker”-NS, “no, still nonsmoker”-NN, and “yes, stopped smoking (more than three months ago)” -YSP, “yes, started smoking (more than three months ago)”-YST.
v3_clin_smk_strt_stp<-rep(NA,dim(v3_clin)[1])
v3_clin_smk_strt_stp<-ifelse(v3_clin$v3_tabalk1_ta1_jemals_rauch==1,"NS",
ifelse(v3_clin$v3_tabalk1_ta1_jemals_rauch==2,"NN",
ifelse(v3_clin$v3_tabalk1_ta1_jemals_rauch==3,"YSP",
ifelse(v3_clin$v3_tabalk1_ta1_jemals_rauch==4,"YST",v3_clin_smk_strt_stp))))
#ATTENTION: answering alternative: e-cigarette only in controls
v3_con_smk_strt_stp<-rep(NA,dim(v3_clin)[1])
v3_con_smk_strt_stp<-ifelse(v3_con$v3_tabalk_folge_tabak1==1 | v3_con$v3_tabalk_folge_tabak1==2,"NS",
ifelse(v3_con$v3_tabalk_folge_tabak1==3,"NN",
ifelse(v3_con$v3_tabalk_folge_tabak1==4,"YSP",
ifelse(v3_con$v3_tabalk_folge_tabak1==5,"YST",v3_con_smk_strt_stp))))
v3_smk_strt_stp<-c(v3_clin_smk_strt_stp,v3_con_smk_strt_stp)
descT(v3_smk_strt_stp)
## NN NS YSP YST <NA>
## [1,] No. cases 269 459 29 9 777 1543
## [2,] Percent 17.4 29.7 1.9 0.6 50.4 100
In the original item, the number of cigarettes is to be entered by the investigator, however there are three options to which timeframe these cigarettes refer to: per day, per week or per month. Here, we have decided to give the cigarettes per year.
Please not that people who have stopped smoking but less than three months ago are still labeled as smokers, therefore zeros can occur.
v3_no_cig<-c(rep(NA,dim(v3_clin)[1]),rep(NA,dim(v3_con)[1]))
v3_no_cig<-ifelse((v3_smk_strt_stp=="NN" | v3_smk_strt_stp=="YSP"), -999,
ifelse((v3_smk_strt_stp=="NS" | v3_smk_strt_stp=="YST") &
c(v3_clin$v3_tabalk1_ta3_zig_pro_zeit,v3_con$v3_tabalk_folge_tabak2_zeit)==1,
c(v3_clin$v3_tabalk1_ta3_anz_zig,v3_con$v3_tabalk_folge_tabak2_anz)*365,
ifelse((v3_smk_strt_stp=="NS" | v3_smk_strt_stp=="YST") &
c(v3_clin$v3_tabalk1_ta3_zig_pro_zeit,v3_con$v3_tabalk_folge_tabak2_zeit)==2,
c(v3_clin$v3_tabalk1_ta3_anz_zig,v3_con$v3_tabalk_folge_tabak2_anz)*52,
ifelse((v3_smk_strt_stp=="NS" | v3_smk_strt_stp=="YST") &
c(v3_clin$v3_tabalk1_ta3_zig_pro_zeit,v3_con$v3_tabalk_folge_tabak2_zeit)==3,
c(v3_clin$v3_tabalk1_ta3_anz_zig,v3_con$v3_tabalk_folge_tabak2_anz)*12,
v3_no_cig))))
summary(v3_no_cig[v3_no_cig>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0 3650 5475 6322 7300 73000 949
This is and ordinal item. Optional answers are: “never”-1, “only on special occasions”-2, “once per month or less”-3, “two to four times per month”-4, “two to three times per week”-5, “four times per week or several times but not daily”-6, “daily”-7.
v3_alc_pst6_mths<-c(v3_clin$v3_tabalk1_ta9_alkkonsum,v3_con$v3_tabalk_folge_alkohol4)
v3_alc_pst6_mths<-factor(v3_alc_pst6_mths, ordered=T)
descT(v3_alc_pst6_mths)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 177 157 76 173 109 37 38 776 1543
## [2,] Percent 11.5 10.2 4.9 11.2 7.1 2.4 2.5 50.3 100
This is an ordinal item. Optional answers are: “never”-1, “once or twice”-2, “three to five times”-3, “six to eleven times”-4, “approximately once per month”-5, “two to three times per month”-6, “one to two times per week”-7, “three to four times per week”-8, “daily or almost daily”-9. Note that this item was skipped if participants chose answering alternatives 1, 2 or 3 in the previous question. In these cases, coding is -999.
v3_alc_5orm<-ifelse(v3_alc_pst6_mths<4,-999,
ifelse(is.na(c(v3_clin$v3_tabalk1_ta10_alk_haeufigk_m1,v3_con$v3_tabalk_folge_alkohol5))==T,
c(v3_clin$v3_tabalk1_ta11_alk_haeufigk_f1,v3_con$v3_tabalk_folge_alkohol6),
c(v3_clin$v3_tabalk1_ta10_alk_haeufigk_m1,v3_con$v3_tabalk_folge_alkohol5)))
v3_alc_5orm<-factor(v3_alc_5orm, ordered=T)
descT(v3_alc_5orm)
## -999 1 2 3 4 5 6 7 8 9 <NA>
## [1,] No. cases 410 148 67 43 26 12 33 14 1 8 781 1543
## [2,] Percent 26.6 9.6 4.3 2.8 1.7 0.8 2.1 0.9 0.1 0.5 50.6 100
For more information see in visit 1 and 2.
“During the past six months, did you take ANY illicit drugs?” (dichotomous, v3_pst6_ill_drg)
v3_pst6_ill_drg<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_pst6_ill_drg<-ifelse(c(v3_clin$v3_drogen1_dg1_konsum,v3_con$v3_drogen_folge_drogenkonsum)==2, "Y", "N")
descT(v3_pst6_ill_drg)
## N Y <NA>
## [1,] No. cases 703 62 778 1543
## [2,] Percent 45.6 4 50.4 100
Create dataset
v3_subst<-data.frame(v3_smk_strt_stp,
v3_no_cig,
v3_alc_pst6_mths,
v3_alc_5orm,
v3_pst6_ill_drg)
For more information on the scale, please see Visit 1
P1 Delusions (ordinal [1,2,3,4,5,6,7], v3_panss_p1)
v3_panss_p1<-c(v3_clin$v3_panss_p_p1_wahnideen,v3_con$v3_panss_p_p1_wahnideen)
v3_panss_p1<-factor(v3_panss_p1, ordered=T)
descT(v3_panss_p1)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 564 35 59 24 14 6 1 840 1543
## [2,] Percent 36.6 2.3 3.8 1.6 0.9 0.4 0.1 54.4 100
P2 Conceptual disorganization (ordinal [1,2,3,4,5,6,7], v3_panss_p2)
v3_panss_p2<-c(v3_clin$v3_panss_p_p2_form_denkst,v3_con$v3_panss_p_p2_form_denkst)
v3_panss_p2<-factor(v3_panss_p2, ordered=T)
descT(v3_panss_p2)
## 1 2 3 4 5 7 <NA>
## [1,] No. cases 511 65 81 37 9 1 839 1543
## [2,] Percent 33.1 4.2 5.2 2.4 0.6 0.1 54.4 100
P3 Hallucinatory behavior (ordinal [1,2,3,4,5,6,7], v3_panss_p3)
v3_panss_p3<-c(v3_clin$v3_panss_p_p3_halluz,v3_con$v3_panss_p_p3_halluz)
v3_panss_p3<-factor(v3_panss_p3, ordered=T)
descT(v3_panss_p3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 626 22 26 17 10 3 839 1543
## [2,] Percent 40.6 1.4 1.7 1.1 0.6 0.2 54.4 100
P4 Excitement (ordinal [1,2,3,4,5,6,7], v3_panss_p4)
v3_panss_p4<-c(v3_clin$v3_panss_p_p4_erregung,v3_con$v3_panss_p_p4_erregung)
v3_panss_p4<-factor(v3_panss_p4, ordered=T)
descT(v3_panss_p4)
## 1 2 3 4 5 <NA>
## [1,] No. cases 527 52 99 23 3 839 1543
## [2,] Percent 34.2 3.4 6.4 1.5 0.2 54.4 100
P5 Grandiosity (ordinal [1,2,3,4,5,6,7], v3_panss_p5)
v3_panss_p5<-c(v3_clin$v3_panss_p_p5_groessenideen,v3_con$v3_panss_p_p5_groessenideen)
v3_panss_p5<-factor(v3_panss_p5, ordered=T)
descT(v3_panss_p5)
## 1 2 3 4 5 <NA>
## [1,] No. cases 646 21 24 10 3 839 1543
## [2,] Percent 41.9 1.4 1.6 0.6 0.2 54.4 100
P6 Suspiciousness/persecution (ordinal [1,2,3,4,5,6,7], v3_panss_p6)
v3_panss_p6<-c(v3_clin$v3_panss_p_p6_misstr_verfolg,v3_con$v3_panss_p_p6_misstr_verfolg)
v3_panss_p6<-factor(v3_panss_p6, ordered=T)
descT(v3_panss_p6)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 557 44 64 23 13 3 839 1543
## [2,] Percent 36.1 2.9 4.1 1.5 0.8 0.2 54.4 100
P7 Hostility (ordinal [1,2,3,4,5,6,7], v3_panss_p7)
v3_panss_p7<-c(v3_clin$v3_panss_p_p7_feindseligkeit,v3_con$v3_panss_p_p7_feindseligkeit)
v3_panss_p7<-factor(v3_panss_p7, ordered=T)
descT(v3_panss_p7)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 642 32 25 3 1 1 839 1543
## [2,] Percent 41.6 2.1 1.6 0.2 0.1 0.1 54.4 100
PANSS Positive sum score (continuous [7-49], v3_panss_sum_pos)
v3_panss_sum_pos<-as.numeric.factor(v3_panss_p1)+
as.numeric.factor(v3_panss_p2)+
as.numeric.factor(v3_panss_p3)+
as.numeric.factor(v3_panss_p4)+
as.numeric.factor(v3_panss_p5)+
as.numeric.factor(v3_panss_p6)+
as.numeric.factor(v3_panss_p7)
summary(v3_panss_sum_pos)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.000 7.000 7.000 9.457 11.000 30.000 840
N1 Blunted affect (ordinal [1,2,3,4,5,6,7], v3_panss_n1)
v3_panss_n1<-c(v3_clin$v3_panss_n_n1_affektverflachung,v3_con$v3_panss_n_n1_affektverflachung)
v3_panss_n1<-factor(v3_panss_n1, ordered=T)
descT(v3_panss_n1)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 442 74 97 51 32 2 845 1543
## [2,] Percent 28.6 4.8 6.3 3.3 2.1 0.1 54.8 100
N2 Emotional withdrawal (ordinal [1,2,3,4,5,6,7], v3_panss_n2)
v3_panss_n2<-c(v3_clin$v3_panss_n_n2_emot_rueckzug,v3_con$v3_panss_n_n2_emot_rueckzug)
v3_panss_n2<-factor(v3_panss_n2, ordered=T)
descT(v3_panss_n2)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 507 67 71 44 12 1 841 1543
## [2,] Percent 32.9 4.3 4.6 2.9 0.8 0.1 54.5 100
N3 Poor rapport (ordinal [1,2,3,4,5,6,7], v3_panss_n3)
v3_panss_n3<-c(v3_clin$v3_panss_n_n3_mang_aff_rapp,v3_con$v3_panss_n_n3_mang_aff_rapp)
v3_panss_n3<-factor(v3_panss_n3, ordered=T)
descT(v3_panss_n3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 534 66 73 24 5 2 839 1543
## [2,] Percent 34.6 4.3 4.7 1.6 0.3 0.1 54.4 100
N4 Passive/apathetic social withdrawal (ordinal [1,2,3,4,5,6,7], v3_panss_n4)
v3_panss_n4<-c(v3_clin$v3_panss_n_n4_soz_pass_apath,v3_con$v3_panss_n_n4_soz_pass_apath)
v3_panss_n4<-factor(v3_panss_n4, ordered=T)
descT(v3_panss_n4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 510 58 97 25 10 4 839 1543
## [2,] Percent 33.1 3.8 6.3 1.6 0.6 0.3 54.4 100
N5 difficulty in abstract thinking (ordinal [1,2,3,4,5,6,7], v3_panss_n5)
v3_panss_n5<-c(v3_clin$v3_panss_n_n5_abstr_denken,v3_con$v3_panss_n_n5_abstr_denken)
v3_panss_n5<-factor(v3_panss_n5, ordered=T)
descT(v3_panss_n5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 442 79 118 48 9 4 843 1543
## [2,] Percent 28.6 5.1 7.6 3.1 0.6 0.3 54.6 100
N6 Lack of spontaneity and flow of conversation (ordinal [1,2,3,4,5,6,7], v3_panss_n6)
v3_panss_n6<-c(v3_clin$v3_panss_n_n6_spon_fl_sprache,v3_con$v3_panss_n_n6_spon_fl_sprache)
v3_panss_n6<-factor(v3_panss_n6, ordered=T)
descT(v3_panss_n6)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 572 40 60 23 6 2 840 1543
## [2,] Percent 37.1 2.6 3.9 1.5 0.4 0.1 54.4 100
N7 Stereotyped thinking (ordinal [1,2,3,4,5,6,7], v3_panss_n7)
v3_panss_n7<-c(v3_clin$v3_panss_n_n7_stereotyp_ged,v3_con$v3_panss_n_n7_stereotyp_ged)
v3_panss_n7<-factor(v3_panss_n7, ordered=T)
descT(v3_panss_n7)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 581 47 57 12 3 1 842 1543
## [2,] Percent 37.7 3 3.7 0.8 0.2 0.1 54.6 100
PANSS Negative sum score (continuous [7-49], v3_panss_sum_neg)
v3_panss_sum_neg<-as.numeric.factor(v3_panss_n1)+
as.numeric.factor(v3_panss_n2)+
as.numeric.factor(v3_panss_n3)+
as.numeric.factor(v3_panss_n4)+
as.numeric.factor(v3_panss_n5)+
as.numeric.factor(v3_panss_n6)+
as.numeric.factor(v3_panss_n7)
summary(v3_panss_sum_neg)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.00 7.00 9.00 10.79 13.00 34.00 854
G1 Somatic concerns (ordinal [1,2,3,4,5,6,7], v3_panss_g1)
v3_panss_g1<-c(v3_clin$v3_panss_g_g1_sorge_gesundh,v3_con$v3_panss_g_g1_sorge_gesundh)
v3_panss_g1<-factor(v3_panss_g1, ordered=T)
descT(v3_panss_g1)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 514 80 73 25 5 2 844 1543
## [2,] Percent 33.3 5.2 4.7 1.6 0.3 0.1 54.7 100
G2 Anxiety (ordinal [1,2,3,4,5,6,7], v3_panss_g2)
v3_panss_g2<-c(v3_clin$v3_panss_g_g2_angst,v3_con$v3_panss_g_g2_angst)
v3_panss_g2<-factor(v3_panss_g2, ordered=T)
descT(v3_panss_g2)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 482 49 122 30 16 1 1 842 1543
## [2,] Percent 31.2 3.2 7.9 1.9 1 0.1 0.1 54.6 100
G3 Guilt feelings (ordinal [1,2,3,4,5,6,7], v3_panss_g3)
v3_panss_g3<-c(v3_clin$v3_panss_g_g3_schuldgefuehle,v3_con$v3_panss_g_g3_schuldgefuehle)
v3_panss_g3<-factor(v3_panss_g3, ordered=T)
descT(v3_panss_g3)
## 1 2 3 4 5 <NA>
## [1,] No. cases 565 34 63 28 12 841 1543
## [2,] Percent 36.6 2.2 4.1 1.8 0.8 54.5 100
G4 Tension (ordinal [1,2,3,4,5,6,7], v3_panss_g4)
v3_panss_g4<-c(v3_clin$v3_panss_g_g4_anspannung,v3_con$v3_panss_g_g4_anspannung)
v3_panss_g4<-factor(v3_panss_g4, ordered=T)
descT(v3_panss_g4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 486 73 94 41 6 2 841 1543
## [2,] Percent 31.5 4.7 6.1 2.7 0.4 0.1 54.5 100
G5 Mannerisms & posturing (ordinal [1,2,3,4,5,6,7], v3_panss_g5)
v3_panss_g5<-c(v3_clin$v3_panss_g_g5_manier_koerperh,v3_con$v3_panss_g_g5_manier_koerperh)
v3_panss_g5<-factor(v3_panss_g5, ordered=T)
descT(v3_panss_g5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 638 36 19 4 3 2 841 1543
## [2,] Percent 41.3 2.3 1.2 0.3 0.2 0.1 54.5 100
G6 Depression (ordinal [1,2,3,4,5,6,7], v3_panss_g6)
v3_panss_g6<-c(v3_clin$v3_panss_g_g6_depression,v3_con$v3_panss_g_g6_depression)
v3_panss_g6<-factor(v3_panss_g6, ordered=T)
descT(v3_panss_g6)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 440 53 115 65 26 3 1 840 1543
## [2,] Percent 28.5 3.4 7.5 4.2 1.7 0.2 0.1 54.4 100
G7 Motor retardation (ordinal [1,2,3,4,5,6,7], v3_panss_g7)
v3_panss_g7<-c(v3_clin$v3_panss_g_g7_mot_verlangs,v3_con$v3_panss_g_g7_mot_verlangs)
v3_panss_g7<-factor(v3_panss_g7, ordered=T)
descT(v3_panss_g7)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 506 61 98 34 4 1 839 1543
## [2,] Percent 32.8 4 6.4 2.2 0.3 0.1 54.4 100
G8 Uncooperativeness (ordinal [1,2,3,4,5,6,7], v3_panss_g8)
v3_panss_g8<-c(v3_clin$v3_panss_g_g8_unkoop_verh,v3_con$v3_panss_g_g8_unkoop_verh)
v3_panss_g8<-factor(v3_panss_g8, ordered=T)
descT(v3_panss_g8)
## 1 2 3 4 6 <NA>
## [1,] No. cases 656 18 24 2 2 841 1543
## [2,] Percent 42.5 1.2 1.6 0.1 0.1 54.5 100
G9 Unusual thought content (ordinal [1,2,3,4,5,6,7], v3_panss_g9)
v3_panss_g9<-c(v3_clin$v3_panss_g_g9_ungew_denkinh,v3_con$v3_panss_g_g9_ungew_denkinh)
v3_panss_g9<-factor(v3_panss_g9, ordered=T)
descT(v3_panss_g9)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 568 47 62 18 6 2 1 839 1543
## [2,] Percent 36.8 3 4 1.2 0.4 0.1 0.1 54.4 100
G10 Disorientation (ordinal [1,2,3,4,5,6,7], v3_panss_g10)
v3_panss_g10<-c(v3_clin$v3_panss_g_g10_desorient,v3_con$v3_panss_g_g10_desorient)
v3_panss_g10<-factor(v3_panss_g10, ordered=T)
descT(v3_panss_g10)
## 1 2 3 4 <NA>
## [1,] No. cases 654 28 19 1 841 1543
## [2,] Percent 42.4 1.8 1.2 0.1 54.5 100
G11 Poor attention (ordinal [1,2,3,4,5,6,7], v3_panss_g11)
v3_panss_g11<-c(v3_clin$v3_panss_g_g11_mang_aufmerks,v3_con$v3_panss_g_g11_mang_aufmerks)
v3_panss_g11<-factor(v3_panss_g11, ordered=T)
descT(v3_panss_g11)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 446 71 135 46 3 1 841 1543
## [2,] Percent 28.9 4.6 8.7 3 0.2 0.1 54.5 100
G12 Lack of judgement & insight (ordinal [1,2,3,4,5,6,7], v3_panss_g12)
v3_panss_g12<-c(v3_clin$v3_panss_g_g12_mang_urt_einsi,v3_con$v3_panss_g_g12_mang_urt_einsi)
v3_panss_g12<-factor(v3_panss_g12, ordered=T)
descT(v3_panss_g12)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 596 40 39 20 4 3 1 840 1543
## [2,] Percent 38.6 2.6 2.5 1.3 0.3 0.2 0.1 54.4 100
G13 Disturbance of volition (ordinal [1,2,3,4,5,6,7], v3_panss_g13)
v3_panss_g13<-c(v3_clin$v3_panss_g_g13_willensschwae,v3_con$v3_panss_g_g13_willensschwae)
v3_panss_g13<-factor(v3_panss_g13, ordered=T)
descT(v3_panss_g13)
## 1 2 3 4 <NA>
## [1,] No. cases 622 22 37 22 840 1543
## [2,] Percent 40.3 1.4 2.4 1.4 54.4 100
G14 Poor impulse control (ordinal [1,2,3,4,5,6,7], v3_panss_g14)
v3_panss_g14<-c(v3_clin$v3_panss_g_g14_mang_impulsk,v3_con$v3_panss_g_g14_mang_impulsk)
v3_panss_g14<-factor(v3_panss_g14, ordered=T)
descT(v3_panss_g14)
## 1 2 3 4 <NA>
## [1,] No. cases 606 28 62 7 840 1543
## [2,] Percent 39.3 1.8 4 0.5 54.4 100
G15 Preoccupation (ordinal [1,2,3,4,5,6,7], v3_panss_g15)
v3_panss_g15<-c(v3_clin$v3_panss_g_g15_selbstbezog,v3_con$v3_panss_g_g15_selbstbezog)
v3_panss_g15<-factor(v3_panss_g15, ordered=T)
descT(v3_panss_g15)
## 1 2 3 4 5 <NA>
## [1,] No. cases 625 42 25 9 3 839 1543
## [2,] Percent 40.5 2.7 1.6 0.6 0.2 54.4 100
G16 Active social avoidance (ordinal [1,2,3,4,5,6,7], v3_panss_g16)
v3_panss_g16<-c(v3_clin$v3_panss_g_g16_aktsoz_vermeid,v3_con$v3_panss_g_g16_aktsoz_vermeid)
v3_panss_g16<-factor(v3_panss_g16, ordered=T)
descT(v3_panss_g16)
## 1 2 3 4 5 <NA>
## [1,] No. cases 576 40 61 17 10 839 1543
## [2,] Percent 37.3 2.6 4 1.1 0.6 54.4 100
PANSS General Psychopathology sum score (continuous [16-112], v3_panss_sum_gen)
v3_panss_sum_gen<-as.numeric.factor(v3_panss_g1)+
as.numeric.factor(v3_panss_g2)+
as.numeric.factor(v3_panss_g3)+
as.numeric.factor(v3_panss_g4)+
as.numeric.factor(v3_panss_g5)+
as.numeric.factor(v3_panss_g6)+
as.numeric.factor(v3_panss_g7)+
as.numeric.factor(v3_panss_g8)+
as.numeric.factor(v3_panss_g9)+
as.numeric.factor(v3_panss_g10)+
as.numeric.factor(v3_panss_g11)+
as.numeric.factor(v3_panss_g12)+
as.numeric.factor(v3_panss_g13)+
as.numeric.factor(v3_panss_g14)+
as.numeric.factor(v3_panss_g15)+
as.numeric.factor(v3_panss_g16)
summary(v3_panss_sum_gen)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 16.00 16.00 20.00 22.34 26.00 56.00 860
Create PANSS Total score (continuous [30-210], v3_panss_sum_tot)
v3_panss_sum_tot<-v3_panss_sum_pos+v3_panss_sum_neg+v3_panss_sum_gen
summary(v3_panss_sum_tot)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 30.00 31.00 38.00 42.65 51.00 112.00 874
Create dataset
v3_symp_panss<-data.frame(v3_panss_p1,v3_panss_p2,v3_panss_p3,v3_panss_p4,v3_panss_p5,v3_panss_p6,v3_panss_p7,
v3_panss_n1,v3_panss_n2,v3_panss_n3,v3_panss_n4,v3_panss_n5,v3_panss_n6,v3_panss_n7,
v3_panss_g1,v3_panss_g2,v3_panss_g3,v3_panss_g4,v3_panss_g5,v3_panss_g6,v3_panss_g7,
v3_panss_g8,v3_panss_g9,v3_panss_g10,v3_panss_g11,v3_panss_g12,v3_panss_g13,v3_panss_g14,
v3_panss_g15,v3_panss_g16,v3_panss_sum_pos,v3_panss_sum_neg,v3_panss_sum_gen,
v3_panss_sum_tot)
For more information on the scale, please see Visit 1
Item 1 Sleep onset insomnia (ordinal [0,1,2,3], v3_idsc_itm1)
v3_idsc_itm1<-c(v3_clin$v3_ids_c_s1_ids1_einschlafschw,v3_con$v3_ids_c_s1_ids1_einschlafschw)
v3_idsc_itm1<-factor(v3_idsc_itm1, ordered=T)
descT(v3_idsc_itm1)
## 0 1 2 3 <NA>
## [1,] No. cases 507 83 62 45 846 1543
## [2,] Percent 32.9 5.4 4 2.9 54.8 100
Item 2 Mid-nocturnal insomnia (ordinal [0,1,2,3], v3_idsc_itm2)
v3_idsc_itm2<-c(v3_clin$v3_ids_c_s1_ids2_naechtl_aufw,v3_con$v3_ids_c_s1_ids2_naechtl_aufw)
v3_idsc_itm2<-factor(v3_idsc_itm2, ordered=T)
descT(v3_idsc_itm2)
## 0 1 2 3 <NA>
## [1,] No. cases 440 120 83 55 845 1543
## [2,] Percent 28.5 7.8 5.4 3.6 54.8 100
Item 3 Early morning insomnia (ordinal [0,1,2,3], v3_idsc_itm3)
v3_idsc_itm3<-c(v3_clin$v3_ids_c_s1_ids3_frueh_aufw,v3_con$v3_ids_c_s1_ids3_frueh_aufw)
v3_idsc_itm3<-factor(v3_idsc_itm3, ordered=T)
descT(v3_idsc_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 584 53 30 30 846 1543
## [2,] Percent 37.8 3.4 1.9 1.9 54.8 100
Item 4 Hypersomnia (ordinal [0,1,2,3], v3_idsc_itm4)
v3_idsc_itm4<-c(v3_clin$v3_ids_c_s1_ids4_hypersomnie,v3_con$v3_ids_c_s1_ids4_hypersomnie)
v3_idsc_itm4<-factor(v3_idsc_itm4, ordered=T)
descT(v3_idsc_itm4)
## 0 1 2 3 <NA>
## [1,] No. cases 464 161 56 17 845 1543
## [2,] Percent 30.1 10.4 3.6 1.1 54.8 100
Item 5 Mood (sad) (ordinal [0,1,2,3], v3_idsc_itm5)
v3_idsc_itm5<-c(v3_clin$v3_ids_c_s1_ids5_stimmung_trgk,v3_con$v3_ids_c_s1_ids5_stimmung_trgk)
v3_idsc_itm5<-factor(v3_idsc_itm5, ordered=T)
descT(v3_idsc_itm5)
## 0 1 2 3 <NA>
## [1,] No. cases 465 152 54 26 846 1543
## [2,] Percent 30.1 9.9 3.5 1.7 54.8 100
Item 6 Mood (irritable) (ordinal [0,1,2,3], v3_idsc_itm6)
v3_idsc_itm6<-c(v3_clin$v3_ids_c_s1_ids6_stimmung_grzt,v3_con$v3_ids_c_s1_ids6_stimmung_grzt)
v3_idsc_itm6<-factor(v3_idsc_itm6, ordered=T)
descT(v3_idsc_itm6)
## 0 1 2 3 <NA>
## [1,] No. cases 466 179 39 13 846 1543
## [2,] Percent 30.2 11.6 2.5 0.8 54.8 100
Item 7 Mood (anxious) (ordinal [0,1,2,3], v3_idsc_itm7)
v3_idsc_itm7<-c(v3_clin$v3_ids_c_s1_ids7_stimmung_agst,v3_con$v3_ids_c_s1_ids7_stimmung_agst)
v3_idsc_itm7<-factor(v3_idsc_itm7, ordered=T)
descT(v3_idsc_itm7)
## 0 1 2 3 <NA>
## [1,] No. cases 494 128 51 24 846 1543
## [2,] Percent 32 8.3 3.3 1.6 54.8 100
Item 8 Reactivity of mood (ordinal [0,1,2,3], v3_idsc_itm8)
v3_idsc_itm8<-c(v3_clin$v3_ids_c_s1_ids8_reakt_stimmung,v3_con$v3_ids_c_s1_ids8_reakt_stimmung)
v3_idsc_itm8<-factor(v3_idsc_itm8, ordered=T)
descT(v3_idsc_itm8)
## 0 1 2 3 <NA>
## [1,] No. cases 579 79 20 18 847 1543
## [2,] Percent 37.5 5.1 1.3 1.2 54.9 100
Item 9 Mood Variation (ordinal [0,1,2,3], v3_idsc_itm9)
v3_idsc_itm9<-c(v3_clin$v3_ids_c_s1_ids9_stimmungsschw,v3_con$v3_ids_c_s1_ids9_stimmungsschw)
v3_idsc_itm9<-factor(v3_idsc_itm9, ordered=T)
descT(v3_idsc_itm9)
## 0 1 2 3 <NA>
## [1,] No. cases 549 64 24 59 847 1543
## [2,] Percent 35.6 4.1 1.6 3.8 54.9 100
Item 9A (categorical [M, A, N], v3_idsc_itm9a)
Additional information if the answer on item 9 was 1,2 or 3: “When was the mood usually worse?” (“M”-morning, “A”-afternoon, “N”-night).
v3_idsc_itm9a_pre<-c(v3_clin$v3_ids_c_s1_ids9a_stimmungsschw,v3_con$v3_ids_c_s1_ids9a_stimmungsschw)
v3_idsc_itm9a<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_idsc_itm9a<-ifelse(v3_idsc_itm9!=0 & v3_idsc_itm9a_pre==1, "M", ifelse(v3_idsc_itm9==0, -999, v3_idsc_itm9a))
v3_idsc_itm9a<-ifelse(v3_idsc_itm9!=0 & v3_idsc_itm9a_pre==2, "A", ifelse(v3_idsc_itm9==0, -999, v3_idsc_itm9a))
v3_idsc_itm9a<-ifelse(v3_idsc_itm9!=0 & v3_idsc_itm9a_pre==3, "N", ifelse(v3_idsc_itm9==0, -999, v3_idsc_itm9a))
v3_idsc_itm9a<-factor(v3_idsc_itm9a, ordered=F)
descT(v3_idsc_itm9a)
## -999 A M N <NA>
## [1,] No. cases 549 16 75 28 875 1543
## [2,] Percent 35.6 1 4.9 1.8 56.7 100
Item 9B (dichotomous, v3_idsc_itm9b) Additional information if the answer on item 9 was 1,2 or 3: “Is mood variation attributed to environment by the patient?”.
v3_idsc_itm9b_pre<-c(v3_clin$v3_ids_c_s1_ids9b_stimmungsschw,v3_con$v3_ids_c_s1_ids9b_stimmungsschw)
v3_idsc_itm9b<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_idsc_itm9b<-ifelse(v3_idsc_itm9!=0 & v3_idsc_itm9b_pre==0, "N", ifelse(v3_idsc_itm9==0, -999, v3_idsc_itm9b))
v3_idsc_itm9b<-ifelse(v3_idsc_itm9!=0 & v3_idsc_itm9b_pre==1, "Y", ifelse(v3_idsc_itm9==0, -999, v3_idsc_itm9b))
v3_idsc_itm9b<-factor(v3_idsc_itm9b, ordered=F)
descT(v3_idsc_itm9b)
## -999 N Y <NA>
## [1,] No. cases 549 35 65 894 1543
## [2,] Percent 35.6 2.3 4.2 57.9 100
Item 10 Quality of mood (ordinal [0,1,2,3], v3_idsc_itm10)
v3_idsc_itm10<-c(v3_clin$v3_ids_c_s1_ids10_quali_stimmung,v3_con$v3_ids_c_s1_ids10_quali_stimmung)
v3_idsc_itm10<-factor(v3_idsc_itm10, ordered=T)
descT(v3_idsc_itm10)
## 0 1 2 3 <NA>
## [1,] No. cases 614 44 15 23 847 1543
## [2,] Percent 39.8 2.9 1 1.5 54.9 100
Items 11-14 Appetite and weight
Please not that item 11 assesses decreased appetite and item 13 assesses weight loss during the past two weeks. Item 12 assesses increased appetite and item 14 weight gain during the past two weeks.
The interviewer is supposed to rate either items 11 and 13 or items 12 and 14.
Item 11 (ordinal [0,1,2,3], v3_idsc_itm11)
v3_idsc_app_verm<-c(v3_clin$v3_ids_c_s2_ids11_appetit_verm,v3_con$v3_ids_c_s2_ids11_appetit_verm)
v3_idsc_app_gest<-c(v3_clin$v3_ids_c_s2_ids12_appetit_steig,v3_con$v3_ids_c_s2_ids12_appetit_steig)
v3_idsc_itm11<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_idsc_itm11<-ifelse(is.na(v3_idsc_app_verm)==T & is.na(v3_idsc_app_gest)==T, NA,
ifelse(is.na(v3_idsc_app_verm)==T & is.na(v3_idsc_app_gest)==F, -999,
ifelse(is.na(v3_idsc_app_verm)==F & is.na(v3_idsc_app_gest)==T,
v3_idsc_app_verm,
ifelse(is.na(v3_idsc_app_verm)==F & is.na(v3_idsc_app_gest)==F &
(v3_idsc_app_verm>v3_idsc_app_gest), v3_idsc_app_verm, ifelse(is.na(v3_idsc_app_verm)==F & is.na(v3_idsc_app_gest)==F & (v3_idsc_app_gest>=v3_idsc_app_verm),-999,v3_idsc_itm11)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v3_idsc_itm11)
## -999 0 1 2 3 <NA>
## [1,] No. cases 213 401 61 19 5 844 1543
## [2,] Percent 13.8 26 4 1.2 0.3 54.7 100
Item 12 (ordinal [0,1,2,3], v3_idsc_itm12)
v3_idsc_itm12<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_idsc_itm12<-ifelse(is.na(v3_idsc_app_verm)==T & is.na(v3_idsc_app_gest)==T, NA,
ifelse(is.na(v3_idsc_app_verm)==T & is.na(v3_idsc_app_gest)==F,
v3_idsc_app_gest,
ifelse(is.na(v3_idsc_app_verm)==F & is.na(v3_idsc_app_gest)==T,
-999,
ifelse(is.na(v3_idsc_app_verm)==F & is.na(v3_idsc_app_gest)==F &
(v3_idsc_app_verm>v3_idsc_app_gest), -999,
ifelse(is.na(v3_idsc_app_verm)==F & is.na(v3_idsc_app_gest)==F & (v3_idsc_app_gest>=v3_idsc_app_verm),
v3_idsc_app_gest,v3_idsc_itm12)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v3_idsc_itm12)
## -999 0 1 2 3 <NA>
## [1,] No. cases 486 110 67 21 15 844 1543
## [2,] Percent 31.5 7.1 4.3 1.4 1 54.7 100
Item 13 (ordinal [0,1,2,3], v3_idsc_itm13)
v3_idsc_gew_abn<-c(v3_clin$v3_ids_c_s2_ids13_gewichtsabn,v3_con$v3_ids_c_s2_ids13_gewichtsabn)
v3_idsc_gew_zun<-c(v3_clin$v3_ids_c_s2_ids14_gewichtszun,v3_con$v3_ids_c_s2_ids14_gewichtszun)
v3_idsc_itm13<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_idsc_itm13<-ifelse(is.na(v3_idsc_gew_abn)==T & is.na(v3_idsc_gew_zun)==T, NA,
ifelse(is.na(v3_idsc_gew_abn)==T & is.na(v3_idsc_gew_zun)==F, -999,
ifelse(is.na(v3_idsc_gew_abn)==F & is.na(v3_idsc_gew_zun)==T,
v3_idsc_gew_abn,
ifelse(is.na(v3_idsc_gew_abn)==F & is.na(v3_idsc_gew_zun)==F &
(v3_idsc_gew_abn>v3_idsc_gew_zun), v3_idsc_gew_abn, ifelse(is.na(v3_idsc_gew_abn)==F & is.na(v3_idsc_gew_zun)==F & (v3_idsc_gew_zun >= v3_idsc_gew_abn),-999,v3_idsc_itm13)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v3_idsc_itm13)
## -999 0 1 2 3 <NA>
## [1,] No. cases 232 369 41 39 18 844 1543
## [2,] Percent 15 23.9 2.7 2.5 1.2 54.7 100
Item 14 (ordinal [0,1,2,3], v3_idsc_itm14)
v3_idsc_itm14<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_idsc_itm14<-ifelse(is.na(v3_idsc_gew_abn)==T & is.na(v3_idsc_gew_zun)==T, NA,
ifelse(is.na(v3_idsc_gew_abn)==T & is.na(v3_idsc_gew_zun)==F,
v3_idsc_gew_zun,
ifelse(is.na(v3_idsc_gew_abn)==F & is.na(v3_idsc_gew_zun)==T,
-999,
ifelse(is.na(v3_idsc_gew_abn)==F & is.na(v3_idsc_gew_zun)==F &
(v3_idsc_gew_abn>v3_idsc_gew_zun), -999,
ifelse(is.na(v3_idsc_gew_abn)==F & is.na(v3_idsc_gew_zun)==F & (v3_idsc_gew_zun>=v3_idsc_gew_abn),
v3_idsc_gew_zun,v3_idsc_itm14)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v3_idsc_itm14)
## -999 0 1 2 3 <NA>
## [1,] No. cases 467 138 52 23 19 844 1543
## [2,] Percent 30.3 8.9 3.4 1.5 1.2 54.7 100
Item 15 Concentration/decision making (ordinal [0,1,2,3], v3_idsc_itm15)
v3_idsc_itm15<-c(v3_clin$v3_ids_c_s2_ids15_konz_entscheid,v3_con$v3_ids_c_s2_ids15_konz_entscheid)
v3_idsc_itm15<-factor(v3_idsc_itm15, ordered=T)
descT(v3_idsc_itm15)
## 0 1 2 3 <NA>
## [1,] No. cases 410 185 91 13 844 1543
## [2,] Percent 26.6 12 5.9 0.8 54.7 100
Item 16 Outlook (self) (ordinal [0,1,2,3], v3_idsc_itm16)
v3_idsc_itm16<-c(v3_clin$v3_ids_c_s2_ids16_selbstbild,v3_con$v3_ids_c_s2_ids16_selbstbild)
v3_idsc_itm16<-factor(v3_idsc_itm16, ordered=T)
descT(v3_idsc_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 536 109 23 33 842 1543
## [2,] Percent 34.7 7.1 1.5 2.1 54.6 100
Item 17 Outlook (future) (ordinal [0,1,2,3], v3_idsc_itm17)
v3_idsc_itm17<-c(v3_clin$v3_ids_c_s2_ids17_zukunftssicht,v3_con$v3_ids_c_s2_ids17_zukunftssicht)
v3_idsc_itm17<-factor(v3_idsc_itm17, ordered=T)
descT(v3_idsc_itm17)
## 0 1 2 3 <NA>
## [1,] No. cases 477 168 43 10 845 1543
## [2,] Percent 30.9 10.9 2.8 0.6 54.8 100
Item 18 Suicidal ideation (ordinal [0,1,2,3], v3_idsc_itm18)
v3_idsc_itm18<-c(v3_clin$v3_ids_c_s2_ids18_selbstmordged,v3_con$v3_ids_c_s2_ids18_selbstmordged)
v3_idsc_itm18<-factor(v3_idsc_itm18, ordered=T)
descT(v3_idsc_itm18)
## 0 1 2 <NA>
## [1,] No. cases 635 35 29 844 1543
## [2,] Percent 41.2 2.3 1.9 54.7 100
Item 19 Involvement (ordinal [0,1,2,3], v3_idsc_itm19)
v3_idsc_itm19<-c(v3_clin$v3_ids_c_s2_ids19_interess_aktiv,v3_con$v3_ids_c_s2_ids19_interess_aktiv)
v3_idsc_itm19<-factor(v3_idsc_itm19, ordered=T)
descT(v3_idsc_itm19)
## 0 1 2 3 <NA>
## [1,] No. cases 583 89 14 12 845 1543
## [2,] Percent 37.8 5.8 0.9 0.8 54.8 100
Item 20 Energy/fatigability (ordinal [0,1,2,3], v3_idsc_itm20)
v3_idsc_itm20<-c(v3_clin$v3_ids_c_s2_ids20_energ_ermued,v3_con$v3_ids_c_s2_ids20_energ_ermued)
v3_idsc_itm20<-factor(v3_idsc_itm20, ordered=T)
descT(v3_idsc_itm20)
## 0 1 2 3 <NA>
## [1,] No. cases 473 147 73 8 842 1543
## [2,] Percent 30.7 9.5 4.7 0.5 54.6 100
Item 21 Pleasure/enjoyment (exclude sexual activities) (ordinal [0,1,2,3], v3_idsc_itm21)
v3_idsc_itm21<-c(v3_clin$v3_ids_c_s3_ids21_vergn_genuss,v3_con$v3_ids_c_s3_ids21_vergn_genuss)
v3_idsc_itm21<-factor(v3_idsc_itm21, ordered=T)
descT(v3_idsc_itm21)
## 0 1 2 3 <NA>
## [1,] No. cases 599 78 15 8 843 1543
## [2,] Percent 38.8 5.1 1 0.5 54.6 100
Item 22 Sexual interest (ordinal [0,1,2,3], v3_idsc_itm22)
v3_idsc_itm22<-c(v3_clin$v3_ids_c_s3_ids22_sex_interesse,v3_con$v3_ids_c_s3_ids22_sex_interesse)
v3_idsc_itm22<-factor(v3_idsc_itm22, ordered=T)
descT(v3_idsc_itm22)
## 0 1 2 3 <NA>
## [1,] No. cases 521 53 68 53 848 1543
## [2,] Percent 33.8 3.4 4.4 3.4 55 100
Item 23 Psychomotor slowing (ordinal [0,1,2,3], v3_idsc_itm23)
v3_idsc_itm23<-c(v3_clin$v3_ids_c_s3_ids23_psymo_hemm,v3_con$v3_ids_c_s3_ids23_psymo_hemm)
v3_idsc_itm23<-factor(v3_idsc_itm23, ordered=T)
descT(v3_idsc_itm23)
## 0 1 2 3 <NA>
## [1,] No. cases 567 115 17 2 842 1543
## [2,] Percent 36.7 7.5 1.1 0.1 54.6 100
Item 24 Psychomotor agitation (ordinal [0,1,2,3], v3_idsc_itm24)
v3_idsc_itm24<-c(v3_clin$v3_ids_c_s3_ids24_psymo_agitht,v3_con$v3_ids_c_s3_ids24_psymo_agitht)
v3_idsc_itm24<-factor(v3_idsc_itm24, ordered=T)
descT(v3_idsc_itm24)
## 0 1 2 3 <NA>
## [1,] No. cases 562 94 34 4 849 1543
## [2,] Percent 36.4 6.1 2.2 0.3 55 100
Item 25 Somatic complaints (ordinal [0,1,2,3], v3_idsc_itm25)
v3_idsc_itm25<-c(v3_clin$v3_ids_c_s3_ids25_som_beschw,v3_con$v3_ids_c_s3_ids25_som_beschw)
v3_idsc_itm25<-factor(v3_idsc_itm25, ordered=T)
descT(v3_idsc_itm25)
## 0 1 2 3 <NA>
## [1,] No. cases 483 169 35 14 842 1543
## [2,] Percent 31.3 11 2.3 0.9 54.6 100
Item 26 Sympathetic arousal (ordinal [0,1,2,3], v3_idsc_itm26)
v3_idsc_itm26<-c(v3_clin$v3_ids_c_s3_ids26_veg_erreg,v3_con$v3_ids_c_s3_ids26_veg_erreg)
v3_idsc_itm26<-factor(v3_idsc_itm26, ordered=T)
descT(v3_idsc_itm26)
## 0 1 2 3 <NA>
## [1,] No. cases 510 144 34 11 844 1543
## [2,] Percent 33.1 9.3 2.2 0.7 54.7 100
Item 27 Panic/phobic symptoms (ordinal [0,1,2,3], v3_idsc_itm27)
v3_idsc_itm27<-c(v3_clin$v3_ids_c_s3_ids27_panik_phob,v3_con$v3_ids_c_s3_ids27_panik_phob)
v3_idsc_itm27<-factor(v3_idsc_itm27, ordered=T)
descT(v3_idsc_itm27)
## 0 1 2 3 <NA>
## [1,] No. cases 623 42 22 11 845 1543
## [2,] Percent 40.4 2.7 1.4 0.7 54.8 100
Item 28 Gastrointestinal (ordinal [0,1,2,3], v3_idsc_itm28)
v3_idsc_itm28<-c(v3_clin$v3_ids_c_s3_ids28_verdauung,v3_con$v3_ids_c_s3_ids28_verdauung)
v3_idsc_itm28<-factor(v3_idsc_itm28, ordered=T)
descT(v3_idsc_itm28)
## 0 1 2 3 <NA>
## [1,] No. cases 589 71 28 12 843 1543
## [2,] Percent 38.2 4.6 1.8 0.8 54.6 100
Item 29 Interpersonal sensitivity (ordinal [0,1,2,3], v3_idsc_itm29)
v3_idsc_itm29<-c(v3_clin$v3_ids_c_s3_ids29_pers_bezieh,v3_con$v3_ids_c_s3_ids29_pers_bezieh)
v3_idsc_itm29<-factor(v3_idsc_itm29, ordered=T)
descT(v3_idsc_itm29)
## 0 1 2 3 <NA>
## [1,] No. cases 571 87 27 13 845 1543
## [2,] Percent 37 5.6 1.7 0.8 54.8 100
Item 30 Leaden paralysis/physical energy (ordinal [0,1,2,3], v3_idsc_itm30)
v3_idsc_itm30<-c(v3_clin$v3_ids_c_s3_ids30_schwgf_k_energ,v3_con$v3_ids_c_s3_ids30_schwgf_k_energ)
v3_idsc_itm30<-factor(v3_idsc_itm30, ordered=T)
descT(v3_idsc_itm30)
## 0 1 2 3 <NA>
## [1,] No. cases 570 92 28 10 843 1543
## [2,] Percent 36.9 6 1.8 0.6 54.6 100
Create IDS-C30 total score (continuous [0-84], v3_idsc_sum) Please note that calculation of the sum score involves selecting either item 11 or item 12 and selecting either item 13 or item 14. If both items are coded, the higher one is taken, according to the official rating instructions.
v3_idsc_sum<-as.numeric.factor(v3_idsc_itm1)+
as.numeric.factor(v3_idsc_itm2)+
as.numeric.factor(v3_idsc_itm3)+
as.numeric.factor(v3_idsc_itm4)+
as.numeric.factor(v3_idsc_itm5)+
as.numeric.factor(v3_idsc_itm6)+
as.numeric.factor(v3_idsc_itm7)+
as.numeric.factor(v3_idsc_itm8)+
as.numeric.factor(v3_idsc_itm9)+
as.numeric.factor(v3_idsc_itm10)+
ifelse(is.na(v3_idsc_itm11)==T & is.na(v3_idsc_itm12)==T, NA,
ifelse((v3_idsc_itm11==-999 & v3_idsc_itm12!=-999), v3_idsc_itm12,
ifelse((v3_idsc_itm11!=-999 & v3_idsc_itm12==-999),v3_idsc_itm11, NA)))+
ifelse(is.na(v3_idsc_itm13)==T & is.na(v3_idsc_itm14)==T, NA,
ifelse((v3_idsc_itm13==-999 & v3_idsc_itm14!=-999), v3_idsc_itm14,
ifelse((v3_idsc_itm13!=-999 & v3_idsc_itm14==-999),v3_idsc_itm13, NA)))+
as.numeric.factor(v3_idsc_itm15)+
as.numeric.factor(v3_idsc_itm16)+
as.numeric.factor(v3_idsc_itm17)+
as.numeric.factor(v3_idsc_itm18)+
as.numeric.factor(v3_idsc_itm19)+
as.numeric.factor(v3_idsc_itm20)+
as.numeric.factor(v3_idsc_itm21)+
as.numeric.factor(v3_idsc_itm22)+
as.numeric.factor(v3_idsc_itm23)+
as.numeric.factor(v3_idsc_itm24)+
as.numeric.factor(v3_idsc_itm25)+
as.numeric.factor(v3_idsc_itm26)+
as.numeric.factor(v3_idsc_itm27)+
as.numeric.factor(v3_idsc_itm28)+
as.numeric.factor(v3_idsc_itm29)+
as.numeric.factor(v3_idsc_itm30)
summary(v3_idsc_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 3.000 7.000 9.873 14.000 70.000 900
Code itm 11, 12, 13 and 14 as factors (omitted before due to ifelse condition)
v3_idsc_itm11<-factor(v3_idsc_itm11,ordered=T)
v3_idsc_itm12<-factor(v3_idsc_itm12,ordered=T)
v3_idsc_itm13<-factor(v3_idsc_itm13,ordered=T)
v3_idsc_itm14<-factor(v3_idsc_itm14,ordered=T)
Create dataset
v3_symp_ids_c<-data.frame(v3_idsc_itm1,v3_idsc_itm2,v3_idsc_itm3,v3_idsc_itm4,v3_idsc_itm5,v3_idsc_itm6,v3_idsc_itm7,
v3_idsc_itm8,v3_idsc_itm9,v3_idsc_itm9a,v3_idsc_itm9b,v3_idsc_itm10,v3_idsc_itm11,v3_idsc_itm12,
v3_idsc_itm13,v3_idsc_itm14,v3_idsc_itm15,v3_idsc_itm16,v3_idsc_itm17,v3_idsc_itm18,v3_idsc_itm19,
v3_idsc_itm20,v3_idsc_itm21,v3_idsc_itm22,v3_idsc_itm23,v3_idsc_itm24,v3_idsc_itm25,v3_idsc_itm26,
v3_idsc_itm27,v3_idsc_itm28,v3_idsc_itm29,v3_idsc_itm30,v3_idsc_sum)
For more information on the scale, please see Visit 1
Item 1 Elevated mood (ordinal [0,1,2,3,4], v3_ymrs_itm1)
v3_ymrs_itm1<-c(v3_clin$v3_ymrs_ymrs1_gehob_stimm,v3_con$v3_ymrs_ymrs1_gehob_stimm)
v3_ymrs_itm1<-factor(v3_ymrs_itm1, ordered=T)
descT(v3_ymrs_itm1)
## 0 1 2 3 4 <NA>
## [1,] No. cases 583 83 32 1 1 843 1543
## [2,] Percent 37.8 5.4 2.1 0.1 0.1 54.6 100
Item 2 Increased motor activity or energy (ordinal [0,1,2,3,4], v3_ymrs_itm2)
v3_ymrs_itm2<-c(v3_clin$v3_ymrs_ymrs2_gest_aktiv,v3_con$v3_ymrs_ymrs2_gest_aktiv)
v3_ymrs_itm2<-factor(v3_ymrs_itm2, ordered=T)
descT(v3_ymrs_itm2)
## 0 1 2 3 <NA>
## [1,] No. cases 602 66 25 6 844 1543
## [2,] Percent 39 4.3 1.6 0.4 54.7 100
Item 3 Sexual interest (ordinal [0,1,2,3,4], v3_ymrs_itm3)
v3_ymrs_itm3<-c(v3_clin$v3_ymrs_ymrs3_sex_interesse,v3_con$v3_ymrs_ymrs3_sex_interesse)
v3_ymrs_itm3<-factor(v3_ymrs_itm3, ordered=T)
descT(v3_ymrs_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 663 16 18 2 844 1543
## [2,] Percent 43 1 1.2 0.1 54.7 100
Item 4 Sleep (ordinal [0,1,2,3,4], v3_ymrs_itm4)
v3_ymrs_itm4<-c(v3_clin$v3_ymrs_ymrs4_schlaf,v3_con$v3_ymrs_ymrs4_schlaf)
v3_ymrs_itm4<-factor(v3_ymrs_itm4, ordered=T)
descT(v3_ymrs_itm4)
## 0 1 2 3 <NA>
## [1,] No. cases 642 31 18 9 843 1543
## [2,] Percent 41.6 2 1.2 0.6 54.6 100
Item 5 Irritability (ordinal [0,2,4,6,8], v3_ymrs_itm5)
v3_ymrs_itm5<-c(v3_clin$v3_ymrs_ymrs5_reizbarkeit,v3_con$v3_ymrs_ymrs5_reizbarkeit)
v3_ymrs_itm5<-factor(v3_ymrs_itm5, ordered=T)
descT(v3_ymrs_itm5)
## 0 2 4 6 <NA>
## [1,] No. cases 581 106 13 1 842 1543
## [2,] Percent 37.7 6.9 0.8 0.1 54.6 100
Item 6 Speech: rate & amount (ordinal [0,2,4,6,8], v3_ymrs_itm6)
v3_ymrs_itm6<-c(v3_clin$v3_ymrs_ymrs6_sprechweise,v3_con$v3_ymrs_ymrs6_sprechweise)
v3_ymrs_itm6<-factor(v3_ymrs_itm6, ordered=T)
descT(v3_ymrs_itm6)
## 0 2 4 6 <NA>
## [1,] No. cases 594 49 48 8 844 1543
## [2,] Percent 38.5 3.2 3.1 0.5 54.7 100
Item 7 Language: thought disorder (ordinal [0,1,2,3,4], v3_ymrs_itm7)
v3_ymrs_itm7<-c(v3_clin$v3_ymrs_ymrs7_sprachstoer,v3_con$v3_ymrs_ymrs7_sprachstoer)
v3_ymrs_itm7<-factor(v3_ymrs_itm7, ordered=T)
descT(v3_ymrs_itm7)
## 0 1 2 3 <NA>
## [1,] No. cases 615 63 17 4 844 1543
## [2,] Percent 39.9 4.1 1.1 0.3 54.7 100
Item 8 Content (ordinal [0,2,4,6,8], v3_ymrs_itm8)
v3_ymrs_itm8<-c(v3_clin$v3_ymrs_ymrs8_inhalte,v3_con$v3_ymrs_ymrs8_inhalte)
v3_ymrs_itm8<-factor(v3_ymrs_itm8, ordered=T)
descT(v3_ymrs_itm8)
## 0 2 4 6 8 <NA>
## [1,] No. cases 658 16 3 9 12 845 1543
## [2,] Percent 42.6 1 0.2 0.6 0.8 54.8 100
Item 9 Disruptive or aggressive behavior (ordinal [0,2,4,6,8], v3_ymrs_itm9)
v3_ymrs_itm9<-c(v3_clin$v3_ymrs_ymrs9_exp_aggr_verh,v3_con$v3_ymrs_ymrs9_exp_aggr_verh)
v3_ymrs_itm9<-factor(v3_ymrs_itm9, ordered=T)
descT(v3_ymrs_itm9)
## 0 2 4 <NA>
## [1,] No. cases 676 22 2 843 1543
## [2,] Percent 43.8 1.4 0.1 54.6 100
Item 10 Appearance (ordinal [0,1,2,3,4], v3_ymrs_itm10)
v3_ymrs_itm10<-c(v3_clin$v3_ymrs_ymrs10_erscheinung,v3_con$v3_ymrs_ymrs10_erscheinung)
v3_ymrs_itm10<-factor(v3_ymrs_itm10, ordered=T)
descT(v3_ymrs_itm10)
## 0 1 2 3 4 <NA>
## [1,] No. cases 634 54 9 1 1 844 1543
## [2,] Percent 41.1 3.5 0.6 0.1 0.1 54.7 100
Item 11 Insight (ordinal [0,1,2,3,4], v3_ymrs_itm11)
v3_ymrs_itm11<-c(v3_clin$v3_ymrs_ymrs11_krkh_einsicht,v3_con$v3_ymrs_ymrs11_krkh_einsicht)
v3_ymrs_itm11<-factor(v3_ymrs_itm11, ordered=T)
descT(v3_ymrs_itm11)
## 0 1 2 3 <NA>
## [1,] No. cases 672 8 15 4 844 1543
## [2,] Percent 43.6 0.5 1 0.3 54.7 100
Create YMRS total score (continuous [0-60], v3_ymrs_sum)
v3_ymrs_sum<-(as.numeric.factor(v3_ymrs_itm1)+
as.numeric.factor(v3_ymrs_itm2)+
as.numeric.factor(v3_ymrs_itm3)+
as.numeric.factor(v3_ymrs_itm4)+
as.numeric.factor(v3_ymrs_itm5)+
as.numeric.factor(v3_ymrs_itm6)+
as.numeric.factor(v3_ymrs_itm7)+
as.numeric.factor(v3_ymrs_itm8)+
as.numeric.factor(v3_ymrs_itm9)+
as.numeric.factor(v3_ymrs_itm10)+
as.numeric.factor(v3_ymrs_itm11))
summary(v3_ymrs_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 2.174 2.000 30.000 858
Create dataset
v3_symp_ymrs<-data.frame(v3_ymrs_itm1,
v3_ymrs_itm2,
v3_ymrs_itm3,
v3_ymrs_itm4,
v3_ymrs_itm5,
v3_ymrs_itm6,
v3_ymrs_itm7,
v3_ymrs_itm8,
v3_ymrs_itm9,
v3_ymrs_itm10,
v3_ymrs_itm11,
v3_ymrs_sum)
Please see Visit 1 for more details and explicit rating instructions.
v3_cgi_s<-c(v3_clin$v3_cgi1_cgi1_schweregrad,rep(-999,dim(v3_con)[1]))
v3_cgi_s[v3_cgi_s==0]<- -999
v3_cgi_s<-factor(v3_cgi_s, ordered=T)
descT(v3_cgi_s)
## -999 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 320 15 44 186 176 103 26 1 672 1543
## [2,] Percent 20.7 1 2.9 12.1 11.4 6.7 1.7 0.1 43.6 100
Here, the interviewer is supposed to comprehensively assess change in illness state since the last study visit. A patient should be rated 0 if not conclusively assessable, so here zero is repaced with “-999” and the remaining seven gradations are on an ordinal scale. These range from “very much improved”-1 to “very much worse”-7.
v3_cgi_c<-c(v3_clin$v3_cgi1_cgi2_gesamt_urteil,rep(-999,dim(v3_con)[1]))
v3_cgi_c[v3_cgi_c==0]<- -999
v3_cgi_c<-factor(v3_cgi_c, ordered=T)
descT(v3_cgi_c)
## -999 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 333 8 74 108 216 93 14 1 696 1543
## [2,] Percent 21.6 0.5 4.8 7 14 6 0.9 0.1 45.1 100
Please see Visit 1 for more details and explicit rating instructions.
v3_gaf<-c(v3_clin$v3_gaf_gaf_code,v3_con$v3_gaf_gaf_code)
v3_gaf[v3_gaf==0]<- -999
summary(v3_gaf[v3_gaf>0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 25.00 55.00 68.00 67.31 80.00 99.00 832
boxplot(v3_gaf[v3_gaf>0 & v1_stat=="CLINICAL"], v3_gaf[v3_gaf>0 & v1_stat=="CONTROL"],ylab="GAF score",ylim=c(0,100),names=c("Clinical","Control"))
Create dataset
v3_ill_sev<-data.frame(v3_cgi_s,v3_cgi_c,v3_gaf)
There are no differences compared to the test battery assessed in Visit 2.
General comments on the testing (character, v3_nrpsy_com) If there were no comments, this item was coded -999.
Language proficiency of the participant (ordinal [“mother tongue”,“good”,“sufficient”,“not sufficient”], v3_nrpsy_lng)
v3_nrpsy_lng<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_nrpsy_lng<-ifelse(c(v3_clin$v3_npu1_np_sprach,v3_con$v3_npu_folge_np_sprach)==0, "mother tongue",
ifelse(c(v3_clin$v3_npu1_np_sprach,v3_con$v3_npu_folge_np_sprach)==1, "good",
ifelse(c(v3_clin$v3_npu1_np_sprach,v3_con$v3_npu_folge_np_sprach)==2, "sufficient",
ifelse(c(v3_clin$v3_npu1_np_sprach,v3_con$v3_npu_folge_np_sprach)==3, "not sufficient",v3_nrpsy_lng))))
v3_nrpsy_lng<-factor(v3_nrpsy_lng, ordered=T, levels=c("mother tongue","good",
"sufficient","not sufficient"))
descT(v3_nrpsy_lng)
## mother tongue good sufficient not sufficient <NA>
## [1,] No. cases 703 35 4 0 801 1543
## [2,] Percent 45.6 2.3 0.3 0 51.9 100
Motivation of the participant (ordinal [“poor”,“average”,“good”], v3_nrpsy_mtv)
v3_nrpsy_mtv_pre<-c(v3_clin$v3_npu1_np_mot,v3_con$v3_npu_folge_np_mot)
v3_nrpsy_mtv<-ifelse(v3_nrpsy_mtv_pre==0, "poor",
ifelse(v3_nrpsy_mtv_pre==1, "average",
ifelse(v3_nrpsy_mtv_pre==2, "good", NA)))
v3_nrpsy_mtv<-factor(v3_nrpsy_mtv, ordered=T, levels=c("poor","average","good"))
descT(v3_nrpsy_mtv)
## poor average good <NA>
## [1,] No. cases 12 59 656 816 1543
## [2,] Percent 0.8 3.8 42.5 52.9 100
For a description of the test and the variables, see Visit 2.
Re-coding of incomplete VLMT Tests To be able to use the maximum number of tests available, we have now also included the data of incomplete tests (see variable “VLMT_introcheck”). Our expert team has checked every incompletete test and assessed the scores that are usable. Here, we set certain subscores of the VLMT to the appropriate scores.
VLMT_introcheck (categorical [0, 1, 9], v3_nrpsy_vlmt_check)
v3_nrpsy_vlmt_check<-c(v3_clin$v3_vlmt_vlmt_introcheck1,v3_con$v3_npu_folge_np_vlmt)
descT(v3_nrpsy_vlmt_check)
## 0 1 9 <NA>
## [1,] No. cases 64 671 26 782 1543
## [2,] Percent 4.1 43.5 1.7 50.7 100
Sum of correctly recalled words across all five presentations of list 1 (continuous [number of words], v3_nrpsy_vlmt_corr)
v3_nrpsy_vlmt_corr<-c(v3_clin$v3_vlmt_vlmt3_sw_a5d,v3_con$v3_npu_folge_np_vlmt_gl)
summary(v3_nrpsy_vlmt_corr)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 10.00 41.00 51.00 50.32 60.00 75.00 838
Loss of recalled words (compared to recall after last presentation of list 1) from list 1 after distraction (presentation and recall of list 2) (continuous [number of words], v3_nrpsy_vlmt_lss_d)
v3_nrpsy_vlmt_lss_d<-c(v3_clin$v3_vlmt_vlmt5_aw_ilsd6,v3_con$v3_npu_folge_np_vlmt_vni)
summary(v3_nrpsy_vlmt_lss_d)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -5.000 0.000 2.000 1.819 3.000 14.000 848
Loss of recalled words (compared to recall after last presentation of list 1) after time interval (25-30 min.) (continuous [number of words], v3_nrpsy_vlmt_lss_t)
v3_nrpsy_vlmt_lss_t<-c(v3_clin$v3_vlmt_vlmt6_aw_vwd7,v3_con$v3_npu_folge_np_vlmt_vnzv)
summary(v3_nrpsy_vlmt_lss_t)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -5.00 0.00 2.00 2.13 4.00 15.00 857
Recognition performance (corrected for falsely recognized words) (continuous [number of words], v3_nrpsy_vlmt_rec)
v3_nrpsy_vlmt_rec<-c(v3_clin$v3_vlmt_vlmt8_kwl,v3_con$v3_npu_folge_np_vlmt_kw)
summary(v3_nrpsy_vlmt_rec)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -19.0 10.0 13.0 11.5 15.0 15.0 863
For a description of the test, see Visit 1.
TMT Part A, time (continuous [seconds], v3_nrpsy_tmt_A_rt)
v3_nrpsy_tmt_A_rt<-c(v3_clin$v3_npu1_tmt_001,v3_con$v3_npu_folge_np_tmt_001)
summary(v3_nrpsy_tmt_A_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 9.00 21.00 28.00 31.55 38.00 179.00 800
TMT Part A, errors (continuous [number of errors], v3_nrpsy_tmt_A_err) We did not impose any cut-off value to errors (see Visit 1).
v3_nrpsy_tmt_A_err<-c(v3_clin$v3_npu1_tmt_af_001,v3_con$v3_npu_folge_np_tmtfehler_001)
summary(v3_nrpsy_tmt_A_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.0839 0.0000 6.0000 804
TMT Part B, time (continuous [seconds], v3_nrpsy_tmt_B_rt) As recommended by Strauss (2006), paricipants with a time >300s were set to 300s. We checked for values <10s, but there were none present.
v3_nrpsy_tmt_B_rt<-c(v3_clin$v3_npu1_tmt_002,v3_con$v3_npu_folge_tmt_002)
v3_nrpsy_tmt_B_rt[v3_nrpsy_tmt_B_rt>300]<-300
summary(v3_nrpsy_tmt_B_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 23.00 47.00 65.00 74.67 88.00 300.00 818
TMT Part B, errors (continuous [number of errors], v3_nrpsy_tmt_B_err)
## [1] 70
## [1] 903
v3_nrpsy_tmt_B_err<-c(v3_clin$v3_npu1_tmt_af_002,v3_con$v3_npu_folge_tmt_af_002)
summary(v3_nrpsy_tmt_B_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.5201 1.0000 18.0000 822
For a description of the test, see Visit 1.
Forward (continuous [number of items], v3_nrpsy_dgt_sp_frw)
v3_nrpsy_dgt_sp_frw<-c(v3_clin$v3_npu1_zns_001,v3_con$v3_npu_folge_np_wie_001)
summary(v3_nrpsy_dgt_sp_frw)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 3.000 8.000 10.000 9.713 11.000 16.000 812
Backward (continuous [number of items], v3_nrpsy_dgt_sp_bck)
v3_nrpsy_dgt_sp_bck<-c(v3_clin$v3_npu1_zns_002,v3_con$v3_npu_folge_np_wie_002)
summary(v3_nrpsy_dgt_sp_bck)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.00 5.00 6.00 6.58 8.00 14.00 813
For a description of the test, see Visit 1.
v3_introcheck3<-c(v3_clin$v3_npu1_np_introcheck3,v3_con$v3_npu_folge_np_hawier)
v3_nrpsy_dg_sym_pre<-c(v3_clin$v3_npu1_zst_001,v3_con$v3_npu_folge_np_hawier_001)
v3_nrpsy_dg_sym<-ifelse(v3_introcheck3==1, v3_nrpsy_dg_sym_pre,
ifelse(v3_introcheck3==9,-999,
ifelse(v3_introcheck3==0,NA,NA)))
summary(subset(v3_nrpsy_dg_sym,v3_nrpsy_dg_sym>=0))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 15.00 52.00 68.00 67.93 83.75 133.00
Create dataset
v3_nrpsy<-data.frame(v3_nrpsy_com,
v3_nrpsy_lng,
v3_nrpsy_mtv,
v3_nrpsy_vlmt_check,
v3_nrpsy_vlmt_corr,
v3_nrpsy_vlmt_lss_d,
v3_nrpsy_vlmt_lss_t,
v3_nrpsy_vlmt_rec,
v3_nrpsy_tmt_A_rt,
v3_nrpsy_tmt_A_err,
v3_nrpsy_tmt_B_rt,
v3_nrpsy_tmt_B_err,
v3_nrpsy_dgt_sp_frw,
v3_nrpsy_dgt_sp_bck,
v3_nrpsy_dg_sym)
Participants were asked to fill out questionnaires on the following topics: childhood trauma/early life stress (CTS), current medication adherence (compliance), current depressive symptoms (BDI-II), current manic symptoms (ASRM and MSS), life events in the past six months, and current quality of life (WHOQOL-BREF). Additionally, interviews of clinical participants included questions on whether experienced life events during the past six months are attributed to the development of an illness episode (if any occured in between Visit 2 and 3) and medication adherence (compliance). Control participants additionally completed the Short Form Health Survey (SF-12). As in Visit 1 and 2, questionnaires that were not filled out correctly were excluded from the dataset.
For explanation, please refer to the section in Visit 1
“How satisfied are you currently with your overall life” (ordinal [1,2,3,4,5,6,7,8,9,10], v3_sf12_itm0) Answering alternatives are the following: “Very dissatisfied”-1 to “Completely satisfied”-10.
v3_sf12_recode(v3_con$v3_sf12_sf_allgemein,"v3_sf12_itm0")
## -999 2 3 4 5 6 7 8 9 10 <NA>
## [1,] No. cases 1223 1 4 4 6 8 27 61 59 26 124 1543
## [2,] Percent 79.3 0.1 0.3 0.3 0.4 0.5 1.7 4 3.8 1.7 8 100
“In general, would you say your health is…” (ordinal [1,2,3,4,5], v3_sf12_itm1) Answering alternatives are the following: “Excellent”-1, “Very Good”-2, “Good”-3, “Fair”-4, “Poor”-5.
v3_sf12_recode(v3_con$v3_sf12_sf1,"v3_sf12_itm1")
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 1223 38 98 62 8 2 112 1543
## [2,] Percent 79.3 2.5 6.4 4 0.5 0.1 7.3 100
“The following questions are about activities you might do during a typical day. Does YOUR HEALTH NOW LIMIT YOU in these activities? If so, how much?”
“MODERATE ACTIVITIES, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf” (ordinal [1,2,3], v3_sf12_itm2) Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v3_sf12_recode(v3_con$v3_sf12_sf2,"v3_sf12_itm2")
## -999 1 2 3 <NA>
## [1,] No. cases 1223 1 16 191 112 1543
## [2,] Percent 79.3 0.1 1 12.4 7.3 100
“Climbing SEVERAL flights of stairs” (ordinal [1,2,3], v3_sf12_itm3) Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v3_sf12_recode(v3_con$v3_sf12_sf3,"v3_sf12_itm3")
## -999 1 2 3 <NA>
## [1,] No. cases 1223 1 24 183 112 1543
## [2,] Percent 79.3 0.1 1.6 11.9 7.3 100
During the PAST 4 WEEKS have you had any of the following problems with your work or other regular activities AS A RESULT OF YOUR PHYSICAL HEALTH?
“ACCOMPLISHED LESS than you would like” (dichotomous [1,2], v3_sf12_itm4) Answering alternatives are the following: “Yes”-1, “No”-2.
v3_sf12_recode(v3_con$v3_sf12_sf4,"v3_sf12_itm4")
## -999 1 2 <NA>
## [1,] No. cases 1223 26 182 112 1543
## [2,] Percent 79.3 1.7 11.8 7.3 100
“Didn’t do work or other activities as carefully as usual” (dichotomous [1,2], v3_sf12_itm5) Answering alternatives are the following: “Yes”-1, “No”-2.
v3_sf12_recode(v3_con$v3_sf12_sf5,"v3_sf12_itm5")
## -999 1 2 <NA>
## [1,] No. cases 1223 16 190 114 1543
## [2,] Percent 79.3 1 12.3 7.4 100
During the PAST 4 WEEKS, were you limited in the kind of work you do or other regular activities AS A RESULT OF ANY EMOTIONAL PROBLEMS (such as feeling depressed or anxious)?
“ACCOMPLISHED LESS than you would like:” (dichotomous [1,2], v3_sf12_itm6) Answering alternatives are the following: “Yes”-1, “No”-2.
v3_sf12_recode(v3_con$v3_sf12_sf6,"v3_sf12_itm6")
## -999 1 2 <NA>
## [1,] No. cases 1223 14 194 112 1543
## [2,] Percent 79.3 0.9 12.6 7.3 100
“Didn’t do work or other activities as CAREFULLY as usual” (dichotomous [1,2], v3_sf12_itm7) Answering alternatives are the following: “Yes”-1, “No”-2.
v3_sf12_recode(v3_con$v3_sf12_sf7,"v3_sf12_itm7")
## -999 1 2 <NA>
## [1,] No. cases 1223 12 195 113 1543
## [2,] Percent 79.3 0.8 12.6 7.3 100
“During the PAST 4 WEEKS, how much did PAIN interfere with your normal work (including both work outside the home and housework)?” (ordinal [1,2,3], v3_sf12_itm8) Answering alternatives are the following: “Not At All”-1, “A Little Bit”-2, “Moderately”-3, “Quite A Bit”-4, “Extremely”-5.
v3_sf12_recode(v3_con$v3_sf12_st8,"v3_sf12_itm8")
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 1223 115 47 24 18 4 112 1543
## [2,] Percent 79.3 7.5 3 1.6 1.2 0.3 7.3 100
The next three questions are about how you feel and how things have been DURING THE PAST 4 WEEKS. For each question, please give the one answer that comes closest to the way you have been feeling. How much of the time during the PAST 4 WEEKS
Answering alternatives are the following: “All of the Time”-1, “Most of the Time”-2, “A Good Bit of the Time”-3, “Some of the Time”-4, “A Little of the Time”-5, “None of the Time”-6.
“Have you felt calm and peaceful?” (ordinal [1,2,3,4,5,6], v3_sf12_itm9)
v3_sf12_recode(v3_con$v3_sf12_st9,"v3_sf12_itm9")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 20 124 42 19 2 1 112 1543
## [2,] Percent 79.3 1.3 8 2.7 1.2 0.1 0.1 7.3 100
“Did you have a lot of energy?” (ordinal [1,2,3,4,5,6], v3_sf12_itm10)
v3_sf12_recode(v3_con$v3_sf12_st10,"v3_sf12_itm10")
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 1223 13 80 56 49 10 112 1543
## [2,] Percent 79.3 0.8 5.2 3.6 3.2 0.6 7.3 100
“Have you felt downhearted and blue?” (ordinal [1,2,3,4,5,6], v3_sf12_itm11)
v3_sf12_recode(v3_con$v3_sf12_st11,"v3_sf12_itm11")
## -999 2 3 4 5 6 <NA>
## [1,] No. cases 1223 3 7 24 92 82 112 1543
## [2,] Percent 79.3 0.2 0.5 1.6 6 5.3 7.3 100
“During the PAST 4 WEEKS, how much of the time has your PHYSICAL HEALTH OR EMOTIONAL PROBLEMS interfered with your social activities (like visiting with friends, relatives, etc.)?” (ordinal [0,1,2,3], v3_sf12_itm12) Answering alternatives are the following: “All of the Time”-1 to “None of the Time”-5.
ATTENTION: there appears to be something wrong with the coding of this item, i.e. the export of the item and the display in the GUI of the database are inconsistent. NOT CONTAINED IN DATASET FOR NOW
v3_sf12_recode(v3_con$v3_sf12_st12,"v3_sf12_itm12")
Create dataset
v3_sf12<-data.frame(v3_sf12_itm0,
v3_sf12_itm1,
v3_sf12_itm2,
v3_sf12_itm3,
v3_sf12_itm4,
v3_sf12_itm5,
v3_sf12_itm6,
v3_sf12_itm7,
v3_sf12_itm8,
v3_sf12_itm9,
v3_sf12_itm10,
v3_sf12_itm11)
#INCLUDE v3_sf12_itm12 when issues are settled
The CTS (David P. Bernstein et al., 2003) used here is a German short version (H. J. Grabe et al., 2012) of the CTQ (D. P. Bernstein et al., 1994). It is used as a screening instrument to assess childhood trauma/early life stress. Validated threshold values are available (Glaesmer et al., 2013) to transform these values into a dichotomous scale (childhood trauma/early life stress: yes/no; see below). Each of the five questions is on a five-point scale.
Important: analogous to other questionnaires, we have, as specified in the test manual, reversed the encoding so that, in the present dataset, higher scores on every item indicate a higher level of childhood trauma/early life stress. Do not reverse encoding. Each questions starts with “When I grew up”
1. “…I had the feeling to be loved” (ordinal [1,2,3,4,5], v3_cts_1)
Encoding reversed so that higher scores on each item indicate a higher level of childhood trauma/early life stress. This item measures emotional neglect.
cts_recode(v3_clin$v3_chidlhood_childhood_1,v3_con$v3_chidlhood_childhood_1,"v3_cts_1",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 215 290 106 92 25 815 1543
## [2,] Percent 13.9 18.8 6.9 6 1.6 52.8 100
descT(v3_cts_1)
## 1 2 3 4 5 <NA>
## [1,] No. cases 215 290 106 92 25 815 1543
## [2,] Percent 13.9 18.8 6.9 6 1.6 52.8 100
2. “…persons in my family hit me so hard that I bruised” (ordinal [1,2,3,4,5], v3_cts_2)
This item measures physical abuse.
cts_recode(v3_clin$v3_chidlhood_childhood_2,v3_con$v3_chidlhood_childhood_2,"v3_cts_2",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 513 93 64 35 11 827 1543
## [2,] Percent 33.2 6 4.1 2.3 0.7 53.6 100
3. “…I had the feeling someone in my family hated me” (ordinal [1,2,3,4,5], v3_cts_3)
This item measures emotional abuse.
cts_recode(v3_clin$v3_chidlhood_childhood_3,v3_con$v3_chidlhood_childhood_3,"v3_cts_3",0)
## 0 1 2 3 4 5 NA's
## [1,] No. cases 1 461 107 72 48 31 823 1543
## [2,] Percent 0.1 29.9 6.9 4.7 3.1 2 53.3 100
4. “…someone harassed me sexually” (ordinal [1,2,3,4,5], v3_cts_4)
This items measures sexual abuse.
cts_recode(v3_clin$v3_chidlhood_childhood_4,v3_con$v3_chidlhood_childhood_4,"v3_cts_4",0)
## 0 1 2 3 4 5 NA's
## [1,] No. cases 1 605 47 37 15 5 833 1543
## [2,] Percent 0.1 39.2 3 2.4 1 0.3 54 100
5. “…there was someone who took me to the doctor when I needed it” (ordinal [1,2,3,4,5], v3_cts_5) Encoding reversed so that higher scores on each item indicate a higher level of childhood trauma/early life stress. This item measures physical neglect.
cts_recode(v3_clin$v3_chidlhood_childhood_5,v3_con$v3_chidlhood_childhood_5,"v3_cts_5",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 369 181 101 45 31 816 1543
## [2,] Percent 23.9 11.7 6.5 2.9 2 52.9 100
This assessment indicates whether a participant suffered from childhood trauma/early life stress or not (see description above). More specifically, if any of the five items exceeded the threshold given by (Glaesmer et al., 2013), an individual was determined to have experienced childhood trauma/early life stress. If individuals filled out the questionnaire incompletely but one item nevertheless passed the threshold, these individuals are included in the present dataset. Only those individuals in which all items are completet and below the threshold are set to “N”.
v3_cts_els_dic<-c(rep(NA,dim(v3_clin)[1]),rep(NA,dim(v3_clin)[1]))
v3_cts_els_dic<-ifelse(v3_cts_1>3 | v3_cts_2>2 | v3_cts_3>2 | v3_cts_4>1 | v3_cts_5>3, "Y",
ifelse((is.na(v3_cts_1)==F & is.na(v3_cts_2)==F & is.na(v3_cts_3)==F &
is.na(v3_cts_4)==F & is.na(v3_cts_5)==F),"N", v3_cts_els_dic))
descT(v3_cts_els_dic)
## N Y <NA>
## [1,] No. cases 413 300 830 1543
## [2,] Percent 26.8 19.4 53.8 100
1. “…I had the feeling to be loved” (dichotomous, v3_cts_1_dic)
v3_cts_1_dic<-ifelse(v3_cts_1>3, "Y","N")
descT(v3_cts_1_dic)
## N Y <NA>
## [1,] No. cases 611 117 815 1543
## [2,] Percent 39.6 7.6 52.8 100
2. “…persons in my family hit me so hard that I bruised” (dichotomous, v3_cts_2_dic)
v3_cts_2_dic<-ifelse(v3_cts_2>2, "Y","N")
descT(v3_cts_2_dic)
## N Y <NA>
## [1,] No. cases 606 110 827 1543
## [2,] Percent 39.3 7.1 53.6 100
3. “…I had the feeling someone in my family hated me” (dichotomous, v3_cts_3_dic)
v3_cts_3_dic<-ifelse(v3_cts_3>2, "Y","N")
descT(v3_cts_3_dic)
## N Y <NA>
## [1,] No. cases 569 151 823 1543
## [2,] Percent 36.9 9.8 53.3 100
4. “…someone harassed me sexually” (dichotomous, v3_cts_4_dic)
v3_cts_4_dic<-ifelse(v3_cts_4>1, "Y","N")
descT(v3_cts_4_dic)
## N Y <NA>
## [1,] No. cases 606 104 833 1543
## [2,] Percent 39.3 6.7 54 100
5. “…there was someone who took me to the doctor when I needed it” (dichotomous, v3_cts_5_dic)
v3_cts_5_dic<-ifelse(v3_cts_5>3, "Y","N")
descT(v3_cts_5_dic)
## N Y <NA>
## [1,] No. cases 651 76 816 1543
## [2,] Percent 42.2 4.9 52.9 100
Create dataset
v3_cts<-data.frame(v3_cts_1,v3_cts_2,v3_cts_3,v3_cts_4,v3_cts_5,v3_cts_els_dic,
v3_cts_1_dic,v3_cts_2_dic,v3_cts_3_dic,v3_cts_4_dic,v3_cts_5_dic)
For a description of the questionnaire, see Visit 1.
Past seven days (ordinal [1,2,3,4,5,6], v3_med_pst_wk)
v3_med_chk<-c(v3_clin$v3_compl_verwer_fragebogen,rep(1,dim(v3_con)[1]))
v3_med_pst_wk_pre<-c(v3_clin$v3_compl_psychopharm_7_tag,rep(-999,dim(v3_con)[1]))
v3_med_pst_wk<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_med_pst_wk<-ifelse((is.na(v3_med_chk) | v3_med_chk!=2),
v3_med_pst_wk_pre, v3_med_pst_wk)
descT(v3_med_pst_wk)
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 320 433 50 16 3 3 8 710 1543
## [2,] Percent 20.7 28.1 3.2 1 0.2 0.2 0.5 46 100
Past six months (ordinal [1,2,3,4,5,6], v3_med_pst_sx_mths)
v3_med_pre<-c(v3_clin$v3_compl_psychopharm_6_mon,rep(-999,dim(v3_con)[1]))
v3_med_pst_sx_mths<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_med_pst_sx_mths<-ifelse((is.na(v3_med_chk) | v3_med_chk!=2),
v3_med_pre, v3_med_pst_sx_mths)
descT(v3_med_pst_sx_mths)
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 320 393 71 33 10 4 6 706 1543
## [2,] Percent 20.7 25.5 4.6 2.1 0.6 0.3 0.4 45.8 100
Create dataset
v3_med_adh<-data.frame(v3_med_pst_wk,v3_med_pst_sx_mths)
For explanation, please refer to the section in Visit 1
1. Sadness (ordinal [0,1,2,3], v3_bdi2_itm1)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi1_traurigkeit,v3_con$v3_bdi2_s1_bdi1,"v3_bdi2_itm1")
## 0 1 2 3 <NA>
## [1,] No. cases 552 171 16 2 802 1543
## [2,] Percent 35.8 11.1 1 0.1 52 100
2. Pessimism (ordinal [0,1,2,3], v3_bdi2_itm2)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi2_pessimismus,v3_con$v3_bdi2_s1_bdi2,"v3_bdi2_itm2")
## 0 1 2 3 <NA>
## [1,] No. cases 575 119 38 7 804 1543
## [2,] Percent 37.3 7.7 2.5 0.5 52.1 100
3. Past failure (ordinal [0,1,2,3], v3_bdi2_itm3)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi3_versagensgef,v3_con$v3_bdi2_s1_bdi3,"v3_bdi2_itm3")
## 0 1 2 3 <NA>
## [1,] No. cases 522 123 84 12 802 1543
## [2,] Percent 33.8 8 5.4 0.8 52 100
4. Loss of pleasure (ordinal [0,1,2,3], v3_bdi2_itm4)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi4_verlust_freude,v3_con$v3_bdi2_s1_bdi4,"v3_bdi2_itm4")
## 0 1 2 3 <NA>
## [1,] No. cases 484 210 31 14 804 1543
## [2,] Percent 31.4 13.6 2 0.9 52.1 100
5. Guilty feelings (ordinal [0,1,2,3], v3_bdi2_itm5)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi5_schuldgef,v3_con$v3_bdi2_s1_bdi5,"v3_bdi2_itm5")
## 0 1 2 3 <NA>
## [1,] No. cases 563 153 15 8 804 1543
## [2,] Percent 36.5 9.9 1 0.5 52.1 100
6. Punishment feelings (ordinal [0,1,2,3], v3_bdi2_itm6)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi6_bestrafungsgef,v3_con$v3_bdi2_s1_bdi6,"v3_bdi2_itm6")
## 0 1 2 3 <NA>
## [1,] No. cases 601 100 7 29 806 1543
## [2,] Percent 39 6.5 0.5 1.9 52.2 100
7. Self-dislike (ordinal [0,1,2,3], v3_bdi2_itm7)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi7_selbstablehnung,v3_con$v3_bdi2_s1_bdi7,"v3_bdi2_itm7")
## 0 1 2 3 <NA>
## [1,] No. cases 591 92 45 10 805 1543
## [2,] Percent 38.3 6 2.9 0.6 52.2 100
8. Self-criticalness (ordinal [0,1,2,3], v3_bdi2_itm8)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi8_selbstvorwuerfe,v3_con$v3_bdi2_s1_bdi8,"v3_bdi2_itm8")
## 0 1 2 3 <NA>
## [1,] No. cases 507 175 44 14 803 1543
## [2,] Percent 32.9 11.3 2.9 0.9 52 100
9. Suicidal thoughts or wishes (ordinal [0,1,2,3], v3_bdi2_itm9)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi9_selbstmordged,v3_con$v3_bdi2_s1_bdi9,"v3_bdi2_itm9")
## 0 1 2 3 <NA>
## [1,] No. cases 638 96 3 5 801 1543
## [2,] Percent 41.3 6.2 0.2 0.3 51.9 100
10. Crying (ordinal [0,1,2,3], v3_bdi2_itm10)
v3_bdi2_recode(v3_clin$v3_bdi2_s1_bdi10_weinen,v3_con$v3_bdi2_s1_bdi10,"v3_bdi2_itm10")
## 0 1 2 3 <NA>
## [1,] No. cases 619 56 11 53 804 1543
## [2,] Percent 40.1 3.6 0.7 3.4 52.1 100
11. Agitation (ordinal [0,1,2,3], v3_bdi2_itm11)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi11_unruhe,v3_con$v3_bdi2_s2_bdi11,"v3_bdi2_itm11")
## 0 1 2 3 <NA>
## [1,] No. cases 553 150 20 9 811 1543
## [2,] Percent 35.8 9.7 1.3 0.6 52.6 100
12. Loss of interest (ordinal [0,1,2,3], v3_bdi2_itm12)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi12_interessverl,v3_con$v3_bdi2_s2_bdi12,"v3_bdi2_itm12")
## 0 1 2 3 <NA>
## [1,] No. cases 568 123 24 15 813 1543
## [2,] Percent 36.8 8 1.6 1 52.7 100
13. Indecisiveness (ordinal [0,1,2,3], v3_bdi2_itm13)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi13_entschlussunf,v3_con$v3_bdi2_s2_bdi13,"v3_bdi2_itm13")
## 0 1 2 3 <NA>
## [1,] No. cases 503 167 28 32 813 1543
## [2,] Percent 32.6 10.8 1.8 2.1 52.7 100
14. Worthlessness (ordinal [0,1,2,3], v3_bdi2_itm14)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi14_wertlosigkeit,v3_con$v3_bdi2_s2_bdi14,"v3_bdi2_itm14")
## 0 1 2 3 <NA>
## [1,] No. cases 563 100 54 12 814 1543
## [2,] Percent 36.5 6.5 3.5 0.8 52.8 100
15. Loss of energy (ordinal [0,1,2,3], v3_bdi2_itm15)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi15_energieverlust,v3_con$v3_bdi2_s2_bdi15,"v3_bdi2_itm15")
## 0 1 2 3 <NA>
## [1,] No. cases 430 239 51 6 817 1543
## [2,] Percent 27.9 15.5 3.3 0.4 52.9 100
16. Changes in sleeping pattern (ordinal [0,1,2,3], v3_bdi2_itm16) Here, there are seven answer alternatives: “I have not experienced changes in sleeping patterns”, “I sleep somewhat less than usual”,“I sleep somewhat more than usual”, “I sleep a lot less than usual”, “I sleep a lot more than usual”, “I sleep most of the day”, I wake up 1-2 hours early and can’t get back to sleep“. There is a thus a distinction between sleeping more and sleeping less. We have coded the questionaire so that sleep difficulties (sleeping more or slepping less) receive the same points. The distinction between whether somebody slept more or less is therefore lost.
v3_itm_bdi2_chk<-c(v3_clin$v3_bdi2_s1_verwer_fragebogen,v3_con$v3_bdi2_s1_bdi_korrekt)
v3_itm_bdi2_itm16_clin_con<-c(v3_clin$v3_bdi2_s2_bdi16_schlafgewohn,v3_con$v3_bdi2_s2_bdi16)
v3_bdi2_itm16<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_bdi2_itm16<-ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) & v3_itm_bdi2_itm16_clin_con==0, 0,
ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) &
(v3_itm_bdi2_itm16_clin_con==1 | v3_itm_bdi2_itm16_clin_con==100), 1,
ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) &
(v3_itm_bdi2_itm16_clin_con==2 | v3_itm_bdi2_itm16_clin_con==200), 2,
ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) &
(v3_itm_bdi2_itm16_clin_con==3 | v3_itm_bdi2_itm16_clin_con==300), 3, v3_bdi2_itm16))))
v3_bdi2_itm16<-factor(v3_bdi2_itm16,ordered=T)
descT(v3_bdi2_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 421 231 52 27 812 1543
## [2,] Percent 27.3 15 3.4 1.7 52.6 100
17. Irritability (ordinal [0,1,2,3], v3_bdi2_itm17)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi17_reizbarkeit,v3_con$v3_bdi2_s2_bdi17,"v3_bdi2_itm17")
## 0 1 2 3 <NA>
## [1,] No. cases 566 139 17 7 814 1543
## [2,] Percent 36.7 9 1.1 0.5 52.8 100
18. Change in appetite (ordinal [0,1,2,3], v3_bdi2_itm18)
As above (item 16), there are several answer alternatives: “I have not experienced any change in my appetite”, “My appetite is somewhat less than usual”, “My appetite is somewhat more than usual”, “My appetite is much less than before”, “My appetite is much more than before”, “I have no appetite at all”, “I crave food all the time”. More explicity, there is a distinction between more and less appetite. We have coded the questionaire so that changes in appetite receive the same points. The distinction between whether somebody had more or less appetite is therefore lost.
v3_itm_bdi2_itm18_clin_con<-c(v3_clin$v3_bdi2_s2_bdi18_appetit,v3_con$v3_bdi2_s2_bdi18)
v3_bdi2_itm18<-rep(NA,dim(v3_clin)[1]+dim(v3_con)[1])
v3_bdi2_itm18<-ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) & v3_itm_bdi2_itm18_clin_con==0, 0,
ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) &
(v3_itm_bdi2_itm18_clin_con==1 | v3_itm_bdi2_itm18_clin_con==100), 1,
ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) &
(v3_itm_bdi2_itm18_clin_con==2 | v3_itm_bdi2_itm18_clin_con==200), 2,
ifelse((is.na(v3_itm_bdi2_chk) | v3_itm_bdi2_chk!=2) &
(v3_itm_bdi2_itm18_clin_con==3 | v3_itm_bdi2_itm18_clin_con==300), 3, v3_bdi2_itm18))))
v3_bdi2_itm18<-factor(v3_bdi2_itm18,ordered=T)
descT(v3_bdi2_itm18)
## 0 1 2 3 <NA>
## [1,] No. cases 510 174 32 13 814 1543
## [2,] Percent 33.1 11.3 2.1 0.8 52.8 100
19. Concentration difficulty (ordinal [0,1,2,3], v3_bdi2_itm19)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi19_konzschw,v3_con$v3_bdi2_s2_bdi19,"v3_bdi2_itm19")
## 0 1 2 3 <NA>
## [1,] No. cases 450 193 84 5 811 1543
## [2,] Percent 29.2 12.5 5.4 0.3 52.6 100
20. Tiredness or fatigue (ordinal [0,1,2,3], v3_bdi2_itm20)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi20_ermued_ersch,v3_con$v3_bdi2_s2_bdi20,"v3_bdi2_itm20")
## 0 1 2 3 <NA>
## [1,] No. cases 442 234 41 14 812 1543
## [2,] Percent 28.6 15.2 2.7 0.9 52.6 100
21. Loss of interest in sex (ordinal [0,1,2,3], v3_bdi2_itm21)
v3_bdi2_recode(v3_clin$v3_bdi2_s2_bdi21_sex_interess,v3_con$v3_bdi2_s2_bdi21,"v3_bdi2_itm21")
## 0 1 2 3 <NA>
## [1,] No. cases 533 110 31 54 815 1543
## [2,] Percent 34.5 7.1 2 3.5 52.8 100
BDI-II sum score calculation (continuous [0-63], v3_bdi2_sum)
v3_bdi2_sum<-as.numeric.factor(v3_bdi2_itm1)+
as.numeric.factor(v3_bdi2_itm2)+
as.numeric.factor(v3_bdi2_itm3)+
as.numeric.factor(v3_bdi2_itm4)+
as.numeric.factor(v3_bdi2_itm5)+
as.numeric.factor(v3_bdi2_itm6)+
as.numeric.factor(v3_bdi2_itm7)+
as.numeric.factor(v3_bdi2_itm8)+
as.numeric.factor(v3_bdi2_itm9)+
as.numeric.factor(v3_bdi2_itm10)+
as.numeric.factor(v3_bdi2_itm11)+
as.numeric.factor(v3_bdi2_itm12)+
as.numeric.factor(v3_bdi2_itm13)+
as.numeric.factor(v3_bdi2_itm14)+
as.numeric.factor(v3_bdi2_itm15)+
as.numeric.factor(v3_bdi2_itm16)+
as.numeric.factor(v3_bdi2_itm17)+
as.numeric.factor(v3_bdi2_itm18)+
as.numeric.factor(v3_bdi2_itm19)+
as.numeric.factor(v3_bdi2_itm20)+
as.numeric.factor(v3_bdi2_itm21)
summary(v3_bdi2_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 1.000 4.000 7.495 11.000 53.000 846
Create dataset
v3_bdi2<-data.frame(v3_bdi2_itm1,v3_bdi2_itm2,v3_bdi2_itm3,v3_bdi2_itm4,v3_bdi2_itm5,
v3_bdi2_itm6,v3_bdi2_itm7,v3_bdi2_itm8,v3_bdi2_itm9,v3_bdi2_itm10,
v3_bdi2_itm11,v3_bdi2_itm12,v3_bdi2_itm13,v3_bdi2_itm14,
v3_bdi2_itm15,v3_bdi2_itm16,v3_bdi2_itm17,v3_bdi2_itm18,
v3_bdi2_itm19,v3_bdi2_itm20,v3_bdi2_itm21, v3_bdi2_sum)
For explanation, please refer to the section in Visit 1
1. Positive Mood (ordinal [0,1,2,3,4], v3_asrm_itm1)
v3_asrm_recode(v3_clin$v3_asrm_asrm1_gluecklich,v3_con$v3_asrm_asrm1,"v3_asrm_itm1")
## 0 1 2 3 4 <NA>
## [1,] No. cases 492 171 49 21 5 805 1543
## [2,] Percent 31.9 11.1 3.2 1.4 0.3 52.2 100
2 Self-Confidence (ordinal [0,1,2,3,4], v3_asrm_itm2)
v3_asrm_recode(v3_clin$v3_asrm_asrm2_selbstbewusst,v3_con$v3_asrm_asrm2,"v3_asrm_itm2")
## 0 1 2 3 4 <NA>
## [1,] No. cases 532 147 36 19 3 806 1543
## [2,] Percent 34.5 9.5 2.3 1.2 0.2 52.2 100
3. Sleep (ordinal [0,1,2,3,4], v3_asrm_itm3)
v3_asrm_recode(v3_clin$v3_asrm_asrm3_schlaf,v3_con$v3_asrm_asrm3,"v3_asrm_itm3")
## 0 1 2 3 4 <NA>
## [1,] No. cases 610 84 25 13 6 805 1543
## [2,] Percent 39.5 5.4 1.6 0.8 0.4 52.2 100
4. Speech (ordinal [0,1,2,3,4], v3_asrm_itm4)
v3_asrm_recode(v3_clin$v3_asrm_asrm4_reden,v3_con$v3_asrm_asrm4,"v3_asrm_itm4")
## 0 1 2 3 4 <NA>
## [1,] No. cases 579 132 16 8 2 806 1543
## [2,] Percent 37.5 8.6 1 0.5 0.1 52.2 100
5. Activity Level (ordinal [0,1,2,3,4], v3_asrm_itm5)
v3_asrm_recode(v3_clin$v3_asrm_asrm5_aktiv,v3_con$v3_asrm_asrm5,"v3_asrm_itm5")
## 0 1 2 3 4 <NA>
## [1,] No. cases 524 162 34 7 9 807 1543
## [2,] Percent 34 10.5 2.2 0.5 0.6 52.3 100
Create ASRM sum score (continuous [0-20],v3_asrm_sum)
v3_asrm_sum<-as.numeric.factor(v3_asrm_itm1)+
as.numeric.factor(v3_asrm_itm2)+
as.numeric.factor(v3_asrm_itm3)+
as.numeric.factor(v3_asrm_itm4)+
as.numeric.factor(v3_asrm_itm5)
summary(v3_asrm_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 1.000 1.771 2.500 18.000 808
Create dataset
v3_asrm<-data.frame(v3_asrm_itm1,v3_asrm_itm2,v3_asrm_itm3,v3_asrm_itm4,v3_asrm_itm5,v3_asrm_sum)
For explanation, please refer to the section in Visit 1
1. “I had more energy” (dichotomous, v3_mss_itm1)
v3_mss_recode(v3_clin$v3_mss_s1_mss1_energie,v3_con$v3_mss_s1_mss1,"v3_mss_itm1")
## N Y <NA>
## [1,] No. cases 608 133 802 1543
## [2,] Percent 39.4 8.6 52 100
2. “I had trouble sitting still” (dichotomous, v3_mss_itm2)
v3_mss_recode(v3_clin$v3_mss_s1_mss2_ruhig_sitzen,v3_con$v3_mss_s1_mss2,"v3_mss_itm2")
## N Y <NA>
## [1,] No. cases 642 98 803 1543
## [2,] Percent 41.6 6.4 52 100
3. “I drove faster” (dichotomous, v3_mss_itm3)
v3_mss_recode(v3_clin$v3_mss_s1_mss3_auto_fahren,v3_con$v3_mss_s1_mss3,"v3_mss_itm3")
## N Y <NA>
## [1,] No. cases 690 25 828 1543
## [2,] Percent 44.7 1.6 53.7 100
4. “I drank more alcoholic beverages” (dichotomous, v3_mss_itm4)
v3_mss_recode(v3_clin$v3_mss_s1_mss4_alkohol,v3_con$v3_mss_s1_mss4,"v3_mss_itm4")
## N Y <NA>
## [1,] No. cases 674 60 809 1543
## [2,] Percent 43.7 3.9 52.4 100
5. “I changed clothes several times a day” (dichotomous, v3_mss_itm5)
v3_mss_recode(v3_clin$v3_mss_s1_mss5_umziehen, v3_con$v3_mss_s1_mss5,"v3_mss_itm5")
## N Y <NA>
## [1,] No. cases 677 58 808 1543
## [2,] Percent 43.9 3.8 52.4 100
6. “I wore brighter clothes/make-up” (dichotomous, v3_mss_itm6)
v3_mss_recode(v3_clin$v3_mss_s1_mss6_bunter,v3_con$v3_mss_s1_mss6,"v3_mss_itm6")
## N Y <NA>
## [1,] No. cases 696 44 803 1543
## [2,] Percent 45.1 2.9 52 100
7. “I played music louder” (dichotomous, v3_mss_itm7)
v3_mss_recode(v3_clin$v3_mss_s1_mss7_musik_lauter,v3_con$v3_mss_s1_mss7,"v3_mss_itm7")
## N Y <NA>
## [1,] No. cases 644 96 803 1543
## [2,] Percent 41.7 6.2 52 100
8. “I ate faster than usual” (dichotomous, v3_mss_itm8)
v3_mss_recode(v3_clin$v3_mss_s1_mss8_hastiger_essen,v3_con$v3_mss_s1_mss8,"v3_mss_itm8")
## N Y <NA>
## [1,] No. cases 662 77 804 1543
## [2,] Percent 42.9 5 52.1 100
9. “I ate more than usual” (dichotomous, v3_mss_itm9)
v3_mss_recode(v3_clin$v3_mss_s1_mss9_mehr_essen,v3_con$v3_mss_s1_mss9,"v3_mss_itm9")
## N Y <NA>
## [1,] No. cases 612 127 804 1543
## [2,] Percent 39.7 8.2 52.1 100
10. “I slept fewer hours than usual” (dichotomous, v3_mss_itm10)
v3_mss_recode(v3_clin$v3_mss_s1_mss10_weniger_schlaf,v3_con$v3_mss_s1_mss10,"v3_mss_itm10")
## N Y <NA>
## [1,] No. cases 652 87 804 1543
## [2,] Percent 42.3 5.6 52.1 100
11. “I started things that I didn’t finish” (dichotomous, v3_mss_itm11)
v3_mss_recode(v3_clin$v3_mss_s1_mss11_unbeendet,v3_con$v3_mss_s1_mss11,"v3_mss_itm11")
## N Y <NA>
## [1,] No. cases 604 136 803 1543
## [2,] Percent 39.1 8.8 52 100
12. “I gave away my own possessions” (dichotomous, v3_mss_itm12)
v3_mss_recode(v3_clin$v3_mss_s1_mss12_weggeben,v3_con$v3_mss_s1_mss12,"v3_mss_itm12")
## N Y <NA>
## [1,] No. cases 676 62 805 1543
## [2,] Percent 43.8 4 52.2 100
13. “I bought gifts for people” (dichotomous, v3_mss_itm13)
v3_mss_recode(v3_clin$v3_mss_s1_mss13_geschenke,v3_con$v3_mss_s1_mss13,"v3_mss_itm13")
## N Y <NA>
## [1,] No. cases 673 66 804 1543
## [2,] Percent 43.6 4.3 52.1 100
14. “I spent money more freely” (dichotomous, v3_mss_itm14)
v3_mss_recode(v3_clin$v3_mss_s1_mss14_mehr_geld,v3_con$v3_mss_s1_mss14,"v3_mss_itm14")
## N Y <NA>
## [1,] No. cases 572 168 803 1543
## [2,] Percent 37.1 10.9 52 100
15. “I accumulated debts” (dichotomous, v3_mss_itm15)
v3_mss_recode(v3_clin$v3_mss_s1_mss15_schulden,v3_con$v3_mss_s1_mss15,"v3_mss_itm15")
## N Y <NA>
## [1,] No. cases 693 47 803 1543
## [2,] Percent 44.9 3 52 100
16. “I made unwise business decisions” (dichotomous, v3_mss_itm16)
v3_mss_recode(v3_clin$v3_mss_s1_mss16_unkluge_entsch,v3_con$v3_mss_s1_mss16,"v3_mss_itm16")
## N Y <NA>
## [1,] No. cases 716 24 803 1543
## [2,] Percent 46.4 1.6 52 100
17. “I partied more” (dichotomous, v3_mss_itm17)
v3_mss_recode(v3_clin$v3_mss_s1_mss17_parties,v3_con$v3_mss_s1_mss17,"v3_mss_itm17")
## N Y <NA>
## [1,] No. cases 704 37 802 1543
## [2,] Percent 45.6 2.4 52 100
18. “I enjoyed flirting” (dichotomous, v3_mss_itm18)
v3_mss_recode(v3_clin$v3_mss_s1_mss18_flirten,v3_con$v3_mss_s1_mss18,"v3_mss_itm18")
## N Y <NA>
## [1,] No. cases 686 51 806 1543
## [2,] Percent 44.5 3.3 52.2 100
19. “I masturbated more often” (dichotomous, v3_mss_itm19)
v3_mss_recode(v3_clin$v3_mss_s2_mss19_selbstbefried,v3_con$v3_mss_s2_mss19,"v3_mss_itm19")
## N Y <NA>
## [1,] No. cases 694 33 816 1543
## [2,] Percent 45 2.1 52.9 100
20. “I was more interested in sex than usual” (dichotomous, v3_mss_itm20)
v3_mss_recode(v3_clin$v3_mss_s2_mss20_sex_interess,v3_con$v3_mss_s2_mss20,"v3_mss_itm20")
## N Y <NA>
## [1,] No. cases 655 75 813 1543
## [2,] Percent 42.4 4.9 52.7 100
21. “I had sex with people that I usually wouldn’t have sex with” (dichotomous, v3_mss_itm21)
v3_mss_recode(v3_clin$v3_mss_s2_mss21_sexpartner,v3_con$v3_mss_s2_mss21,"v3_mss_itm21")
## N Y <NA>
## [1,] No. cases 716 13 814 1543
## [2,] Percent 46.4 0.8 52.8 100
22. “I spent more time on the phone” (dichotomous, v3_mss_itm22)
v3_mss_recode(v3_clin$v3_mss_s2_mss22_mehr_telefon,v3_con$v3_mss_s2_mss22,"v3_mss_itm22")
## N Y <NA>
## [1,] No. cases 646 87 810 1543
## [2,] Percent 41.9 5.6 52.5 100
23. “I spoke louder than usual” (dichotomous, v3_mss_itm23)
v3_mss_recode(v3_clin$v3_mss_s2_mss23_sprache_lauter,v3_con$v3_mss_s2_mss23,"v3_mss_itm23")
## N Y <NA>
## [1,] No. cases 680 51 812 1543
## [2,] Percent 44.1 3.3 52.6 100
24. “I spoke so fast that people said they couldn’t understand me” (dichotomous, v3_mss_itm24)
v3_mss_recode(v3_clin$v3_mss_s2_mss24_spr_schneller,v3_con$v3_mss_s2_mss24,"v3_mss_itm24")
## N Y <NA>
## [1,] No. cases 689 40 814 1543
## [2,] Percent 44.7 2.6 52.8 100
25. “1 enjoyed punning or rhyming” (dichotomous, v3_mss_itm25)
v3_mss_recode(v3_clin$v3_mss_s2_mss25_witze,v3_con$v3_mss_s2_mss25,"v3_mss_itm25")
## N Y <NA>
## [1,] No. cases 659 74 810 1543
## [2,] Percent 42.7 4.8 52.5 100
26. “I butted into conversations” (dichotomous, v3_mss_itm26)
v3_mss_recode(v3_clin$v3_mss_s2_mss26_einmischen,v3_con$v3_mss_s2_mss26,"v3_mss_itm26")
## N Y <NA>
## [1,] No. cases 687 47 809 1543
## [2,] Percent 44.5 3 52.4 100
27. “I spoke on and on and couldn’t be interrupted” (dichotomous, v3_mss_itm27)
v3_mss_recode(v3_clin$v3_mss_s2_mss27_red_pausenlos,v3_con$v3_mss_s2_mss27,"v3_mss_itm27")
## N Y <NA>
## [1,] No. cases 713 21 809 1543
## [2,] Percent 46.2 1.4 52.4 100
28. “I enjoyed being the centre of attention” (dichotomous, v3_mss_itm28)
v3_mss_recode(v3_clin$v3_mss_s2_mss28_mittelpunkt,v3_con$v3_mss_s2_mss28,"v3_mss_itm28")
## N Y <NA>
## [1,] No. cases 682 51 810 1543
## [2,] Percent 44.2 3.3 52.5 100
29. “I liked to joke and laugh” (dichotomous, v3_mss_itm29)
v3_mss_recode(v3_clin$v3_mss_s2_mss29_herumalbern,v3_con$v3_mss_s2_mss29,"v3_mss_itm29")
## N Y <NA>
## [1,] No. cases 630 102 811 1543
## [2,] Percent 40.8 6.6 52.6 100
30. “People found me entertaining” (dichotomous, v3_mss_itm30)
v3_mss_recode(v3_clin$v3_mss_s2_mss30_unterhaltsamer,v3_con$v3_mss_s2_mss30,"v3_mss_itm30")
## N Y <NA>
## [1,] No. cases 666 67 810 1543
## [2,] Percent 43.2 4.3 52.5 100
31. “I felt as if I was on top of the world” (dichotomous, v3_mss_itm31)
v3_mss_recode(v3_clin$v3_mss_s2_mss31_obenauf,v3_con$v3_mss_s2_mss31,"v3_mss_itm31")
## N Y <NA>
## [1,] No. cases 660 72 811 1543
## [2,] Percent 42.8 4.7 52.6 100
32. “I was more cheerful than my usual self” (dichotomous, v3_mss_itm32)
v3_mss_recode(v3_clin$v3_mss_s2_mss32_froehlicher,v3_con$v3_mss_s2_mss32,"v3_mss_itm32")
## N Y <NA>
## [1,] No. cases 602 130 811 1543
## [2,] Percent 39 8.4 52.6 100
33. “Other people got on my nerves” (dichotomous, v3_mss_itm33)
v3_mss_recode(v3_clin$v3_mss_s2_mss33_ungeduldiger,v3_con$v3_mss_s2_mss33,"v3_mss_itm33")
## N Y <NA>
## [1,] No. cases 569 163 811 1543
## [2,] Percent 36.9 10.6 52.6 100
34. “I was getting into arguments” (dichotomous, v3_mss_itm34)
v3_mss_recode(v3_clin$v3_mss_s2_mss34_streiten,v3_con$v3_mss_s2_mss34,"v3_mss_itm34")
## N Y <NA>
## [1,] No. cases 677 54 812 1543
## [2,] Percent 43.9 3.5 52.6 100
35. “I had so many ideas that I couldn’t get around to doing them all” (dichotomous, v3_mss_itm35)
v3_mss_recode(v3_clin$v3_mss_s2_mss35_ideen,v3_con$v3_mss_s2_mss35,"v3_mss_itm35")
## N Y <NA>
## [1,] No. cases 625 108 810 1543
## [2,] Percent 40.5 7 52.5 100
36. “My thoughts raced through my mind” (dichotomous, v3_mss_itm36)
v3_mss_recode(v3_clin$v3_mss_s2_mss36_gedanken,v3_con$v3_mss_s2_mss36,"v3_mss_itm36")
## N Y <NA>
## [1,] No. cases 558 174 811 1543
## [2,] Percent 36.2 11.3 52.6 100
37. “I couldn’t concentrate on a single topic for longer than a minute” (dichotomous, v3_mss_itm37)
v3_mss_recode(v3_clin$v3_mss_s2_mss37_konzentration,v3_con$v3_mss_s2_mss37,"v3_mss_itm37")
## N Y <NA>
## [1,] No. cases 630 102 811 1543
## [2,] Percent 40.8 6.6 52.6 100
38. “I thought I was an especially important person” (dichotomous, v3_mss_itm38)
v3_mss_recode(v3_clin$v3_mss_s2_mss38_etw_besonderes,v3_con$v3_mss_s2_mss38,"v3_mss_itm38")
## N Y <NA>
## [1,] No. cases 683 48 812 1543
## [2,] Percent 44.3 3.1 52.6 100
39. “I thought I could change the world” (dichotomous, v3_mss_itm39)
v3_mss_recode(v3_clin$v3_mss_s2_mss39_welt_veraender,v3_con$v3_mss_s2_mss39,"v3_mss_itm39")
## N Y <NA>
## [1,] No. cases 687 45 811 1543
## [2,] Percent 44.5 2.9 52.6 100
40. “I thought I was right most of the time” (dichotomous, v3_mss_itm40)
v3_mss_recode(v3_clin$v3_mss_s2_mss40_recht_haben,v3_con$v3_mss_s2_mss40,"v3_mss_itm40")
## N Y <NA>
## [1,] No. cases 695 36 812 1543
## [2,] Percent 45 2.3 52.6 100
41. “I thought I was superior to others” (dichotomous, v3_mss_itm41)
v3_mss_recode(v3_clin$v3_mss_s3_mss41_ueberlegen,v3_con$v3_mss_s3_mss41,"v3_mss_itm41")
## N Y <NA>
## [1,] No. cases 711 27 805 1543
## [2,] Percent 46.1 1.7 52.2 100
42. “I wanted to take on jobs that I was not trained to handle” (dichotomous, v3_mss_itm42)
v3_mss_recode(v3_clin$v3_mss_s3_mss42_uebermut,v3_con$v3_mss_s3_mss42,"v3_mss_itm42")
## N Y <NA>
## [1,] No. cases 682 56 805 1543
## [2,] Percent 44.2 3.6 52.2 100
43. “I thought I knew what other people were thinking” (dichotomous, v3_mss_itm43)
v3_mss_recode(v3_clin$v3_mss_s3_mss43_ged_lesen_akt,v3_con$v3_mss_s3_mss43,"v3_mss_itm43")
## N Y <NA>
## [1,] No. cases 684 55 804 1543
## [2,] Percent 44.3 3.6 52.1 100
44. “I thought other people knew what I was thinking” (dichotomous, v3_mss_itm44)
v3_mss_recode(v3_clin$v3_mss_s3_mss44_ged_lesen_pas,v3_con$v3_mss_s3_mss44,"v3_mss_itm44")
## N Y <NA>
## [1,] No. cases 698 38 807 1543
## [2,] Percent 45.2 2.5 52.3 100
45. “I thought someone wanted to harm me” (dichotomous, v3_mss_itm45)
v3_mss_recode(v3_clin$v3_mss_s3_mss45_etw_antun,v3_con$v3_mss_s3_mss45,"v3_mss_itm45")
## N Y <NA>
## [1,] No. cases 704 34 805 1543
## [2,] Percent 45.6 2.2 52.2 100
46. “I heard voices when people weren’t there” (dichotomous, v3_mss_itm46)
v3_mss_recode(v3_clin$v3_mss_s3_mss46_stimmen,v3_con$v3_mss_s3_mss46,"v3_mss_itm46")
## N Y <NA>
## [1,] No. cases 693 46 804 1543
## [2,] Percent 44.9 3 52.1 100
47. “I had false beliefs concerning who I was” (dichotomous, v3_mss_itm47)
v3_mss_recode(v3_clin$v3_mss_s3_mss47_jmd_anders,v3_con$v3_mss_s3_mss47,"v3_mss_itm47")
## N Y <NA>
## [1,] No. cases 716 22 805 1543
## [2,] Percent 46.4 1.4 52.2 100
48. “I knew I was getting ill” (dichotomous, v3_mss_itm48)
v3_mss_recode(v3_clin$v3_mss_s3_mss48_krank_einsicht,v3_con$v3_mss_s3_mss48,"v3_mss_itm48")
## N Y <NA>
## [1,] No. cases 658 73 812 1543
## [2,] Percent 42.6 4.7 52.6 100
Create MSS sum score (continuous [0-48],v3_mss_sum)
v3_mss_sum<-ifelse(v3_mss_itm1=="Y",1,0)+
ifelse(v3_mss_itm2=="Y",1,0)+
ifelse(v3_mss_itm3=="Y",1,0)+
ifelse(v3_mss_itm4=="Y",1,0)+
ifelse(v3_mss_itm5=="Y",1,0)+
ifelse(v3_mss_itm6=="Y",1,0)+
ifelse(v3_mss_itm7=="Y",1,0)+
ifelse(v3_mss_itm8=="Y",1,0)+
ifelse(v3_mss_itm9=="Y",1,0)+
ifelse(v3_mss_itm10=="Y",1,0)+
ifelse(v3_mss_itm11=="Y",1,0)+
ifelse(v3_mss_itm12=="Y",1,0)+
ifelse(v3_mss_itm13=="Y",1,0)+
ifelse(v3_mss_itm14=="Y",1,0)+
ifelse(v3_mss_itm15=="Y",1,0)+
ifelse(v3_mss_itm16=="Y",1,0)+
ifelse(v3_mss_itm17=="Y",1,0)+
ifelse(v3_mss_itm18=="Y",1,0)+
ifelse(v3_mss_itm19=="Y",1,0)+
ifelse(v3_mss_itm20=="Y",1,0)+
ifelse(v3_mss_itm21=="Y",1,0)+
ifelse(v3_mss_itm22=="Y",1,0)+
ifelse(v3_mss_itm23=="Y",1,0)+
ifelse(v3_mss_itm24=="Y",1,0)+
ifelse(v3_mss_itm25=="Y",1,0)+
ifelse(v3_mss_itm26=="Y",1,0)+
ifelse(v3_mss_itm27=="Y",1,0)+
ifelse(v3_mss_itm28=="Y",1,0)+
ifelse(v3_mss_itm29=="Y",1,0)+
ifelse(v3_mss_itm30=="Y",1,0)+
ifelse(v3_mss_itm31=="Y",1,0)+
ifelse(v3_mss_itm32=="Y",1,0)+
ifelse(v3_mss_itm33=="Y",1,0)+
ifelse(v3_mss_itm34=="Y",1,0)+
ifelse(v3_mss_itm35=="Y",1,0)+
ifelse(v3_mss_itm36=="Y",1,0)+
ifelse(v3_mss_itm37=="Y",1,0)+
ifelse(v3_mss_itm38=="Y",1,0)+
ifelse(v3_mss_itm39=="Y",1,0)+
ifelse(v3_mss_itm40=="Y",1,0)+
ifelse(v3_mss_itm41=="Y",1,0)+
ifelse(v3_mss_itm42=="Y",1,0)+
ifelse(v3_mss_itm43=="Y",1,0)+
ifelse(v3_mss_itm44=="Y",1,0)+
ifelse(v3_mss_itm45=="Y",1,0)+
ifelse(v3_mss_itm46=="Y",1,0)+
ifelse(v3_mss_itm47=="Y",1,0)+
ifelse(v3_mss_itm48=="Y",1,0)
summary(v3_mss_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 2.000 4.233 6.000 33.000 887
Create dataset
v3_mss<-data.frame(v3_mss_itm1,v3_mss_itm2,v3_mss_itm3,v3_mss_itm4,v3_mss_itm5,v3_mss_itm6,
v3_mss_itm7,v3_mss_itm8,v3_mss_itm9,v3_mss_itm10,v3_mss_itm11,
v3_mss_itm12,v3_mss_itm13,v3_mss_itm14,v3_mss_itm15,v3_mss_itm16,
v3_mss_itm17,v3_mss_itm18,v3_mss_itm19,v3_mss_itm20,v3_mss_itm21,
v3_mss_itm22,v3_mss_itm23,v3_mss_itm24,v3_mss_itm25,v3_mss_itm26,
v3_mss_itm27,v3_mss_itm28,v3_mss_itm29,v3_mss_itm30,v3_mss_itm31,
v3_mss_itm32,v3_mss_itm33,v3_mss_itm34,v3_mss_itm35,v3_mss_itm36,
v3_mss_itm37,v3_mss_itm38,v3_mss_itm39,v3_mss_itm40,v3_mss_itm41,
v3_mss_itm42,v3_mss_itm43,v3_mss_itm44,v3_mss_itm45,v3_mss_itm46,
v3_mss_itm47,v3_mss_itm48, v3_mss_sum)
For explanation, please refer to the section in Visit 1
1. “Major personal illness or injury”
1A Nature (dichotomous [“good”,“bad”], v3_leq_A_1A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq1a_schw_krankh,v3_con$v3_leq_a_leq1a,"v3_leq_A_1A")
## -999 bad good <NA>
## [1,] No. cases 515 157 24 847 1543
## [2,] Percent 33.4 10.2 1.6 54.9 100
1B Impact (ordinal [0,1,2,3], v3_leq_A_1B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq1e_schw_krankh,v3_con$v3_leq_a_leq1e,"v3_leq_A_1B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 510 14 28 50 94 847 1543
## [2,] Percent 33.1 0.9 1.8 3.2 6.1 54.9 100
2. “Major change in eating habits”
2A Nature (dichotomous [“good”,“bad”], v3_leq_A_2A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq2a_ernaehrung,v3_con$v3_leq_a_leq2a,"v3_leq_A_2A")
## -999 bad good <NA>
## [1,] No. cases 530 76 90 847 1543
## [2,] Percent 34.3 4.9 5.8 54.9 100
2B Impact (ordinal [0,1,2,3], v3_leq_A_2B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq2e_ernaehrung,v3_con$v3_leq_a_leq2e,"v3_leq_A_2B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 524 15 45 54 58 847 1543
## [2,] Percent 34 1 2.9 3.5 3.8 54.9 100
3. “Major change in sleeping habits”
3A Nature (dichotomous [“good”,“bad”], v3_leq_A_3A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq3a_schlaf,v3_con$v3_leq_a_leq3a,"v3_leq_A_3A")
## -999 bad good <NA>
## [1,] No. cases 524 110 62 847 1543
## [2,] Percent 34 7.1 4 54.9 100
3B Impact (ordinal [0,1,2,3], v3_leq_A_3B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq3e_schlaf,v3_con$v3_leq_a_leq3e,"v3_leq_A_3B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 522 16 26 63 69 847 1543
## [2,] Percent 33.8 1 1.7 4.1 4.5 54.9 100
4. “Major change in usual type and/or amount of recreation”
4A Nature (dichotomous [“good”,“bad”], v3_leq_A_4A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq4a_freizeit,v3_con$v3_leq_a_leq4a,"v3_leq_A_4A")
## -999 bad good <NA>
## [1,] No. cases 478 71 147 847 1543
## [2,] Percent 31 4.6 9.5 54.9 100
4B Impact (ordinal [0,1,2,3], v3_leq_A_4B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq4e_freizeit,v3_con$v3_leq_a_leq4e,"v3_leq_A_4B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 473 6 46 93 78 847 1543
## [2,] Percent 30.7 0.4 3 6 5.1 54.9 100
5. “Major dental work”
5A Nature (dichotomous [“good”,“bad”], v3_leq_A_5A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq5a_zahnarzt,v3_con$v3_leq_a_leq5a,"v3_leq_A_5A")
## -999 bad good <NA>
## [1,] No. cases 602 39 55 847 1543
## [2,] Percent 39 2.5 3.6 54.9 100
5B Impact (ordinal [0,1,2,3], v3_leq_A_5B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq5e_zahnarzt,v3_con$v3_leq_a_leq5e,"v3_leq_A_5B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 598 21 23 28 26 847 1543
## [2,] Percent 38.8 1.4 1.5 1.8 1.7 54.9 100
6. “(Female) Pregnancy”
6A Nature (dichotomous [“good”,“bad”], v3_leq_A_6A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq6a_schwanger,v3_con$v3_leq_a_leq6a,"v3_leq_A_6A")
## -999 bad good <NA>
## [1,] No. cases 692 1 3 847 1543
## [2,] Percent 44.8 0.1 0.2 54.9 100
6B Impact (ordinal [0,1,2,3], v3_leq_A_6B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq6e_schwanger,v3_con$v3_leq_a_leq6e,"v3_leq_A_6B")
## -999 0 1 3 <NA>
## [1,] No. cases 692 1 1 2 847 1543
## [2,] Percent 44.8 0.1 0.1 0.1 54.9 100
7. “(Female) Miscarriage or abortion”
7A Nature (dichotomous [“good”,“bad”], v3_leq_A_7A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq7a_fehlg_abtr,v3_con$v3_leq_a_leq7a,"v3_leq_A_7A")
## -999 bad <NA>
## [1,] No. cases 695 1 847 1543
## [2,] Percent 45 0.1 54.9 100
7B Impact (ordinal [0,1,2,3], v3_leq_A_7B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq7e_fehlg_abtr,v3_con$v3_leq_a_leq7e,"v3_leq_A_7B")
## -999 1 <NA>
## [1,] No. cases 695 1 847 1543
## [2,] Percent 45 0.1 54.9 100
8. “(Female) Started menopause”
8A Nature (dichotomous [“good”,“bad”], v3_leq_A_8A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq8a_wechseljahre,v3_con$v3_leq_a_leq8a,"v3_leq_A_8A")
## -999 bad good <NA>
## [1,] No. cases 668 21 7 847 1543
## [2,] Percent 43.3 1.4 0.5 54.9 100
8B Impact (ordinal [0,1,2,3], v3_leq_A_8B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq8e_wechseljahre,v3_con$v3_leq_a_leq8e,"v3_leq_A_8B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 667 4 6 14 5 847 1543
## [2,] Percent 43.2 0.3 0.4 0.9 0.3 54.9 100
9. “Major difficulties with birth control pills or devices”
9A Nature (dichotomous [“good”,“bad”], v3_leq_A_9A)
v3_leq_a_recode(v3_clin$v3_leq_a_leq9a_verhuetung,v3_con$v3_leq_a_leq9a,"v3_leq_A_9A")
## -999 bad good <NA>
## [1,] No. cases 683 10 3 847 1543
## [2,] Percent 44.3 0.6 0.2 54.9 100
9B Impact (ordinal [0,1,2,3], v3_leq_A_9B)
v3_leq_b_recode(v3_clin$v3_leq_a_leq9e_verhuetung,v3_con$v3_leq_a_leq9e,"v3_leq_A_9B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 683 2 2 5 4 847 1543
## [2,] Percent 44.3 0.1 0.1 0.3 0.3 54.9 100
Create dataset
v3_leq_A<-data.frame(v3_leq_A_1A,v3_leq_A_1B,v3_leq_A_2A,v3_leq_A_2B,v3_leq_A_3A,
v3_leq_A_3B,v3_leq_A_4A,v3_leq_A_4B,v3_leq_A_5A,v3_leq_A_5B,
v3_leq_A_6A,v3_leq_A_6B,v3_leq_A_7A,v3_leq_A_7B,v3_leq_A_8A,
v3_leq_A_8B,v3_leq_A_9A,v3_leq_A_9B)
10. “Difficulty finding a job”
10A Nature (dichotomous [“good”,“bad”], v3_leq_B_10A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq10a_arbeitssuche,v3_con$v3_leq_b_leq10a,"v3_leq_B_10A")
## -999 bad good <NA>
## [1,] No. cases 596 76 24 847 1543
## [2,] Percent 38.6 4.9 1.6 54.9 100
10B Impact (ordinal [0,1,2,3], v3_leq_B_10B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq10e_arbeitssuche,v3_con$v3_leq_b_leq10e,"v3_leq_B_10B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 595 7 29 33 32 847 1543
## [2,] Percent 38.6 0.5 1.9 2.1 2.1 54.9 100
11. “Beginning work outside the home”
11A Nature (dichotomous [“good”,“bad”], v3_leq_B_11A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq11a_arbeit_aussen,v3_con$v3_leq_b_leq11a,"v3_leq_B_11A")
## -999 bad good <NA>
## [1,] No. cases 611 13 72 847 1543
## [2,] Percent 39.6 0.8 4.7 54.9 100
11B Impact (ordinal [0,1,2,3], v3_leq_B_11B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq11e_arbeit_aussen,v3_con$v3_leq_b_leq11e,"v3_leq_B_11B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 608 5 15 32 36 847 1543
## [2,] Percent 39.4 0.3 1 2.1 2.3 54.9 100
12. “Changing to a new type of work” 12A Nature (dichotomous [“good”,“bad”], v3_leq_B_12A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq12a_arbeitswechs,v3_con$v3_leq_b_leq12a,"v3_leq_B_12A")
## -999 bad good <NA>
## [1,] No. cases 607 12 77 847 1543
## [2,] Percent 39.3 0.8 5 54.9 100
12B Impact (ordinal [0,1,2,3], v3_leq_B_12B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq12e_arbeitswechs,v3_con$v3_leq_b_leq12e,"v3_leq_B_12B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 605 7 14 27 43 847 1543
## [2,] Percent 39.2 0.5 0.9 1.7 2.8 54.9 100
13. “Changing your work hours or conditions”
13A Nature (dichotomous [“good”,“bad”], v3_leq_B_13A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq13a_veraend_arb,v3_con$v3_leq_b_leq13a,"v3_leq_B_13A")
## -999 bad good <NA>
## [1,] No. cases 567 31 98 847 1543
## [2,] Percent 36.7 2 6.4 54.9 100
13B Impact (ordinal [0,1,2,3], v3_leq_B_13B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq13e_veraend_arb,v3_con$v3_leq_b_leq13e,"v3_leq_B_13B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 566 7 37 49 37 847 1543
## [2,] Percent 36.7 0.5 2.4 3.2 2.4 54.9 100
14. “Change in your responsibilities at work” 14A Nature (dichotomous [“good”,“bad”], v3_leq_B_14A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq14a_veraend_ba,v3_con$v3_leq_b_leq14a,"v3_leq_B_14A")
## -999 bad good <NA>
## [1,] No. cases 565 22 109 847 1543
## [2,] Percent 36.6 1.4 7.1 54.9 100
14B Impact (ordinal [0,1,2,3], v3_leq_B_14B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq14e_veraend_ba,v3_con$v3_leq_b_leq14e,"v3_leq_B_14B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 562 8 32 54 40 847 1543
## [2,] Percent 36.4 0.5 2.1 3.5 2.6 54.9 100
15. “Troubles at work with your employer or co-worker”
15A Nature (dichotomous [“good”,“bad”], v3_leq_B_15A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq15a_schw_arbeit,v3_con$v3_leq_b_leq15a,"v3_leq_B_15A")
## -999 bad good <NA>
## [1,] No. cases 610 71 15 847 1543
## [2,] Percent 39.5 4.6 1 54.9 100
15B Impact (ordinal [0,1,2,3], v3_leq_B_15B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq15e_schw_arbeit,v3_con$v3_leq_b_leq15e,"v3_leq_B_15B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 609 12 32 25 18 847 1543
## [2,] Percent 39.5 0.8 2.1 1.6 1.2 54.9 100
16. “Major business readjustment”
16A Nature (dichotomous [“good”,“bad”], v3_leq_B_16A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq16a_betr_reorg,v3_con$v3_leq_b_leq16a,"v3_leq_B_16A")
## -999 bad good <NA>
## [1,] No. cases 664 18 14 847 1543
## [2,] Percent 43 1.2 0.9 54.9 100
16B Impact (ordinal [0,1,2,3], v3_leq_B_16B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq16e_betr_reorg,v3_con$v3_leq_b_leq16e,"v3_leq_B_16B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 663 6 6 8 13 847 1543
## [2,] Percent 43 0.4 0.4 0.5 0.8 54.9 100
17. “Being fired or laid off from work”
17A Nature (dichotomous [“good”,“bad”], v3_leq_B_17A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq17a_kuendigung,v3_con$v3_leq_b_leq17a,"v3_leq_B_17A")
## -999 bad good <NA>
## [1,] No. cases 650 26 20 847 1543
## [2,] Percent 42.1 1.7 1.3 54.9 100
17B Impact (ordinal [0,1,2,3], v3_leq_B_17B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq17e_kuendigung,v3_con$v3_leq_b_leq17e,"v3_leq_B_17B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 649 4 9 15 19 847 1543
## [2,] Percent 42.1 0.3 0.6 1 1.2 54.9 100
18. “Retirement from work”
18A Nature (dichotomous [“good”,“bad”], v3_leq_B_18A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq18a_ende_beruf,v3_con$v3_leq_b_leq18a,"v3_leq_B_18A")
## -999 bad good <NA>
## [1,] No. cases 676 7 13 847 1543
## [2,] Percent 43.8 0.5 0.8 54.9 100
18B Impact (ordinal [0,1,2,3], v3_leq_B_18B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq18e_ende_beruf,v3_con$v3_leq_b_leq18e,"v3_leq_B_18B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 676 1 5 5 9 847 1543
## [2,] Percent 43.8 0.1 0.3 0.3 0.6 54.9 100
19. “Taking courses by mail or studying at home to help you in your work”
19A Nature (dichotomous [“good”,“bad”], v3_leq_B_19A)
v3_leq_a_recode(v3_clin$v3_leq_b_leq19a_fortbildung,v3_con$v3_leq_b_leq19a,"v3_leq_B_19A")
## -999 bad good <NA>
## [1,] No. cases 656 5 35 847 1543
## [2,] Percent 42.5 0.3 2.3 54.9 100
19B Impact (ordinal [0,1,2,3], v3_leq_B_19B)
v3_leq_b_recode(v3_clin$v3_leq_b_leq19e_fortbildung,v3_con$v3_leq_b_leq19e,"v3_leq_B_19B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 656 5 12 13 10 847 1543
## [2,] Percent 42.5 0.3 0.8 0.8 0.6 54.9 100
v3_leq_B<-data.frame(v3_leq_B_10A,v3_leq_B_10B,v3_leq_B_11A,v3_leq_B_11B,v3_leq_B_12A,
v3_leq_B_12B,v3_leq_B_13A,v3_leq_B_13B,v3_leq_B_14A,v3_leq_B_14B,
v3_leq_B_15A,v3_leq_B_15B,v3_leq_B_16A,v3_leq_B_16B,v3_leq_B_17A,
v3_leq_B_17B,v3_leq_B_18A,v3_leq_B_18B,v3_leq_B_19A,v3_leq_B_19B)
20. “Beginning or ceasing school, college, or training program”
20A Nature (dichotomous [“good”,“bad”], v3_leq_C_20A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq20a_beginn_ende,v3_con$v3_leq_c_d_leq20a,"v3_leq_C_20A")
## -999 bad good <NA>
## [1,] No. cases 654 5 37 847 1543
## [2,] Percent 42.4 0.3 2.4 54.9 100
20B Impact (ordinal [0,1,2,3], v3_leq_C_20B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq20e_beginn_ende,v3_con$v3_leq_c_d_leq20e,"v3_leq_C_20B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 653 4 7 8 24 847 1543
## [2,] Percent 42.3 0.3 0.5 0.5 1.6 54.9 100
21. “Change of school, college, or training program”
21A Nature (dichotomous [“good”,“bad”], v3_leq_C_21A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq21a_schulwechsel,v3_con$v3_leq_c_d_leq21a,"v3_leq_C_21A")
## -999 bad good <NA>
## [1,] No. cases 690 3 3 847 1543
## [2,] Percent 44.7 0.2 0.2 54.9 100
21B Impact (ordinal [0,1,2,3], v3_leq_C_21B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq21e_schulwechsel,v3_con$v3_leq_c_d_leq21e,"v3_leq_C_21B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 689 1 1 2 3 847 1543
## [2,] Percent 44.7 0.1 0.1 0.1 0.2 54.9 100
22. “Change in career goal or academic major”
A Nature (dichotomous [“good”,“bad”], v3_leq_C_22A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq22a_aend_karriere,v3_con$v3_leq_c_d_leq22a,"v3_leq_C_22A")
## -999 bad good <NA>
## [1,] No. cases 668 4 24 847 1543
## [2,] Percent 43.3 0.3 1.6 54.9 100
B Impact (ordinal [0,1,2,3], v3_leq_C_22B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq22e_aend_karriere,v3_con$v3_leq_c_d_leq22e,"v3_leq_C_22B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 667 2 5 9 13 847 1543
## [2,] Percent 43.2 0.1 0.3 0.6 0.8 54.9 100
23. “Problem in school, college, or training program”
23A Nature (dichotomous [“good”,“bad”], v3_leq_C_23A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq23a_schulprob,v3_con$v3_leq_c_d_leq23a,"v3_leq_C_23A")
## -999 bad <NA>
## [1,] No. cases 682 14 847 1543
## [2,] Percent 44.2 0.9 54.9 100
23B Impact (ordinal [0,1,2,3], v3_leq_C_23B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq23e_schulprob,v3_con$v3_leq_c_d_leq23e,"v3_leq_C_23B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 681 2 3 6 4 847 1543
## [2,] Percent 44.1 0.1 0.2 0.4 0.3 54.9 100
Create dataset
v3_leq_C<-data.frame(v3_leq_C_20A,v3_leq_C_20B,v3_leq_C_21A,v3_leq_C_21B,v3_leq_C_22A,v3_leq_C_22B,v3_leq_C_23A,v3_leq_C_23B)
24. “Difficulty finding housing”
24A Nature (dichotomous [“good”,“bad”], v3_leq_D_24A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq24a_schw_wsuche,v3_con$v3_leq_c_d_leq24a,"v3_leq_D_24A")
## -999 bad good <NA>
## [1,] No. cases 655 33 8 847 1543
## [2,] Percent 42.4 2.1 0.5 54.9 100
24B Impact (ordinal [0,1,2,3], v3_leq_D_24B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq24e_schw_wsuche,v3_con$v3_leq_c_d_leq24e,"v3_leq_D_24B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 655 2 8 11 20 847 1543
## [2,] Percent 42.4 0.1 0.5 0.7 1.3 54.9 100
25. “Changing residence within the same town or city”
A Nature (dichotomous [“good”,“bad”], v3_leq_D_25A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq25a_umzug_nah,v3_con$v3_leq_c_d_leq25a,"v3_leq_D_25A")
## -999 bad good <NA>
## [1,] No. cases 662 4 30 847 1543
## [2,] Percent 42.9 0.3 1.9 54.9 100
B Impact (ordinal [0,1,2,3], v3_leq_D_25B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq25e_umzug_nah,v3_con$v3_leq_c_d_leq25e,"v3_leq_D_25B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 662 2 2 9 21 847 1543
## [2,] Percent 42.9 0.1 0.1 0.6 1.4 54.9 100
26. “Moving to a different town, city, state, or country”
26A Nature (dichotomous [“good”,“bad”], v3_leq_D_26A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq26a_umzug_fern,v3_con$v3_leq_c_d_leq26a,"v3_leq_D_26A")
## -999 bad good <NA>
## [1,] No. cases 674 3 19 847 1543
## [2,] Percent 43.7 0.2 1.2 54.9 100
26B Impact (ordinal [0,1,2,3], v3_leq_D_26B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq26e_umzug_fern,v3_con$v3_leq_c_d_leq26e,"v3_leq_D_26B")
## -999 1 2 3 <NA>
## [1,] No. cases 674 3 3 16 847 1543
## [2,] Percent 43.7 0.2 0.2 1 54.9 100
27. “Major change in your life conditions (home improvements or a decline in your home or neighborhood)”
27A Nature (dichotomous [“good”,“bad”], v3_leq_D_27A)
v3_leq_a_recode(v3_clin$v3_leq_c_d_leq27a_veraend_lu,v3_con$v3_leq_c_d_leq27a,"v3_leq_D_27A")
## -999 bad good <NA>
## [1,] No. cases 604 35 57 847 1543
## [2,] Percent 39.1 2.3 3.7 54.9 100
27B Impact (ordinal [0,1,2,3], v3_leq_D_27B)
v3_leq_b_recode(v3_clin$v3_leq_c_d_leq27e_veraend_lu,v3_con$v3_leq_c_d_leq27e,"v3_leq_D_27B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 603 4 19 42 28 847 1543
## [2,] Percent 39.1 0.3 1.2 2.7 1.8 54.9 100
Create dataset
v3_leq_D<-data.frame(v3_leq_D_24A,v3_leq_D_24B,v3_leq_D_25A,v3_leq_D_25B,v3_leq_D_26A,
v3_leq_D_26B,v3_leq_D_27A,v3_leq_D_27B)
28. “Began a new, close, personal relationship”
28A Nature (dichotomous [“good”,“bad”], v3_leq_E_28A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq28a_neue_bez,v3_con$v3_leq_e_leq28a,"v3_leq_E_28A")
## -999 bad good <NA>
## [1,] No. cases 634 3 59 847 1543
## [2,] Percent 41.1 0.2 3.8 54.9 100
28B Impact (ordinal [0,1,2,3], v3_leq_E_28B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq28e_neue_bez,v3_con$v3_leq_e_leq28e,"v3_leq_E_28B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 633 4 7 26 26 847 1543
## [2,] Percent 41 0.3 0.5 1.7 1.7 54.9 100
29. “Became engaged”
29A Nature (dichotomous [“good”,“bad”], v3_leq_E_29A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq29a_verlobung,v3_con$v3_leq_e_leq29a,"v3_leq_E_29A")
## -999 good <NA>
## [1,] No. cases 689 7 847 1543
## [2,] Percent 44.7 0.5 54.9 100
29B Impact (ordinal [0,1,2,3], v3_leq_E_29B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq29e_verlobung,v3_con$v3_leq_e_leq29e,"v3_leq_E_29B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 688 1 1 2 4 847 1543
## [2,] Percent 44.6 0.1 0.1 0.1 0.3 54.9 100
30. “Girlfriend or boyfriend problems”
30A Nature (dichotomous [“good”,“bad”], v3_leq_E_30A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq30a_prob_partner,v3_con$v3_leq_e_leq30a,"v3_leq_E_30A")
## -999 bad good <NA>
## [1,] No. cases 611 81 4 847 1543
## [2,] Percent 39.6 5.2 0.3 54.9 100
30B Impact (ordinal [0,1,2,3], v3_leq_E_30B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq30e_prob_partner,v3_con$v3_leq_e_leq30e,"v3_leq_E_30B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 610 4 18 39 25 847 1543
## [2,] Percent 39.5 0.3 1.2 2.5 1.6 54.9 100
31. “Breaking up with a girlfriend or breaking an engagement”
31A Nature (dichotomous [“good”,“bad”], v3_leq_E_31A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq31a_trennung,v3_con$v3_leq_e_leq31a,"v3_leq_E_31A")
## -999 bad good <NA>
## [1,] No. cases 652 27 17 847 1543
## [2,] Percent 42.3 1.7 1.1 54.9 100
31B Impact (ordinal [0,1,2,3], v3_leq_E_31B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq31e_trennung,v3_con$v3_leq_e_leq31e,"v3_leq_E_31B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 652 2 6 14 22 847 1543
## [2,] Percent 42.3 0.1 0.4 0.9 1.4 54.9 100
32. “(Male) Wife or girlfriend’s pregnancy”
32A Nature (dichotomous [“good”,“bad”], v3_leq_E_32A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq32a_schwanger_p,v3_con$v3_leq_e_leq32a,"v3_leq_E_32A")
## -999 good <NA>
## [1,] No. cases 693 3 847 1543
## [2,] Percent 44.9 0.2 54.9 100
32B Impact (ordinal [0,1,2,3], v3_leq_E_32B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq32e_schwanger_p,v3_con$v3_leq_e_leq32e,"v3_leq_E_32B")
## -999 0 3 <NA>
## [1,] No. cases 693 1 2 847 1543
## [2,] Percent 44.9 0.1 0.1 54.9 100
33. “(Male) Wife or girlfriend having a miscarriage or abortion”
33A Nature (dichotomous [“good”,“bad”], v3_leq_E_33A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq33a_fehlg_abtr_p,v3_con$v3_leq_e_leq33a,"v3_leq_E_33A")
## -999 <NA>
## [1,] No. cases 696 847 1543
## [2,] Percent 45.1 54.9 100
33B Impact (ordinal [0,1,2,3], v3_leq_E_33B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq33e_fehlg_abtr_p,v3_con$v3_leq_e_leq33e,"v3_leq_E_33B")
## -999 <NA>
## [1,] No. cases 696 847 1543
## [2,] Percent 45.1 54.9 100
34. “Getting married (or beginning to live with someone)”
34A Nature (dichotomous [“good”,“bad”], v3_leq_E_34A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq34a_heirat,v3_con$v3_leq_e_leq34a,"v3_leq_E_34A")
## -999 bad good <NA>
## [1,] No. cases 682 2 12 847 1543
## [2,] Percent 44.2 0.1 0.8 54.9 100
34B Impact (ordinal [0,1,2,3], v3_leq_E_34B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq34e_heirat,v3_con$v3_leq_e_leq34e,"v3_leq_E_34B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 682 2 4 5 3 847 1543
## [2,] Percent 44.2 0.1 0.3 0.3 0.2 54.9 100
35. “A change in closeness with your partner”
35A Nature (dichotomous [“good”,“bad”], v3_leq_E_35A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq35a_veraend_naehe,v3_con$v3_leq_e_leq35a,"v3_leq_E_35A")
## -999 bad good <NA>
## [1,] No. cases 626 31 39 847 1543
## [2,] Percent 40.6 2 2.5 54.9 100
35B Impact (ordinal [0,1,2,3], v3_leq_E_35B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq35e_veraend_naehe,v3_con$v3_leq_e_leq35e,"v3_leq_E_35B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 625 3 12 26 30 847 1543
## [2,] Percent 40.5 0.2 0.8 1.7 1.9 54.9 100
36. “Infidelity”
36A Nature (dichotomous [“good”,“bad”], v3_leq_E_36A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq36a_untreue,v3_con$v3_leq_e_leq36a,"v3_leq_E_36A")
## -999 bad good <NA>
## [1,] No. cases 681 14 1 847 1543
## [2,] Percent 44.1 0.9 0.1 54.9 100
36B Impact (ordinal [0,1,2,3], v3_leq_E_36B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq36e_untreue,v3_con$v3_leq_e_leq36e,"v3_leq_E_36B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 680 1 6 4 5 847 1543
## [2,] Percent 44.1 0.1 0.4 0.3 0.3 54.9 100
37. “Trouble with in-laws”
37A Nature (dichotomous [“good”,“bad”], v3_leq_E_37A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq37a_konf_schwiege,v3_con$v3_leq_e_leq37a,"v3_leq_E_37A")
## -999 bad good <NA>
## [1,] No. cases 670 24 2 847 1543
## [2,] Percent 43.4 1.6 0.1 54.9 100
37B Impact (ordinal [0,1,2,3], v3_leq_E_37B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq37e_konf_schwiege,v3_con$v3_leq_e_leq37e,"v3_leq_E_37B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 669 2 11 7 7 847 1543
## [2,] Percent 43.4 0.1 0.7 0.5 0.5 54.9 100
38. “Separation from spouse or partner due to conflict”
38A Nature (dichotomous [“good”,“bad”], v3_leq_E_38A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq38a_trennung_str,v3_con$v3_leq_e_leq38a,"v3_leq_E_38A")
## -999 bad good <NA>
## [1,] No. cases 688 4 4 847 1543
## [2,] Percent 44.6 0.3 0.3 54.9 100
38B Impact (ordinal [0,1,2,3], v3_leq_E_38B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq38e_trennung_str,v3_con$v3_leq_e_leq38e,"v3_leq_E_38B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 686 2 2 2 4 847 1543
## [2,] Percent 44.5 0.1 0.1 0.1 0.3 54.9 100
39. “Separation from spouse or partner due to work, travel, etc.”
39A Nature (dichotomous [“good”,“bad”], v3_leq_E_39A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq39a_trennung_ber,v3_con$v3_leq_e_leq39a,"v3_leq_E_39A")
## -999 bad good <NA>
## [1,] No. cases 692 3 1 847 1543
## [2,] Percent 44.8 0.2 0.1 54.9 100
39B Impact (ordinal [0,1,2,3], v3_leq_E_39B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq39e_trennung_ber,v3_con$v3_leq_e_leq39e,"v3_leq_E_39B")
## -999 0 2 3 <NA>
## [1,] No. cases 691 2 2 1 847 1543
## [2,] Percent 44.8 0.1 0.1 0.1 54.9 100
40. “Reconciliation with spouse or partner”
40A Nature (dichotomous [“good”,“bad”], v3_leq_E_40A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq40a_versoehnung,v3_con$v3_leq_e_leq40a,"v3_leq_E_40A")
## -999 good <NA>
## [1,] No. cases 681 15 847 1543
## [2,] Percent 44.1 1 54.9 100
40B Impact (ordinal [0,1,2,3], v3_leq_E_40B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq40a_versoehnung,v3_con$v3_leq_e_leq40e,"v3_leq_E_40B")
## -999 1 2 3 <NA>
## [1,] No. cases 681 13 1 1 847 1543
## [2,] Percent 44.1 0.8 0.1 0.1 54.9 100
41. “Divorce”
41A Nature (dichotomous [“good”,“bad”], v3_leq_E_41A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq41a_scheidung,v3_con$v3_leq_e_leq41a,"v3_leq_E_41A")
## -999 bad good <NA>
## [1,] No. cases 688 4 4 847 1543
## [2,] Percent 44.6 0.3 0.3 54.9 100
41B Impact (ordinal [0,1,2,3], v3_leq_E_41B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq41e_scheidung,v3_con$v3_leq_e_leq41e,"v3_leq_E_41B")
## -999 0 2 3 <NA>
## [1,] No. cases 687 3 2 4 847 1543
## [2,] Percent 44.5 0.2 0.1 0.3 54.9 100
42. “Change in your spouse or partner’s work outside the home (beginning work, ceasing work, changing jobs, retirement, etc.”
42A Nature (dichotomous [“good”,“bad”], v3_leq_E_42A)
v3_leq_a_recode(v3_clin$v3_leq_e_leq42a_veraend_taet,v3_con$v3_leq_e_leq42a,"v3_leq_E_42A")
## -999 bad good <NA>
## [1,] No. cases 667 6 23 847 1543
## [2,] Percent 43.2 0.4 1.5 54.9 100
42B Impact (ordinal [0,1,2,3], v3_leq_E_42B)
v3_leq_b_recode(v3_clin$v3_leq_e_leq42e_veraend_taet,v3_con$v3_leq_e_leq42e,"v3_leq_E_42B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 666 2 8 11 9 847 1543
## [2,] Percent 43.2 0.1 0.5 0.7 0.6 54.9 100
Create dataset
v3_leq_E<-data.frame(v3_leq_E_28A,v3_leq_E_28B,v3_leq_E_29A,v3_leq_E_29B,v3_leq_E_30A,
v3_leq_E_30B,v3_leq_E_31A,v3_leq_E_31B,v3_leq_E_32A,v3_leq_E_32B,
v3_leq_E_33A,v3_leq_E_33B,v3_leq_E_34A,v3_leq_E_34B,v3_leq_E_35A,
v3_leq_E_35B,v3_leq_E_36A,v3_leq_E_36B,v3_leq_E_37A,v3_leq_E_37B,
v3_leq_E_38A,v3_leq_E_38B,v3_leq_E_39A,v3_leq_E_39B,v3_leq_E_40A,
v3_leq_E_40B,v3_leq_E_41A,v3_leq_E_41B,v3_leq_E_42A,v3_leq_E_42B)
43. “Gain of a new family member (through birth, adoption, relative moving in, etc)”
43A Nature (dichotomous [“good”,“bad”], v3_leq_F_43A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq43a_neu_fmitglied,v3_con$v3_leq_f_g_leq43a,"v3_leq_F_43A")
## -999 bad good <NA>
## [1,] No. cases 659 3 34 847 1543
## [2,] Percent 42.7 0.2 2.2 54.9 100
43B Impact (ordinal [0,1,2,3], v3_leq_F_43B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq43e_neu_fmitglied,v3_con$v3_leq_f_g_leq43e,"v3_leq_F_43B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 658 6 9 12 11 847 1543
## [2,] Percent 42.6 0.4 0.6 0.8 0.7 54.9 100
44. “Child or family member leaving home (due to marriage, to attend college, or for some other reason)”
44A Nature (dichotomous [“good”,“bad”], v3_leq_F_44A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq44a_auszug_fm,v3_con$v3_leq_f_g_leq44a,"v3_leq_F_44A")
## -999 bad good <NA>
## [1,] No. cases 680 6 10 847 1543
## [2,] Percent 44.1 0.4 0.6 54.9 100
44B Impact (ordinal [0,1,2,3], v3_leq_F_44B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq44e_auszug_fm,v3_con$v3_leq_f_g_leq44e,"v3_leq_F_44B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 679 3 4 4 6 847 1543
## [2,] Percent 44 0.2 0.3 0.3 0.4 54.9 100
45. “Major change in the health or behavior of a family member or close friend (illness, accidents, drug or disciplinary problems, etc.)”
45A Nature (dichotomous [“good”,“bad”], v3_leq_F_45A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq45a_gz_verh_fm,v3_con$v3_leq_f_g_leq45a,"v3_leq_F_45A")
## -999 bad good <NA>
## [1,] No. cases 585 99 12 847 1543
## [2,] Percent 37.9 6.4 0.8 54.9 100
45B Impact (ordinal [0,1,2,3], v3_leq_F_45B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq45e_gz_verh_fm,v3_con$v3_leq_f_g_leq45e,"v3_leq_F_45B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 584 7 25 43 37 847 1543
## [2,] Percent 37.8 0.5 1.6 2.8 2.4 54.9 100
46. “Death of spouse or partner”
46A Nature (dichotomous [“good”,“bad”], v3_leq_F_46A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq46a_tod_partner,v3_con$v3_leq_f_g_leq46a,"v3_leq_F_46A")
## -999 bad <NA>
## [1,] No. cases 695 1 847 1543
## [2,] Percent 45 0.1 54.9 100
46B Impact (ordinal [0,1,2,3], v3_leq_F_46B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq46e_tod_partner,v3_con$v3_leq_f_g_leq46e,"v3_leq_F_46B")
## -999 0 2 <NA>
## [1,] No. cases 693 2 1 847 1543
## [2,] Percent 44.9 0.1 0.1 54.9 100
47. “Death of a child”
47A Nature (dichotomous [“good”,“bad”], v3_leq_F_47A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq47a_tod_kind,v3_con$v3_leq_f_g_leq47a,"v3_leq_F_47A")
## -999 bad <NA>
## [1,] No. cases 694 2 847 1543
## [2,] Percent 45 0.1 54.9 100
47B Impact (ordinal [0,1,2,3], v3_leq_F_47B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq47e_tod_kind,v3_con$v3_leq_f_g_leq47e,"v3_leq_F_47B")
## -999 0 3 <NA>
## [1,] No. cases 692 2 2 847 1543
## [2,] Percent 44.8 0.1 0.1 54.9 100
48. “Death of family member or close friend”
48A Nature (dichotomous [“good”,“bad”], v3_leq_F_48A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq48a_tod_fm_ef,v3_con$v3_leq_f_g_leq48a,"v3_leq_F_48A")
## -999 bad good <NA>
## [1,] No. cases 637 55 4 847 1543
## [2,] Percent 41.3 3.6 0.3 54.9 100
48B Impact (ordinal [0,1,2,3], v3_leq_F_48B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq48e_tod_fm_ef,v3_con$v3_leq_f_g_leq48e,"v3_leq_F_48B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 635 10 15 14 22 847 1543
## [2,] Percent 41.2 0.6 1 0.9 1.4 54.9 100
49. “Birth of a grandchild”
49A Nature (dichotomous [“good”,“bad”], v3_leq_F_49A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq49a_geb_enkel,v3_con$v3_leq_f_g_leq49a,"v3_leq_F_49A")
## -999 good <NA>
## [1,] No. cases 683 13 847 1543
## [2,] Percent 44.3 0.8 54.9 100
49B Impact (ordinal [0,1,2,3], v3_leq_F_49B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq49e_geb_enkel,v3_con$v3_leq_f_g_leq49e,"v3_leq_F_49B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 682 1 4 2 7 847 1543
## [2,] Percent 44.2 0.1 0.3 0.1 0.5 54.9 100
50. “Change in marital status of your parents”
50A Nature (dichotomous [“good”,“bad”], v3_leq_F_50A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq50a_fstand_eltern,v3_con$v3_leq_f_g_leq50a,"v3_leq_F_50A")
## -999 bad good <NA>
## [1,] No. cases 691 3 2 847 1543
## [2,] Percent 44.8 0.2 0.1 54.9 100
50B Impact (ordinal [0,1,2,3], v3_leq_F_50B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq50e_fstand_eltern,v3_con$v3_leq_f_g_leq50e,"v3_leq_F_50B")
## -999 0 1 3 <NA>
## [1,] No. cases 690 1 2 3 847 1543
## [2,] Percent 44.7 0.1 0.1 0.2 54.9 100
Create dataset
v3_leq_F<-data.frame(v3_leq_F_43A,v3_leq_F_43B,v3_leq_F_44A,v3_leq_F_44B,v3_leq_F_45A,
v3_leq_F_45B,v3_leq_F_46A,v3_leq_F_46B,v3_leq_F_47A,v3_leq_F_47B,
v3_leq_F_48A,v3_leq_F_48B,v3_leq_F_49A,v3_leq_F_49B,v3_leq_F_50A,
v3_leq_F_50B)
51. “Change in child care arrangements”
51A Nature (dichotomous [“good”,“bad”], v3_leq_G_51A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq51a_kindbetr,v3_con$v3_leq_f_g_leq51a,"v3_leq_G_51A")
## -999 bad good <NA>
## [1,] No. cases 680 3 13 847 1543
## [2,] Percent 44.1 0.2 0.8 54.9 100
51B Impact (ordinal [0,1,2,3], v3_leq_G_51B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq51e_kindbetr,v3_con$v3_leq_f_g_leq51e,"v3_leq_G_51B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 679 1 4 4 8 847 1543
## [2,] Percent 44 0.1 0.3 0.3 0.5 54.9 100
52. “Conflicts with spouse or partner about parenting”
52A Nature (dichotomous [“good”,“bad”], v3_leq_G_52A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq52a_konf_eschaft,v3_con$v3_leq_f_g_leq52a,"v3_leq_G_52A")
## -999 bad good <NA>
## [1,] No. cases 687 7 2 847 1543
## [2,] Percent 44.5 0.5 0.1 54.9 100
52B Impact (ordinal [0,1,2,3], v3_leq_G_52B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq52e_konf_eschaft,v3_con$v3_leq_f_g_leq52e,"v3_leq_G_52B")
## -999 1 2 3 <NA>
## [1,] No. cases 686 5 4 1 847 1543
## [2,] Percent 44.5 0.3 0.3 0.1 54.9 100
53. “Conflicts with child’s grandparents (or other important person) about parenting”
53A Nature (dichotomous [“good”,“bad”], v3_leq_G_53A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq53a_konf_geltern,v3_con$v3_leq_f_g_leq53a,"v3_leq_G_53A")
## -999 bad good <NA>
## [1,] No. cases 689 6 1 847 1543
## [2,] Percent 44.7 0.4 0.1 54.9 100
53B Impact (ordinal [0,1,2,3], v3_leq_G_53B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq53e_konf_geltern,v3_con$v3_leq_f_g_leq53e,"v3_leq_G_53B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 688 1 1 2 4 847 1543
## [2,] Percent 44.6 0.1 0.1 0.1 0.3 54.9 100
54. “Taking on full responsibility for parenting as a single parent”
54A Nature (dichotomous [“good”,“bad”], v3_leq_G_54A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq54a_alleinerz,v3_con$v3_leq_f_g_leq54a,"v3_leq_G_54A")
## -999 good <NA>
## [1,] No. cases 692 4 847 1543
## [2,] Percent 44.8 0.3 54.9 100
54B Impact (ordinal [0,1,2,3], v3_leq_G_54B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq54e_alleinerz,v3_con$v3_leq_f_g_leq54e,"v3_leq_G_54B")
## -999 0 2 3 <NA>
## [1,] No. cases 691 1 2 2 847 1543
## [2,] Percent 44.8 0.1 0.1 0.1 54.9 100
55. “Custody battles with former spouse or partner”
55A Nature (dichotomous [“good”,“bad”], v3_leq_G_55A)
v3_leq_a_recode(v3_clin$v3_leq_f_g_leq55a_sorgerecht,v3_con$v3_leq_f_g_leq55a,"v3_leq_G_55A")
## -999 bad good <NA>
## [1,] No. cases 689 6 1 847 1543
## [2,] Percent 44.7 0.4 0.1 54.9 100
55B Impact (ordinal [0,1,2,3], v3_leq_G_55B)
v3_leq_b_recode(v3_clin$v3_leq_f_g_leq55e_sorgerecht,v3_con$v3_leq_f_g_leq55e,"v3_leq_G_55B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 688 2 2 1 3 847 1543
## [2,] Percent 44.6 0.1 0.1 0.1 0.2 54.9 100
Create dataset
v3_leq_G<-data.frame(v3_leq_G_51A,v3_leq_G_51B,v3_leq_G_52A,v3_leq_G_52B,v3_leq_G_53A,
v3_leq_G_53B,v3_leq_G_54A,v3_leq_G_54B,v3_leq_G_55A,v3_leq_G_55B)
69. “Major change in finances (increased or decreased income)”
69A Nature (dichotomous [“good”,“bad”], v3_leq_I_69A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq69a_finanz_sit,v3_con$v3_leq_i_j_k_leq69a,"v3_leq_I_69A")
## -999 bad good <NA>
## [1,] No. cases 541 61 94 847 1543
## [2,] Percent 35.1 4 6.1 54.9 100
69B Impact (ordinal [0,1,2,3], v3_leq_I_69B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq69e_finanz_sit,v3_con$v3_leq_i_j_k_leq69e,"v3_leq_I_69B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 537 8 39 56 56 847 1543
## [2,] Percent 34.8 0.5 2.5 3.6 3.6 54.9 100
70. “Took on a moderate purchase, such as TV, car, freezer, etc.”
70A Nature (dichotomous [“good”,“bad”], v3_leq_I_70A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq70a_finanz_verpfl,v3_con$v3_leq_i_j_k_leq70a,"v3_leq_I_70A")
## -999 bad good <NA>
## [1,] No. cases 650 14 32 847 1543
## [2,] Percent 42.1 0.9 2.1 54.9 100
70B Impact (ordinal [0,1,2,3], v3_leq_I_70B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq70e_finanz_verpfl,v3_con$v3_leq_i_j_k_leq70e,"v3_leq_I_70B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 649 3 17 18 9 847 1543
## [2,] Percent 42.1 0.2 1.1 1.2 0.6 54.9 100
71. “Took on a major purchase or a mortgage loan, such as a home, business, property, etc”
71A Nature (dichotomous [“good”,“bad”], v3_leq_I_71A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq71a_hypothek,v3_con$v3_leq_i_j_k_leq71a,"v3_leq_I_71A")
## -999 bad good <NA>
## [1,] No. cases 686 5 5 847 1543
## [2,] Percent 44.5 0.3 0.3 54.9 100
71B Impact (ordinal [0,1,2,3], v3_leq_I_71B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq71e_hypothek,v3_con$v3_leq_i_j_k_leq71e,"v3_leq_I_71B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 685 2 1 4 4 847 1543
## [2,] Percent 44.4 0.1 0.1 0.3 0.3 54.9 100
72. “Experienced a foreclosure on a mortgage or loan”
72A Nature (dichotomous [“good”,“bad”], v3_leq_I_72A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq72a_hypoth_kuend,v3_con$v3_leq_i_j_k_leq72a,"v3_leq_I_72A")
## -999 bad good <NA>
## [1,] No. cases 687 1 8 847 1543
## [2,] Percent 44.5 0.1 0.5 54.9 100
72B Impact (ordinal [0,1,2,3], v3_leq_I_72B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq72e_hypoth_kuend,v3_con$v3_leq_i_j_k_leq72e,"v3_leq_I_72B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 686 2 1 4 3 847 1543
## [2,] Percent 44.5 0.1 0.1 0.3 0.2 54.9 100
73. “Credit rating difficulties”
73A Nature (dichotomous [“good”,“bad”], v3_leq_I_73A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq73a_kreditwuerdk,v3_con$v3_leq_i_j_k_leq73a,"v3_leq_I_73A")
## -999 bad <NA>
## [1,] No. cases 675 21 847 1543
## [2,] Percent 43.7 1.4 54.9 100
73B Impact (ordinal [0,1,2,3], v3_leq_I_73B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq73e_kreditwuerdk,v3_con$v3_leq_i_j_k_leq73e,"v3_leq_I_73B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 673 5 3 5 10 847 1543
## [2,] Percent 43.6 0.3 0.2 0.3 0.6 54.9 100
Create dataset
v3_leq_I<-data.frame(v3_leq_I_69A,v3_leq_I_69B,v3_leq_I_70A,v3_leq_I_70B,v3_leq_I_71A,
v3_leq_I_71B,v3_leq_I_72A,v3_leq_I_72B,v3_leq_I_73A,v3_leq_I_73B)
74. “Being robbed or victim of identity theft”
74A Nature (dichotomous [“good”,“bad”], v3_leq_J_74A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq74a_opf_diebstahl,v3_con$v3_leq_i_j_k_leq74a,"v3_leq_J_74A")
## -999 bad good <NA>
## [1,] No. cases 670 25 1 847 1543
## [2,] Percent 43.4 1.6 0.1 54.9 100
74B Impact (ordinal [0,1,2,3], v3_leq_J_74B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq74e_opf_diebstahl,v3_con$v3_leq_i_j_k_leq74e,"v3_leq_J_74B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 668 6 9 7 6 847 1543
## [2,] Percent 43.3 0.4 0.6 0.5 0.4 54.9 100
75. “Being a victim of a violent act (rape, assault, etc.)”
75A Nature (dichotomous [“good”,“bad”], v3_leq_J_75A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq75a_opf_gewalttat,v3_con$v3_leq_i_j_k_leq75a,"v3_leq_J_75A")
## -999 bad <NA>
## [1,] No. cases 689 7 847 1543
## [2,] Percent 44.7 0.5 54.9 100
75B Impact (ordinal [0,1,2,3], v3_leq_J_75B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq75e_opf_gewalttat,v3_con$v3_leq_i_j_k_leq75e,"v3_leq_J_75B")
## -999 0 2 3 <NA>
## [1,] No. cases 687 3 2 4 847 1543
## [2,] Percent 44.5 0.2 0.1 0.3 54.9 100
76. “Involved in an accident”
76A Nature (dichotomous [“good”,“bad”], v3_leq_J_76A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq76a_unfall,v3_con$v3_leq_i_j_k_leq76a,"v3_leq_J_76A")
## -999 bad <NA>
## [1,] No. cases 678 18 847 1543
## [2,] Percent 43.9 1.2 54.9 100
76B Impact (ordinal [0,1,2,3], v3_leq_J_76B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq76e_unfall,v3_con$v3_leq_i_j_k_leq76e,"v3_leq_J_76B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 676 5 8 3 4 847 1543
## [2,] Percent 43.8 0.3 0.5 0.2 0.3 54.9 100
77. “Involved in a law suit”
77A Nature (dichotomous [“good”,“bad”], v3_leq_J_77A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq77a_rechtsstreit,v3_con$v3_leq_i_j_k_leq77a,"v3_leq_J_77A")
## -999 bad good <NA>
## [1,] No. cases 662 23 11 847 1543
## [2,] Percent 42.9 1.5 0.7 54.9 100
77B Impact (ordinal [0,1,2,3], v3_leq_J_77B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq77e_rechtsstreit,v3_con$v3_leq_i_j_k_leq77e,"v3_leq_J_77B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 660 3 12 7 14 847 1543
## [2,] Percent 42.8 0.2 0.8 0.5 0.9 54.9 100
78. “Involved in a minor violation of the law (traffic tickets, disturbing the peace, etc)”
78A Nature (dichotomous [“good”,“bad”], v3_leq_J_78A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq78a_owi,v3_con$v3_leq_i_j_k_leq78a,"v3_leq_J_78A")
## -999 bad good <NA>
## [1,] No. cases 665 30 1 847 1543
## [2,] Percent 43.1 1.9 0.1 54.9 100
78B Impact (ordinal [0,1,2,3], v3_leq_J_78B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq78e_owi,v3_con$v3_leq_i_j_k_leq78e,"v3_leq_J_78B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 663 12 11 6 4 847 1543
## [2,] Percent 43 0.8 0.7 0.4 0.3 54.9 100
79. “Legal troubles resulting in your being arrested or held in jail”
79A Nature (dichotomous [“good”,“bad”], v3_leq_J_79A)
v3_leq_a_recode(v3_clin$v3_leq_i_j_k_leq79a_konf_gesetz,v3_con$v3_leq_i_j_k_leq79a,"v3_leq_J_79A")
## -999 bad <NA>
## [1,] No. cases 692 4 847 1543
## [2,] Percent 44.8 0.3 54.9 100
79B Impact (ordinal [0,1,2,3], v3_leq_J_79B)
v3_leq_b_recode(v3_clin$v3_leq_i_j_k_leq79e_konf_gesetz,v3_con$v3_leq_i_j_k_leq79e,"v3_leq_J_79B")
## -999 0 2 3 <NA>
## [1,] No. cases 691 2 1 2 847 1543
## [2,] Percent 44.8 0.1 0.1 0.1 54.9 100
Create dataset
v3_leq_J<-data.frame(v3_leq_J_74A,v3_leq_J_74B,v3_leq_J_75A,v3_leq_J_75B,v3_leq_J_76A,
v3_leq_J_76B,v3_leq_J_77A,v3_leq_J_77B,v3_leq_J_78A,v3_leq_J_78B,
v3_leq_J_79A,v3_leq_J_79B)
Create LEQ dataset
v3_leq<-data.frame(v3_leq_A,v3_leq_B,v3_leq_C,v3_leq_D,v3_leq_E,v3_leq_F,v3_leq_G,
v3_leq_H,v3_leq_I,v3_leq_J)
For explanation, please refer to the section in Visit 1
1. “How would you rate your quality of life?” (ordinal [1,2,3,4,5], v3_whoqol_itm1)
v3_quol_recode(v3_clin$v3_whoqol_bref_who1_lebensqualitaet,v3_con$v3_whoqol_bref_who1,"v3_whoqol_itm1",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 45 185 336 149 817 1543
## [2,] Percent 0.7 2.9 12 21.8 9.7 52.9 100
2. “How satisfied are you with your health? (ordinal [1,2,3,4,5], v3_whoqol_itm2)”
v3_quol_recode(v3_clin$v3_whoqol_bref_who2_gesundheit,v3_con$v3_whoqol_bref_who2,"v3_whoqol_itm2",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 29 127 149 308 114 816 1543
## [2,] Percent 1.9 8.2 9.7 20 7.4 52.9 100
3. “To what extent do you feel that physical pain prevents you from doing what you need to do?” (ordinal [1,2,3,4,5], v3_whoqol_itm3)
Coding reversed so that higher scores mean less impairment by pain.
v3_quol_recode(v3_clin$v3_whoqol_bref_who3_schmerzen,v3_con$v3_whoqol_bref_who3,"v3_whoqol_itm3",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 7 31 66 144 474 821 1543
## [2,] Percent 0.5 2 4.3 9.3 30.7 53.2 100
4. “How much do you need any medical treatment to function in your daily life? (ordinal [1,2,3,4,5], v3_whoqol_itm4)”
Coding reversed so that higher scores mean less dependence on medical treatment.
v3_quol_recode(v3_clin$v3_whoqol_bref_who4_med_behand,v3_con$v3_whoqol_bref_who4,"v3_whoqol_itm4",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 83 141 91 127 280 821 1543
## [2,] Percent 5.4 9.1 5.9 8.2 18.1 53.2 100
5. “How much do you enjoy life?” (ordinal [1,2,3,4,5], v3_whoqol_itm5)
v3_quol_recode(v3_clin$v3_whoqol_bref_who5_lebensgenuss,v3_con$v3_whoqol_bref_who5,"v3_whoqol_itm5",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 19 71 194 320 120 819 1543
## [2,] Percent 1.2 4.6 12.6 20.7 7.8 53.1 100
6. “To what extent do ou feel your life to be meaningful?” (ordinal [1,2,3,4,5], v3_whoqol_itm6)
v3_quol_recode(v3_clin$v3_whoqol_bref_who6_lebenssinn,v3_con$v3_whoqol_bref_who6,"v3_whoqol_itm6",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 32 71 143 269 206 822 1543
## [2,] Percent 2.1 4.6 9.3 17.4 13.4 53.3 100
7. “How well are you able to concentrate?” (ordinal [1,2,3,4,5], v3_whoqol_itm7)
v3_quol_recode(v3_clin$v3_whoqol_bref_who7_konzentration,v3_con$v3_whoqol_bref_who7,"v3_whoqol_itm7",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 12 101 259 300 55 816 1543
## [2,] Percent 0.8 6.5 16.8 19.4 3.6 52.9 100
8. “How safe do you feel in your daily life?” (ordinal [1,2,3,4,5], v3_whoqol_itm8)
v3_quol_recode(v3_clin$v3_whoqol_bref_who8_sicherheit,v3_con$v3_whoqol_bref_who8,"v3_whoqol_itm8",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 46 160 348 161 817 1543
## [2,] Percent 0.7 3 10.4 22.6 10.4 52.9 100
9. “How healthy is your physical environment?” (ordinal [1,2,3,4,5], v3_whoqol_itm9)
v3_quol_recode(v3_clin$v3_whoqol_bref_who9_umweltbed,v3_con$v3_whoqol_bref_who9,"v3_whoqol_itm9",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 24 151 347 192 818 1543
## [2,] Percent 0.7 1.6 9.8 22.5 12.4 53 100
10. “Do you have enough energy for everyday life?” (ordinal [1,2,3,4,5], v3_whoqol_itm10)
v3_quol_recode(v3_clin$v3_whoqol_bref_who10_energie,v3_con$v3_whoqol_bref_who10,"v3_whoqol_itm10",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 12 55 164 305 191 816 1543
## [2,] Percent 0.8 3.6 10.6 19.8 12.4 52.9 100
11. “Are you able to accept your bodily appearance?” (ordinal [1,2,3,4,5], v3_whoqol_itm11)
v3_quol_recode(v3_clin$v3_whoqol_bref_who11_aussehen,v3_con$v3_whoqol_bref_who11,"v3_whoqol_itm11",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 17 44 140 324 200 818 1543
## [2,] Percent 1.1 2.9 9.1 21 13 53 100
12. “Have you enough money to meet your needs?” (ordinal [1,2,3,4,5], v3_whoqol_itm12)
v3_quol_recode(v3_clin$v3_whoqol_bref_who12_genug_geld,v3_con$v3_whoqol_bref_who12,"v3_whoqol_itm12",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 31 91 156 249 197 819 1543
## [2,] Percent 2 5.9 10.1 16.1 12.8 53.1 100
13. “How available to you is the information that you need in your day-to-day life?” (ordinal [1,2,3,4,5], v3_whoqol_itm13)
v3_quol_recode(v3_clin$v3_whoqol_bref_who13_infozugang,v3_con$v3_whoqol_bref_who13,"v3_whoqol_itm13",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 3 16 68 264 374 818 1543
## [2,] Percent 0.2 1 4.4 17.1 24.2 53 100
14. “To what extent do you have the opportunity for leisure activities?” (ordinal [1,2,3,4,5], v3_whoqol_itm14)
v3_quol_recode(v3_clin$v3_whoqol_bref_who14_freizeitaktiv,v3_con$v3_whoqol_bref_who14,"v3_whoqol_itm14",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 7 48 148 246 277 817 1543
## [2,] Percent 0.5 3.1 9.6 15.9 18 52.9 100
15. “How well are you able to get around? (ordinal [1,2,3,4,5], v3_whoqol_itm15)”
v3_quol_recode(v3_clin$v3_whoqol_bref_who15_fortbewegung,v3_con$v3_whoqol_bref_who15,"v3_whoqol_itm15",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 6 25 93 269 330 820 1543
## [2,] Percent 0.4 1.6 6 17.4 21.4 53.1 100
16. “How satisfied are you with your sleep?” (ordinal [1,2,3,4,5], v3_whoqol_itm16)
v3_quol_recode(v3_clin$v3_whoqol_bref_who16_schlaf,v3_con$v3_whoqol_bref_who16,"v3_whoqol_itm16",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 24 104 121 336 144 814 1543
## [2,] Percent 1.6 6.7 7.8 21.8 9.3 52.8 100
17. “How satisfied are you with your ability to perform your daily living activities?” (ordinal [1,2,3,4,5], v3_whoqol_itm17)
v3_quol_recode(v3_clin$v3_whoqol_bref_who17_alltag,v3_con$v3_whoqol_bref_who17,"v3_whoqol_itm17",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 15 74 119 348 174 813 1543
## [2,] Percent 1 4.8 7.7 22.6 11.3 52.7 100
18. “How satisfied are you with your capacity for work?” (ordinal [1,2,3,4,5], v3_whoqol_itm18)
v3_quol_recode(v3_clin$v3_whoqol_bref_who18_arbeitsfhgk,v3_con$v3_whoqol_bref_who18,"v3_whoqol_itm18",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 43 120 148 252 155 825 1543
## [2,] Percent 2.8 7.8 9.6 16.3 10 53.5 100
19. “How satisfied are you with yourself?” (ordinal [1,2,3,4,5], v3_whoqol_itm19)
v3_quol_recode(v3_clin$v3_whoqol_bref_who19_selbstzufried,v3_con$v3_whoqol_bref_who19,"v3_whoqol_itm19",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 23 81 166 345 111 817 1543
## [2,] Percent 1.5 5.2 10.8 22.4 7.2 52.9 100
20. “How satisfied are you with your personal relationships?” (ordinal [1,2,3,4,5], v3_whoqol_itm20)
v3_quol_recode(v3_clin$v3_whoqol_bref_who20_pers_bezieh,v3_con$v3_whoqol_bref_who20,"v3_whoqol_itm20",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 14 67 144 338 159 821 1543
## [2,] Percent 0.9 4.3 9.3 21.9 10.3 53.2 100
21. “How satisfied are you with your sex life?” (ordinal [1,2,3,4,5], v3_whoqol_itm21)
v3_quol_recode(v3_clin$v3_whoqol_bref_who21_sexualleben,v3_con$v3_whoqol_bref_who21,"v3_whoqol_itm21",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 67 110 210 207 114 835 1543
## [2,] Percent 4.3 7.1 13.6 13.4 7.4 54.1 100
22. “How satisfied are you with the support you get from your friends?” (ordinal [1,2,3,4,5], v3_whoqol_itm22)
v3_quol_recode(v3_clin$v3_whoqol_bref_who22_freunde,v3_con$v3_whoqol_bref_who22,"v3_whoqol_itm22",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 18 46 143 356 165 815 1543
## [2,] Percent 1.2 3 9.3 23.1 10.7 52.8 100
23. “How satisfied are you with the conditions of your living place?” (ordinal [1,2,3,4,5], v3_whoqol_itm23)
v3_quol_recode(v3_clin$v3_whoqol_bref_who23_wohnbeding,v3_con$v3_whoqol_bref_who23,"v3_whoqol_itm23",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 18 56 104 318 233 814 1543
## [2,] Percent 1.2 3.6 6.7 20.6 15.1 52.8 100
24. “How satisfied are you with your access to health services?” (ordinal [1,2,3,4,5], v3_whoqol_itm24)
v3_quol_recode(v3_clin$v3_whoqol_bref_who24_gesundhdiens,v3_con$v3_whoqol_bref_who24,"v3_whoqol_itm24",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 6 13 71 340 299 814 1543
## [2,] Percent 0.4 0.8 4.6 22 19.4 52.8 100
25. “How satisfied are you with your mode of transportation?” (ordinal [1,2,3,4,5], v3_whoqol_itm25)
v3_quol_recode(v3_clin$v3_whoqol_bref_who25_transport,v3_con$v3_whoqol_bref_who25,"v3_whoqol_itm25",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 8 30 86 293 311 815 1543
## [2,] Percent 0.5 1.9 5.6 19 20.2 52.8 100
26. “How often do you have negative feelings, such as blue mood, despair, anxiety, depression?” (ordinal [1,2,3,4,5], v3_whoqol_itm26)
Coding reversed so that higher scores mean symptoms less often.
v3_quol_recode(v3_clin$v3_whoqol_bref_who26_neg_gefuehle,v3_con$v3_whoqol_bref_who26,"v3_whoqol_itm26",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 15 82 186 284 161 815 1543
## [2,] Percent 1 5.3 12.1 18.4 10.4 52.8 100
Here, domain scores for Physical Health, Psychological, Social relationships and Environment are calculated from the WHOQOL single items, according to the scoring instructions given in Angermeyer et al. (2000).
Global (continuous [4-20],v3_whoqol_dom_glob)
v3_whoqol_dom_glob_df<-data.frame(as.numeric(v3_whoqol_itm1),as.numeric(v3_whoqol_itm2))
v3_who_glob_no_nas<-rowSums(is.na(v3_whoqol_dom_glob_df))
v3_whoqol_dom_glob<-ifelse((v3_who_glob_no_nas==0) | (v3_who_glob_no_nas==1),
rowMeans(v3_whoqol_dom_glob_df,na.rm=T)*4,NA)
v3_whoqol_dom_glob<-round(v3_whoqol_dom_glob,2)
summary(v3_whoqol_dom_glob)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 12.00 16.00 14.53 16.00 20.00 814
Physical Health (continuous [4-20],v3_whoqol_dom_phys)
v3_whoqol_dom_phys_df<-data.frame(as.numeric(v3_whoqol_itm3),as.numeric(v3_whoqol_itm10),as.numeric(v3_whoqol_itm16),as.numeric(v3_whoqol_itm15),as.numeric(v3_whoqol_itm17),as.numeric(v3_whoqol_itm4),as.numeric(v3_whoqol_itm18))
v3_who_phys_no_nas<-rowSums(is.na(v3_whoqol_dom_phys_df))
v3_whoqol_dom_phys<-ifelse((v3_who_phys_no_nas==0) | (v3_who_phys_no_nas==1),
rowMeans(v3_whoqol_dom_phys_df,na.rm=T)*4,NA)
v3_whoqol_dom_phys<-round(v3_whoqol_dom_phys,2)
summary(v3_whoqol_dom_phys)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 13.71 15.43 15.43 17.71 20.00 822
Psychological (continuous [4-20],v3_whoqol_dom_psy)
v3_whoqol_dom_psy_df<-data.frame(as.numeric(v3_whoqol_itm5),as.numeric(v3_whoqol_itm7),as.numeric(v3_whoqol_itm19),as.numeric(v3_whoqol_itm11),as.numeric(v3_whoqol_itm26),as.numeric(v3_whoqol_itm6))
v3_who_psy_no_nas<-rowSums(is.na(v3_whoqol_dom_psy_df))
v3_whoqol_dom_psy<-ifelse((v3_who_psy_no_nas==0) | (v3_who_psy_no_nas==1),
rowMeans(v3_whoqol_dom_psy_df,na.rm=T)*4,NA)
v3_whoqol_dom_psy<-round(v3_whoqol_dom_psy,2)
summary(v3_whoqol_dom_psy)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.67 12.67 15.33 14.64 16.67 20.00 818
Social relationships (continuous [4-20],v3_whoqol_dom_soc)
v3_whoqol_dom_soc_df<-data.frame(as.numeric(v3_whoqol_itm20),as.numeric(v3_whoqol_itm22),as.numeric(v3_whoqol_itm21))
v3_who_soc_no_nas<-rowSums(is.na(v3_whoqol_dom_soc_df))
v3_whoqol_dom_soc<-ifelse((v3_who_soc_no_nas==0) | (v3_who_soc_no_nas==1),
rowMeans(v3_whoqol_dom_soc_df,na.rm=T)*4,NA)
v3_whoqol_dom_soc<-round(v3_whoqol_dom_soc,2)
summary(v3_whoqol_dom_soc)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 12.00 14.67 14.51 16.00 20.00 817
Environment (continuous [4-20],v3_whoqol_dom_env)
v3_whoqol_dom_env_df<-data.frame(as.numeric(v3_whoqol_itm8),as.numeric(v3_whoqol_itm23),as.numeric(v3_whoqol_itm12),as.numeric(v3_whoqol_itm24),as.numeric(v3_whoqol_itm13),as.numeric(v3_whoqol_itm14),as.numeric(v3_whoqol_itm9),as.numeric(v3_whoqol_itm25))
v3_who_env_no_nas<-rowSums(is.na(v3_whoqol_dom_env_df))
v3_whoqol_dom_env<-ifelse((v3_who_env_no_nas==0) | (v3_who_env_no_nas==1),
rowMeans(v3_whoqol_dom_env_df,na.rm=T)*4,NA)
v3_whoqol_dom_env<-round(v3_whoqol_dom_env,2)
summary(v3_whoqol_dom_env)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 6.00 14.50 16.00 16.12 18.00 20.00 819
Create dataset
v3_whoqol<-data.frame(v3_whoqol_itm1,v3_whoqol_itm2,v3_whoqol_itm3,v3_whoqol_itm4,
v3_whoqol_itm5,v3_whoqol_itm6,v3_whoqol_itm7,v3_whoqol_itm8,
v3_whoqol_itm9,v3_whoqol_itm10,v3_whoqol_itm11,v3_whoqol_itm12,
v3_whoqol_itm13,v3_whoqol_itm14,v3_whoqol_itm15,v3_whoqol_itm16,
v3_whoqol_itm17,v3_whoqol_itm18,v3_whoqol_itm19,v3_whoqol_itm20,
v3_whoqol_itm21,v3_whoqol_itm22,v3_whoqol_itm23,v3_whoqol_itm24,
v3_whoqol_itm25,v3_whoqol_itm26,v3_whoqol_dom_glob,
v3_whoqol_dom_phys,v3_whoqol_dom_psy,v3_whoqol_dom_soc,
v3_whoqol_dom_env)
v3_df<-data.frame(v3_id,
v3_rec,
v3_clin_ill_ep,
v3_con_problems,
v3_dem,
v3_leprcp,
v3_suic,
v3_med,
v3_subst,
v3_symp_panss,
v3_symp_ids_c,
v3_symp_ymrs,
v3_ill_sev,
v3_nrpsy,
v3_sf12,
v3_cts,
v3_med_adh,
v3_bdi2,
v3_asrm,
v3_mss,
v3_leq,
v3_whoqol)
## [1] 1344
## [1] 329
v4_clin<-subset(v4_clin, as.character(v4_clin$mnppsd)%in%as.character(v1_clin$mnppsd))
dim(v4_clin)[1]
## [1] 1223
v4_con<-subset(v4_con, as.character(v4_con$mnppsd)%in%as.character(v1_con$mnppsd))
dim(v4_con)[1]
## [1] 320
v4_id<-as.factor(c(as.character(v4_clin$mnppsd),as.character(v4_con$mnppsd)))
v4_id<-as.factor(c(as.character(v4_clin$mnppsd),as.character(v4_con$mnppsd)))
v4_interv_date<-c(as.Date(as.character(v4_clin$v4_ausschluss1_rekr_datum), "%Y%m%d"),as.Date(as.character(v4_con$v4_rekru_visit_rekr_datum), "%Y%m%d"))
v4_age_years_clin<-as.numeric(substr(v4_clin$v4_ausschluss1_rekr_datum,1,4))-
as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,1,4))
v4_age_years_con<-as.numeric(substr(v4_con$v4_rekru_visit_rekr_datu,1,4))-
as.numeric(substr(v1_con$v1_demo1_gebdat,1,4))
v4_age_years<-c(v4_age_years_clin,v4_age_years_con)
v4_age<-ifelse(c(as.numeric(substr(v4_clin$v4_ausschluss1_rekr_datum,5,6)),as.numeric(substr(v4_con$v4_rekru_visit_rekr_datu,5,6)))<
c(as.numeric(substr(v1_clin$v1_demogr_s1_dem2_ses02_geb,5,6)),as.numeric(substr(v1_con$v1_demo1_gebdat,5,6))),
v4_age_years-1,v4_age_years)
summary(v4_age)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 19.00 36.00 48.00 46.51 56.00 79.00 997
Create dataset
v4_rec<-data.frame(v4_age,v4_interv_date)
Study participant are asked whether an acute illness episode occurred since the last study visit. Possible answers are “Y”-yes, “N”-no and “C”-chronic symptomatology. The latter category is for people which continually experience symptoms. If the answer was yes, additional questions were asked about the episodes, if not these are omitted. For participants with chronic symptomatology, the participant is asked about the nature of the chronic symptomatology (manic/depressive/mixed/psychotic) and answers are coded in the questions “Did you experience … symptoms during this illness episode?” (first illness episode).
Importantly, if the participant experienced multiple illness episodes since the last study visit, a set of questions (see below) is supposed to be answered for each illness episode. As most interviewers answered these questions only for a maximum of two illness episodes and few participants experienced more than two illness episodes, data are included only for the first two illness episodes.
“Did you experience an acute illness episode since the last study visit?” (categorical [Y, N, C], v4_clin_ill_ep_snc_lst)
v4_clin_ill_ep_snc_lst<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_ill_ep_snc_lst<-ifelse(c(v4_clin$v4_aktu_situat_aenderung_akt_sit,rep(-999,dim(v4_con)[1]))==1,"Y",
ifelse(c(v4_clin$v4_aktu_situat_aenderung_akt_sit,rep(-999,dim(v4_con)[1]))==2,"N",
ifelse(c(v4_clin$v4_aktu_situat_aenderung_akt_sit,rep(-999,dim(v4_con)[1]))==3,"C",v4_clin_ill_ep_snc_lst)))
v4_clin_ill_ep_snc_lst<-factor(v4_clin_ill_ep_snc_lst)
descT(v4_clin_ill_ep_snc_lst)
## -999 C N Y <NA>
## [1,] No. cases 320 58 279 139 747 1543
## [2,] Percent 20.7 3.8 18.1 9 48.4 100
“If yes, how many illness episodes? (continuous [no. illness episodes], v4_clin_no_ep)”
v4_clin_no_ep<-ifelse(v4_clin_ill_ep_snc_lst=="Y",c(v4_clin$v4_aktu_situat_anzahl_episoden,rep(-999,dim(v4_con)[1])),-999)
descT(v4_clin_no_ep)
## -999 1 2 3 5 <NA>
## [1,] No. cases 657 101 24 8 2 751 1543
## [2,] Percent 42.6 6.5 1.6 0.5 0.1 48.7 100
In the following, characteristics of each illness episode are assessed. Checkboxes are supposed to be ticked if a criterion applies. Please note that episodes can have more than one characteristic (e.g. episodes with both manic and psychotic symptoms).
“Did you experience manic symptoms during this illness episode?” (checkbox [Y], v4_clin_fst_ill_ep_man)
v4_clin_fst_ill_ep_man<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_man<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_manisch_31642_1,rep(-999,dim(v4_con)[1]))==1,"Y",
-999)
descT(v4_clin_fst_ill_ep_man)
## -999 Y <NA>
## [1,] No. cases 779 23 741 1543
## [2,] Percent 50.5 1.5 48 100
“Did you experience depressive symptoms during this illness episode?” (checkbox [Y], v4_clin_fst_ill_ep_dep)
v4_clin_fst_ill_ep_dep<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_dep<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_depressiv_31642_1,rep(-999,dim(v4_con)[1]))==1,"Y",
-999)
descT(v4_clin_fst_ill_ep_dep)
## -999 Y <NA>
## [1,] No. cases 736 66 741 1543
## [2,] Percent 47.7 4.3 48 100
“Did you experience mixed symptoms during this illness episode?” (checkbox [Y], v4_clin_fst_ill_ep_mx) This checkbox assesses whether this was a mixed mood episode (both depressive and manic symptoms present).
v4_clin_fst_ill_ep_mx<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_mx<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_gemischt_31642_1,rep(-999,dim(v4_con)[1]))==1,"Y",
-999)
descT(v4_clin_fst_ill_ep_mx)
## -999 Y <NA>
## [1,] No. cases 794 8 741 1543
## [2,] Percent 51.5 0.5 48 100
“Did you experience psychotic symptoms during this illness episode?” (checkbox [Y], v4_clin_fst_ill_ep_psy)
v4_clin_fst_ill_ep_psy<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_psy<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_psych_31642_1,rep(-999,dim(v4_con)[1]))==1,"Y",
-999)
descT(v4_clin_fst_ill_ep_psy)
## -999 Y <NA>
## [1,] No. cases 752 50 741 1543
## [2,] Percent 48.7 3.2 48 100
“How long did this episode last?” (ordinal [less than two weeks, two to four weeks, more than four weeks], v4_clin_fst_ill_ep_dur)
v4_clin_fst_ill_ep_dur<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_dur<-ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v4_con)[1]))==1,"less than two weeks",
ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v4_con)[1]))==2,"two to four weeks",
ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_dauer_31642_1,rep(-999,dim(v4_con)[1]))==3,"more than four weeks",
ifelse(v4_clin_ill_ep_snc_lst=="N",-999,v4_clin_fst_ill_ep_dur))))
v4_clin_fst_ill_ep_dur<-ordered(v4_clin_fst_ill_ep_dur,
levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v4_clin_fst_ill_ep_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 599 33 31
## [2,] Percent 38.8 2.1 2
## more than four weeks <NA>
## [1,] 71 809 1543
## [2,] 4.6 52.4 100
“During this episode, were you hospitalized?” (dichotomous, v4_clin_fst_ill_ep_hsp)
v4_clin_fst_ill_ep_hsp<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_hsp<-ifelse(v4_clin_ill_ep_snc_lst=="N",-999,
ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_aufenthalt_31642_1,rep(-999,dim(v4_con)[1]))==2,"N",
ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_aufenthalt_31642_1,rep(-999,dim(v4_con)[1]))==1,"Y", v4_clin_fst_ill_ep_hsp)))
v4_clin_fst_ill_ep_hsp<-factor(v4_clin_fst_ill_ep_hsp)
descT(v4_clin_fst_ill_ep_hsp)
## -999 N Y <NA>
## [1,] No. cases 599 83 52 809 1543
## [2,] Percent 38.8 5.4 3.4 52.4 100
“If yes, for how long?” (ordinal, [less than two weeks, two to four weeks, more than four weeks] v4_clin_fst_ill_ep_hsp_dur)
v4_clin_fst_ill_ep_hsp_dur<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_hsp_dur<-ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v4_con)[1]))==1,"less than two weeks",
ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v4_con)[1]))==2,"two to four weeks",
ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_woche_31642_1,rep(-999,dim(v4_con)[1]))==3,"more than four weeks",
-999)))
v4_clin_fst_ill_ep_hsp_dur<-ordered(v4_clin_fst_ill_ep_hsp_dur, levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v4_clin_fst_ill_ep_hsp_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 740 7 16
## [2,] Percent 48 0.5 1
## more than four weeks <NA>
## [1,] 25 755 1543
## [2,] 1.6 48.9 100
The following questions ask for the reasons for hospitalization, multiple answers are possible (checkboxes):
Reason for hospitalization: symptom worsensing (checkbox [Y], v4_clin_fst_ill_ep_symp_wrs)
v4_clin_fst_ill_ep_symp_wrs<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_symp_wrs<-ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund1_31642_1,rep(-999,dim(v4_con)[1]))==1,"Y",-999)
descT(v4_clin_fst_ill_ep_symp_wrs)
## -999 Y <NA>
## [1,] No. cases 754 47 742 1543
## [2,] Percent 48.9 3 48.1 100
Reason for hospitalization: self-endangerment (checkbox [Y], v4_clin_fst_ill_ep_slf_end)
v4_clin_fst_ill_ep_slf_end<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_slf_end<-ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund2_31642_1,rep(-999,dim(v4_con)[1]))==1, "Y",
-999)
descT(v4_clin_fst_ill_ep_slf_end)
## -999 Y <NA>
## [1,] No. cases 792 10 741 1543
## [2,] Percent 51.3 0.6 48 100
Reason for hospitalization: suicidality (checkbox [Y], v4_clin_fst_ill_ep_suic)
v4_clin_fst_ill_ep_suic<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_suic<-ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund3_31642_1,rep(-999,dim(v4_con)[1]))==1, "Y",
-999)
descT(v4_clin_fst_ill_ep_suic)
## -999 Y <NA>
## [1,] No. cases 797 5 741 1543
## [2,] Percent 51.7 0.3 48 100
Reason for hospitalization: endangerment of others (checkbox [Y], v4_clin_fst_ill_ep_oth_end)
v4_clin_fst_ill_ep_oth_end<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_oth_end<-ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund4_31642_1,rep(-999,dim(v4_con)[1]))==1, "Y",-999)
descT(v4_clin_fst_ill_ep_oth_end)
## -999 Y <NA>
## [1,] No. cases 800 2 741 1543
## [2,] Percent 51.8 0.1 48 100
Reason for hospitalization: medication change (checkbox [Y], v4_clin_fst_ill_ep_med_chg)
v4_clin_fst_ill_ep_med_chg<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_med_chg<-ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund5_31642_1,rep(-999,dim(v4_con)[1]))==1, "Y",-999)
descT(v4_clin_fst_ill_ep_med_chg)
## -999 Y <NA>
## [1,] No. cases 797 5 741 1543
## [2,] Percent 51.7 0.3 48 100
Reason for hospitalization: other (checkbox [Y], v4_clin_fst_ill_ep_othr)
v4_clin_fst_ill_ep_othr<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_fst_ill_ep_othr<-ifelse(v4_clin_fst_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_grund6_31642_1,rep(-999,dim(v4_con)[1]))==1, "Y",-999)
descT(v4_clin_fst_ill_ep_othr)
## -999 Y <NA>
## [1,] No. cases 792 10 741 1543
## [2,] Percent 51.3 0.6 48 100
“Did you experience manic symptoms during this illness episode?” (checkbox [Y], v4_clin_sec_ill_ep_man)
v4_clin_sec_ill_ep_man<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_man<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_manisch_31642_2,rep(-999,dim(v4_con)[1]))==1,"Y",-999)
descT(v4_clin_sec_ill_ep_man)
## -999 Y <NA>
## [1,] No. cases 686 3 854 1543
## [2,] Percent 44.5 0.2 55.3 100
“Did you experience depressive symptoms during this illness episode?” (checkbox [Y], v4_clin_sec_ill_ep_dep) #frstill
v4_clin_sec_ill_ep_dep<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_dep<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_depressiv_31642_2,rep(-999,dim(v4_con)[1]))==1,"Y",
-999)
descT(v4_clin_sec_ill_ep_dep)
## -999 Y <NA>
## [1,] No. cases 666 23 854 1543
## [2,] Percent 43.2 1.5 55.3 100
“Did you experience mixed symptoms during this illness episode?” (checkbox [Y], v4_clin_sec_ill_ep_mx) This checkbox assesses whether this was a mixed mood episode (both depressive and manic symptoms present).
v4_clin_sec_ill_ep_mx<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_mx<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_gemischt_31642_2,rep(-999,dim(v4_con)[1]))==1,"Y",
-999)
descT(v4_clin_sec_ill_ep_mx)
## -999 Y <NA>
## [1,] No. cases 686 3 854 1543
## [2,] Percent 44.5 0.2 55.3 100
“Did you experience psychotic symptoms during this illness episode?” (checkbox [Y], v4_clin_sec_ill_ep_psy)
v4_clin_sec_ill_ep_psy<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_psy<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_psych_31642_2,rep(-999,dim(v4_con)[1]))==1,"Y",
-999)
descT(v4_clin_sec_ill_ep_psy)
## -999 Y <NA>
## [1,] No. cases 685 4 854 1543
## [2,] Percent 44.4 0.3 55.3 100
“How long did this episode last?” (ordinal [less than two weeks, two to four weeks, more than four weeks], v4_clin_sec_ill_ep_dur)
v4_clin_sec_ill_ep_dur<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_dur<-ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v4_con)[1]))==1,"less than two weeks",
ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v4_con)[1]))==2,"two to four weeks",
ifelse(v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_dauer_31642_2,rep(-999,dim(v4_con)[1]))==3,"more than four weeks",
ifelse(v4_clin_ill_ep_snc_lst=="N",-999,v4_clin_sec_ill_ep_dur))))
v4_clin_sec_ill_ep_dur<-ordered(v4_clin_sec_ill_ep_dur, levels=c("less than two weeks","two to four weeks","more than four weeks"))
descT(v4_clin_sec_ill_ep_dur)
## less than two weeks two to four weeks more than four weeks
## [1,] No. cases 9 6 16
## [2,] Percent 0.6 0.4 1
## <NA>
## [1,] 1512 1543
## [2,] 98 100
“During this episode, were you hospitalized?” (dichotomous, v4_clin_sec_ill_ep_hsp)
v4_clin_sec_ill_ep_hsp<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_hsp<-ifelse(v4_clin_ill_ep_snc_lst=="N",-999,
ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_aufenthalt_31642_2,rep(-999,dim(v4_con)[1]))==2,"N",
ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_aufenthalt_31642_2,rep(-999,dim(v4_con)[1]))==1,"Y", v4_clin_sec_ill_ep_hsp)))
v4_clin_sec_ill_ep_hsp<-factor(v4_clin_sec_ill_ep_hsp)
descT(v4_clin_sec_ill_ep_hsp)
## -999 N Y <NA>
## [1,] No. cases 599 22 10 912 1543
## [2,] Percent 38.8 1.4 0.6 59.1 100
“If yes, for how long?” (ordinal, [less than two weeks, two to four weeks, more than four weeks] v4_clin_sec_ill_ep_hsp_dur)
v4_clin_sec_ill_ep_hsp_dur<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_hsp_dur<-ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v4_con)[1]))==1,"less than two weeks",
ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v4_con)[1]))==2,"two to four weeks",
ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_woche_31642_2,rep(-999,dim(v4_con)[1]))==3,"more than four weeks",
-999)))
v4_clin_sec_ill_ep_hsp_dur<-ordered(v4_clin_sec_ill_ep_hsp_dur, levels=c("-999","less than two weeks","two to four weeks","more than four weeks"))
descT(v4_clin_sec_ill_ep_hsp_dur)
## -999 less than two weeks two to four weeks
## [1,] No. cases 679 1 6
## [2,] Percent 44 0.1 0.4
## more than four weeks <NA>
## [1,] 3 854 1543
## [2,] 0.2 55.3 100
The following questions ask for the reasons for hospitalization, multiple answers are possible (checkboxes): Reason for hospitalization: symptom worsensing (checkbox [Y], v4_clin_sec_ill_ep_symp_wrs)
v4_clin_sec_ill_ep_symp_wrs<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_symp_wrs<-ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund1_31642_2,rep(-999,dim(v4_con)[1]))==1,"Y",-999)
descT(v4_clin_sec_ill_ep_symp_wrs)
## -999 Y <NA>
## [1,] No. cases 681 8 854 1543
## [2,] Percent 44.1 0.5 55.3 100
Reason for hospitalization: self-endangerment (checkbox [Y], v4_clin_sec_ill_ep_slf_end)
v4_clin_sec_ill_ep_slf_end<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_slf_end<-ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund2_31642_2,rep(-999,dim(v4_con)[1]))==1, "Y",
-999)
descT(v4_clin_sec_ill_ep_slf_end)
## -999 Y <NA>
## [1,] No. cases 688 1 854 1543
## [2,] Percent 44.6 0.1 55.3 100
Reason for hospitalization: suicidality (checkbox [Y], v4_clin_sec_ill_ep_suic)
v4_clin_sec_ill_ep_suic<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_suic<-ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund3_31642_2,rep(-999,dim(v4_con)[1]))==1, "Y",
-999)
descT(v4_clin_sec_ill_ep_suic)
## -999 Y <NA>
## [1,] No. cases 688 1 854 1543
## [2,] Percent 44.6 0.1 55.3 100
Reason for hospitalization: endangerment of others (checkbox [Y], v4_clin_sec_ill_ep_oth_end)
v4_clin_sec_ill_ep_oth_end<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_oth_end<-ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund4_31642_2,rep(-999,dim(v4_con)[1]))==1, "Y",-999)
descT(v4_clin_sec_ill_ep_oth_end)
## -999 <NA>
## [1,] No. cases 689 854 1543
## [2,] Percent 44.7 55.3 100
Reason for hospitalization: medication change (checkbox [Y], v4_clin_sec_ill_ep_med_chg)
v4_clin_sec_ill_ep_med_chg<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_med_chg<-ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_k_episode_grund5_31642_2,rep(-999,dim(v4_con)[1]))==1, "Y",-999)
descT(v4_clin_sec_ill_ep_med_chg)
## -999 <NA>
## [1,] No. cases 689 854 1543
## [2,] Percent 44.7 55.3 100
Reason for hospitalization: other (checkbox [Y], v4_clin_sec_ill_ep_othr)
v4_clin_sec_ill_ep_othr<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_sec_ill_ep_othr<-ifelse(v4_clin_sec_ill_ep_hsp=="Y" & v4_clin_ill_ep_snc_lst=="Y" & c(v4_clin$v4_aktu_situat_k_episode_grund6_31642_2,rep(-999,dim(v4_con)[1]))==1, "Y",-999)
descT(v4_clin_sec_ill_ep_othr)
## -999 Y <NA>
## [1,] No. cases 686 3 854 1543
## [2,] Percent 44.5 0.2 55.3 100
v4_clin_add_oth_hsp<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_add_oth_hsp<-ifelse(v4_clin_ill_ep_snc_lst=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_aufent,rep(-999,dim(v4_con)[1]))==1,"Y","N")
descT(v4_clin_add_oth_hsp)
## N Y <NA>
## [1,] No. cases 781 12 750 1543
## [2,] Percent 50.6 0.8 48.6 100
v4_clin_oth_hsp_nmb<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_oth_hsp_nmb<-ifelse(v4_clin_add_oth_hsp=="Y",
c(v4_clin$v4_aktu_situat_aenderung_anzahl,rep(-999,dim(v4_con)[1])),-999)
descT(v4_clin_oth_hsp_nmb)
## -999 1 2 3 <NA>
## [1,] No. cases 781 7 1 1 753 1543
## [2,] Percent 50.6 0.5 0.1 0.1 48.8 100
v4_clin_oth_hsp_dur<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_oth_hsp_dur<-
ifelse(v4_clin_add_oth_hsp=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_dauer,rep(-999,dim(v4_con)[1]))==1,"less than two weeks",
ifelse(v4_clin_add_oth_hsp=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_dauer,rep(-999,dim(v4_con)[1]))==2,"two to four weeks",
ifelse(v4_clin_add_oth_hsp=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_dauer,rep(-999,dim(v4_con)[1]))==3,"more than four weeks",
ifelse(v4_clin_add_oth_hsp=="N",-999,v4_clin_add_oth_hsp))))
v4_clin_oth_hsp_dur<-ordered(v4_clin_oth_hsp_dur, levels=c("less than two weeks","two to four weeks","more than four weeks"))
descT(v4_clin_oth_hsp_dur)
## less than two weeks two to four weeks more than four weeks
## [1,] No. cases 2 3 5
## [2,] Percent 0.1 0.2 0.3
## <NA>
## [1,] 1533 1543
## [2,] 99.4 100
v4_clin_othr_psy_med<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_clin_othr_psy_med<-ifelse(v4_clin_add_oth_hsp=="Y" & v4_clin_add_oth_hsp=="Y" &
c(v4_clin$v4_aktu_situat_aenderung_medikament,rep(-999,dim(v4_con)[1]))==1,"Y",
ifelse(v4_clin_add_oth_hsp=="N",-999,v4_clin_othr_psy_med))
descT(v4_clin_othr_psy_med)
## -999 Y <NA>
## [1,] No. cases 781 2 760 1543
## [2,] Percent 50.6 0.1 49.3 100
This is an ordinal scale with four levels: “no”-1, “yes, outpatient”-2, “yes, day patient”-3, “yes, inpatient”-4.
v4_clin_cur_psy_trm<-rep(NA,dim(v4_clin)[1])
v4_con_cur_psy_trm<-rep(NA,dim(v4_con)[1])
v4_clin_cur_psy_trm<-ifelse(v4_clin$v4_aktu_situat_psybehandlung==0,"1",
ifelse(v4_clin$v4_aktu_situat_psybehandlung==3,"2",
ifelse(v4_clin$v4_aktu_situat_psybehandlung==2,"3",
ifelse(v4_clin$v4_aktu_situat_psybehandlung==1,"4",v4_clin_cur_psy_trm))))
v4_con_cur_psy_trm<-ifelse(v4_con$v4_bildung_beruf_psybehandlung==0,"1",
ifelse(v4_con$v4_bildung_beruf_psybehandlung==3,"2",
ifelse(v4_con$v4_bildung_beruf_psybehandlung==2,"3",
ifelse(v4_con$v4_bildung_beruf_psybehandlung==1,"4",v4_con_cur_psy_trm))))
v4_cur_psy_trm<-factor(c(v4_clin_cur_psy_trm,v4_con_cur_psy_trm),ordered=T)
descT(v4_cur_psy_trm)
## 1 2 3 4 <NA>
## [1,] No. cases 91 415 6 22 1009 1543
## [2,] Percent 5.9 26.9 0.4 1.4 65.4 100
Create dataset
v4_clin_ill_ep<-data.frame(v4_clin_ill_ep_snc_lst,
v4_clin_no_ep,
v4_clin_fst_ill_ep_man,
v4_clin_fst_ill_ep_dep,
v4_clin_fst_ill_ep_mx,
v4_clin_fst_ill_ep_psy,
v4_clin_fst_ill_ep_dur,
v4_clin_fst_ill_ep_hsp,
v4_clin_fst_ill_ep_hsp_dur,
v4_clin_fst_ill_ep_symp_wrs,
v4_clin_fst_ill_ep_slf_end,
v4_clin_fst_ill_ep_suic,
v4_clin_fst_ill_ep_oth_end,
v4_clin_fst_ill_ep_med_chg,
v4_clin_fst_ill_ep_othr,
v4_clin_sec_ill_ep_man,
v4_clin_sec_ill_ep_dep,
v4_clin_sec_ill_ep_mx,
v4_clin_sec_ill_ep_psy,
v4_clin_sec_ill_ep_dur,
v4_clin_sec_ill_ep_hsp,
v4_clin_sec_ill_ep_hsp_dur,
v4_clin_sec_ill_ep_symp_wrs,
v4_clin_sec_ill_ep_slf_end,
v4_clin_sec_ill_ep_suic,
v4_clin_sec_ill_ep_oth_end,
v4_clin_sec_ill_ep_med_chg,
v4_clin_sec_ill_ep_othr,
v4_clin_add_oth_hsp,
v4_clin_oth_hsp_nmb,
v4_clin_oth_hsp_dur,
v4_clin_othr_psy_med,
v4_cur_psy_trm)
Did your marital status change since the last study visit? (dichotomous, v4_cng_mar_stat)
v4_clin_cng_mar_stat<-rep(NA,dim(v4_clin)[1])
v4_clin_cng_mar_stat<-ifelse(v4_clin$v4_aktu_situat_fam_stand==1, "Y",
ifelse(v4_clin$v4_aktu_situat_fam_stand==2, "N", v4_clin_cng_mar_stat))
v4_con_cng_mar_stat<-rep(NA,dim(v4_con)[1])
v4_con_cng_mar_stat<-ifelse(v4_con$v4_famil_wohn_fam_stand==1, "Y",
ifelse(v4_con$v4_famil_wohn_fam_stand==2, "N", v4_con_cng_mar_stat))
v4_cng_mar_stat<-factor(c(v4_clin_cng_mar_stat,v4_con_cng_mar_stat))
v4_clin_marital_stat<-rep(NA,dim(v4_clin)[1])
v4_clin_marital_stat<-ifelse(v4_clin$v4_aktu_situat_fam_familienstand==1,"Married",
ifelse(v4_clin$v4_aktu_situat_fam_familienstand==2,"Married_living_sep",
ifelse(v4_clin$v4_aktu_situat_fam_familienstand==3,"Single",
ifelse(v4_clin$v4_aktu_situat_fam_familienstand==4,"Divorced",
ifelse(v4_clin$v4_aktu_situat_fam_familienstand==5,"Widowed",v4_clin_marital_stat)))))
v4_con_marital_stat<-rep(NA,dim(v4_con)[1])
v4_con_marital_stat<-ifelse(v4_con$v4_famil_wohn_fam_famstand==1,"Married",
ifelse(v4_con$v4_famil_wohn_fam_famstand==2,"Married_living_sep",
ifelse(v4_con$v4_famil_wohn_fam_famstand==3,"Single",
ifelse(v4_con$v4_famil_wohn_fam_famstand==4,"Divorced",
ifelse(v4_con$v4_famil_wohn_fam_famstand==5,"Widowed",v4_con_marital_stat)))))
v4_marital_stat<-factor(c(v4_clin_marital_stat,v4_con_marital_stat))
desc(v4_marital_stat)
## Divorced Married Married_living_sep Single Widowed NA's
## [1,] No. cases 84 136 16 277 10 1020
## [2,] Percent 5.4 8.8 1 18 0.6 66.1
##
## [1,] 1543
## [2,] 100
v4_clin_partner<-rep(NA,dim(v4_clin)[1])
v4_clin_partner<-ifelse(v4_clin$v4_aktu_situat_fam_fest_partner==1,"Y",
ifelse(v4_clin$v4_aktu_situat_fam_fest_partner==2,"N",v4_clin_partner))
v4_con_partner<-rep(NA,dim(v4_con)[1])
v4_con_partner<-ifelse(v4_con$v4_famil_wohn_fam_partner==1,"Y",
ifelse(v4_con$v4_famil_wohn_fam_partner==2,"N",v4_con_partner))
v4_partner<-factor(c(v4_clin_partner,v4_con_partner))
descT(v4_partner)
## N Y <NA>
## [1,] No. cases 259 253 1031 1543
## [2,] Percent 16.8 16.4 66.8 100
v4_no_bio_chld<-c(v4_clin$v4_aktu_situat_fam_kind_gesamt,v4_con$v4_famil_wohn_fam_lkind)
descT(v4_no_bio_chld)
## 0 1 2 3 4 5 <NA>
## [1,] No. cases 297 109 70 41 5 4 1017 1543
## [2,] Percent 19.2 7.1 4.5 2.7 0.3 0.3 65.9 100
v4_no_adpt_chld<-c(v4_clin$v4_aktu_situat_fam_adopt_gesamt,v4_con$v4_famil_wohn_fam_adkind)
descT(v4_no_adpt_chld)
## 0 1 2 <NA>
## [1,] No. cases 516 2 2 1023 1543
## [2,] Percent 33.4 0.1 0.1 66.3 100
v4_stp_chld<-c(v4_clin$v4_aktu_situat_fam_stift_gesamt,v4_con$v4_famil_wohn_fam_skind)
descT(v4_stp_chld)
## 0 1 2 3 4 5 <NA>
## [1,] No. cases 480 24 12 4 1 1 1021 1543
## [2,] Percent 31.1 1.6 0.8 0.3 0.1 0.1 66.2 100
v4_clin_chg_hsng<-rep(NA,dim(v4_clin)[1])
v4_clin_chg_hsng<-ifelse(v4_clin$v4_wohnsituation_wohn_aenderung==1,"Y",
ifelse(v4_clin$v4_wohnsituation_wohn_aenderung==2,"N",v4_clin_chg_hsng))
v4_con_chg_hsng<-rep(NA,dim(v4_con)[1])
v4_con_chg_hsng<-ifelse(v4_con$v4_famil_wohn_wohn_stand==1,"Y",
ifelse(v4_con$v4_famil_wohn_wohn_stand==2,"N",v4_con_chg_hsng))
v4_chg_hsng<-factor(c(v4_clin_chg_hsng,v4_con_chg_hsng))
descT(v4_chg_hsng)
## N Y <NA>
## [1,] No. cases 476 64 1003 1543
## [2,] Percent 30.8 4.1 65 100
v4_clin_liv_aln<-rep(NA,dim(v4_clin)[1])
v4_clin_liv_aln<-ifelse(v4_clin$v4_wohnsituation_wohn_allein==1,"Y",
ifelse(v4_clin$v4_wohnsituation_wohn_allein==0,"N",v4_clin_liv_aln))
v4_con_liv_aln<-rep(NA,dim(v4_con)[1])
v4_con_liv_aln<-ifelse(v4_con$v4_famil_wohn_wohn_allein==1,"Y",
ifelse(v4_con$v4_famil_wohn_wohn_allein==0,"N",v4_con_liv_aln))
v4_liv_aln<-factor(c(v4_clin_liv_aln,v4_con_liv_aln))
descT(v4_liv_aln)
## N Y <NA>
## [1,] No. cases 332 214 997 1543
## [2,] Percent 21.5 13.9 64.6 100
Did your employment situation change since the last study visit?
v4_clin_chg_empl_stat<-rep(NA,dim(v4_clin)[1])
v4_clin_chg_empl_stat<-ifelse(v4_clin$v4_wohnsituation_erwerb_aenderung==1, "Y",
ifelse(v4_clin$v4_wohnsituation_erwerb_aenderung==2, "N",v4_clin_chg_empl_stat))
v4_con_chg_empl_stat<-rep(NA,dim(v4_con)[1])
v4_con_chg_empl_stat<-ifelse(v4_con$v4_bildung_beruf_bild_stand==1, "Y",
ifelse(v4_con$v4_bildung_beruf_bild_stand==2, "N",v4_con_chg_empl_stat))
v4_chg_empl_stat<-factor(c(v4_clin_chg_empl_stat,v4_con_chg_empl_stat))
descT(v4_chg_empl_stat)
## N Y <NA>
## [1,] No. cases 467 65 1011 1543
## [2,] Percent 30.3 4.2 65.5 100
Because of several categories that are unique to the Germany labor market, several of answer categories were pooled to arrive at a more clear-cut (Y/N) answer to this question. Thr following transformations were used: “no information”-NA, “full-time”-Y, “part-time”-Y, “partial retirement”-Y, “marginal employment”-Y, “1-euro-job”-Y, “Occassionally/infrequently”-999, “in professional training”-Y, “professional retraining”-Y, “voluntary service/alternative military service”-Y, “maternity leave or other leave”-Y, “not employed”-N.
v4_clin_curr_paid_empl<-rep(NA,dim(v4_clin)[1])
v4_clin_curr_paid_empl<-ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==1,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==2,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==3,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==4,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==5,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==6,-999,
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==7,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==8,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==9,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==10,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerbstaetig==11,"N",v4_clin_curr_paid_empl)))))))))))
v4_con_curr_paid_empl<-rep(NA,dim(v4_con)[1])
v4_con_curr_paid_empl<-ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==1,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==2,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==3,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==4,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==5,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==6,-999,
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==7,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==8,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==9,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==10,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_taetig==11,"N",v4_con_curr_paid_empl)))))))))))
v4_curr_paid_empl<-factor(c(v4_clin_curr_paid_empl,v4_con_curr_paid_empl))
descT(v4_curr_paid_empl)
## -999 N Y <NA>
## [1,] No. cases 2 289 231 1021 1543
## [2,] Percent 0.1 18.7 15 66.2 100
NB: Not available (-999) in control participants
v4_clin_disabl_pens<-rep(NA,dim(v4_clin)[1])
v4_clin_disabl_pens<-ifelse(v4_clin$v4_wohnsituation_rente_psych==1,"Y",
ifelse(v4_clin$v4_wohnsituation_rente_psych==2,"N",v4_clin_disabl_pens))
v4_con_disabl_pens<-rep(-999,dim(v4_con)[1])
v4_disabl_pens<-factor(c(v4_clin_disabl_pens,v4_con_disabl_pens))
descT(v4_disabl_pens)
## -999 N Y <NA>
## [1,] No. cases 320 144 211 868 1543
## [2,] Percent 20.7 9.3 13.7 56.3 100
v4_clin_spec_emp<-rep(NA,dim(v4_clin)[1])
v4_clin_spec_emp<-ifelse(v4_clin$v4_wohnsituation_erwerb_werk==1,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerb_werk==2,"N",v4_clin_spec_emp))
v4_con_spec_emp<-rep(NA,dim(v4_con)[1])
v4_con_spec_emp<-ifelse(v4_con$v4_bildung_beruf_erwerb_wfbm==1,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_wfbm==2,"N",v4_con_spec_emp))
v4_spec_emp<-factor(c(v4_clin_spec_emp,v4_con_spec_emp))
descT(v4_spec_emp)
## N Y <NA>
## [1,] No. cases 151 51 1341 1543
## [2,] Percent 9.8 3.3 86.9 100
Cases are set ot -999 in the following cases: 1) Pension, 2) Unknown, 3) Filled out but >26 weeks.
v4_clin_wrk_abs_pst_6_mths<-rep(NA,dim(v4_clin)[1])
v4_clin_wrk_abs_pst_6_mths<-ifelse((v4_clin$v4_wohnsituation_erwerb_unbekannt==1 | v4_clin$v4_wohnsituation_erwerb_rente==1 |
v4_clin$v4_wohnsituation_erwerb_fehlen>26),-999, v4_clin$v4_wohnsituation_erwerb_fehlen)
v4_con_wrk_abs_pst_6_mths<-rep(NA,dim(v4_con)[1])
v4_con_wrk_abs_pst_6_mths<-ifelse((v4_con$v4_bildung_beruf_erwerb_ausfallu==1 | v4_con$v4_bildung_beruf_erwerb_rente==1 |
v4_con$v4_bildung_beruf_erwerb_ausfallm>26),-999, v4_con$v4_bildung_beruf_erwerb_ausfallm)
v4_wrk_abs_pst_6_mths<-c(v4_clin_wrk_abs_pst_6_mths,v4_con_wrk_abs_pst_6_mths)
descT(v4_wrk_abs_pst_6_mths)
## -999 0 1 2 3 4 5 6 8 10 12 13 15 16
## [1,] No. cases 258 123 12 3 6 5 2 5 1 3 4 1 1 1
## [2,] Percent 16.7 8 0.8 0.2 0.4 0.3 0.1 0.3 0.1 0.2 0.3 0.1 0.1 0.1
## 20 22 24 26 <NA>
## [1,] 2 1 3 4 1108 1543
## [2,] 0.1 0.1 0.2 0.3 71.8 100
Important: if receiving pension, this question refers to impairments in the household
v4_clin_cur_work_restr<-rep(NA,dim(v4_clin)[1])
v4_clin_cur_work_restr<-ifelse(v4_clin$v4_wohnsituation_erwerb_psysymptom==1,"Y",
ifelse(v4_clin$v4_wohnsituation_erwerb_psysymptom==2,"N",v4_clin_cur_work_restr))
v4_con_cur_work_restr<-rep(NA,dim(v4_con)[1])
v4_con_cur_work_restr<-ifelse(v4_con$v4_bildung_beruf_erwerb_psyeinsch==1,"Y",
ifelse(v4_con$v4_bildung_beruf_erwerb_psyeinsch==2,"N",v4_con_cur_work_restr))
v4_cur_work_restr<-factor(c(v4_clin_cur_work_restr,v4_con_cur_work_restr))
descT(v4_cur_work_restr)
## N Y <NA>
## [1,] No. cases 279 188 1076 1543
## [2,] Percent 18.1 12.2 69.7 100
v4_weight<-c(v4_clin$v4_wohnsituation_erwerb_gewicht,v4_con$v4_bildung_beruf_erwerb_gewicht)
summary(v4_weight)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 25 72 85 88 100 193 1019
We here provide the body mass index of study participants, calculated as weight in kilograms divided by the squared height in meters.
v4_bmi<-v4_weight/(v1_height/100)^2
summary(v4_bmi)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 8.65 24.76 28.07 29.15 32.69 70.02 1021
Create dataset
v4_dem<-data.frame(v4_cng_mar_stat,v4_marital_stat,v4_partner,v4_no_bio_chld,v4_no_adpt_chld,v4_stp_chld,v4_chg_hsng,v4_liv_aln,
v4_chg_empl_stat,v4_curr_paid_empl,v4_disabl_pens,v4_spec_emp,v4_wrk_abs_pst_6_mths,v4_cur_work_restr,
v4_weight,v4_bmi)
The OPCRIT is an operational criteria checklist (and computer program) for psychotic illness (McGuffin, Farmer, & Harvey, 1991). We use item 90 of the OPCRIT to broadly assess the course of disorder from onset to the current state. All available information is to be used to answer the item (interview, medical records etc.).
IMPORTANT: this item was assessed in CLINICAL participants only, all CONTROL participants are assigned -999.
In clinical participants, this item has the following gradation: “single episode wirh good remission”-1, “multiple episodes with good remission between episodes”-2,“multiple episodes with partial remission between episodes”-3, “ongoing chronic disease”-4, “ongoing chronic disease with deterioration”-5 and “not estimable”-99. In the current dataset, 99 is replaced with -999. Note: this item is to be rated hierarchically, meaning if the past course of disease is to be rated with 2 but the present course of disease would require a 4, 4 is the right assessment.
v4_opcrit<-c(v4_clin$v4_opcrit_opcrit_verlauf,rep(-999,dim(v4_con)[1]))
v4_opcrit[v4_opcrit==99]<--999
descT(v4_opcrit)
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 321 19 166 165 99 9 764 1543
## [2,] Percent 20.8 1.2 10.8 10.7 6.4 0.6 49.5 100
Please see Visit 2 for explanation.
**Life events: Occurred before illness episode? (dichotomous, v4_evnt_prcp_b4_*)**
for(i in 1:length(grep("v4_ergaenz_leq_leq_zeit_31055_",names(v4_clin)))){
b4_event_recode_v4(v4_clin[,grep("v4_ergaenz_leq_leq_zeit_31055_",names(v4_clin))[i]],
paste("v4_evnt_prcp_b4_",i,sep=""))
}
**Life events: Was a precipitating factor for illness episode (categorical [N,U,Y], v4_evnt_prcp_f_*)**
for(i in 1:length(grep("v4_ergaenz_leq_leq_ausloeser_31055_",names(v4_clin)))){
prcp_event_recode_v4(v4_clin[,grep("v4_ergaenz_leq_leq_ausloeser_31055_",names(v4_clin))[i]],
paste("v4_evnt_prcp_f_",i,sep=""))
}
**Life events: LEQ item number (categorical [LEQ item number], v4_evnt_prcp_it_*)**
for(i in 1:length(grep("v4_ergaenz_leq_leq_item_31055_",names(v4_clin)))){
leq_event_recode_v4(v4_clin[,grep("v4_ergaenz_leq_leq_item_31055_",names(v4_clin))[i]],
paste("v4_evnt_prcp_it_",i,sep=""))
}
Create dataset
v4_leprcp<-data.frame(v4_evnt_prcp_it_1,v4_evnt_prcp_b4_1,v4_evnt_prcp_f_1,
v4_evnt_prcp_it_2,v4_evnt_prcp_b4_2,v4_evnt_prcp_f_2,
v4_evnt_prcp_it_3,v4_evnt_prcp_b4_3,v4_evnt_prcp_f_3,
v4_evnt_prcp_it_4,v4_evnt_prcp_b4_4,v4_evnt_prcp_f_4,
v4_evnt_prcp_it_5,v4_evnt_prcp_b4_5,v4_evnt_prcp_f_5,
v4_evnt_prcp_it_6,v4_evnt_prcp_b4_6,v4_evnt_prcp_f_6,
v4_evnt_prcp_it_7,v4_evnt_prcp_b4_7,v4_evnt_prcp_f_7,
v4_evnt_prcp_it_8,v4_evnt_prcp_b4_8,v4_evnt_prcp_f_8,
v4_evnt_prcp_it_9,v4_evnt_prcp_b4_9,v4_evnt_prcp_f_9,
v4_evnt_prcp_it_10,v4_evnt_prcp_b4_10,v4_evnt_prcp_f_10,
v4_evnt_prcp_it_11,v4_evnt_prcp_b4_11,v4_evnt_prcp_f_11,
v4_evnt_prcp_it_12,v4_evnt_prcp_b4_12,v4_evnt_prcp_f_12,
v4_evnt_prcp_it_13,v4_evnt_prcp_b4_13,v4_evnt_prcp_f_13,
v4_evnt_prcp_it_14,v4_evnt_prcp_b4_14,v4_evnt_prcp_f_14,
v4_evnt_prcp_it_15,v4_evnt_prcp_b4_15,v4_evnt_prcp_f_15,
v4_evnt_prcp_it_16,v4_evnt_prcp_b4_16,v4_evnt_prcp_f_16,
v4_evnt_prcp_it_17,v4_evnt_prcp_b4_17,v4_evnt_prcp_f_17,
v4_evnt_prcp_it_18,v4_evnt_prcp_b4_18,v4_evnt_prcp_f_18,
v4_evnt_prcp_it_19,v4_evnt_prcp_b4_19,v4_evnt_prcp_f_19,
v4_evnt_prcp_it_20,v4_evnt_prcp_b4_20,v4_evnt_prcp_f_20,
v4_evnt_prcp_it_21,v4_evnt_prcp_b4_21,v4_evnt_prcp_f_21,
v4_evnt_prcp_it_22,v4_evnt_prcp_b4_22,v4_evnt_prcp_f_22,
v4_evnt_prcp_it_23,v4_evnt_prcp_b4_23,v4_evnt_prcp_f_23,
v4_evnt_prcp_it_24,v4_evnt_prcp_b4_24,v4_evnt_prcp_f_24,
v4_evnt_prcp_it_25,v4_evnt_prcp_b4_25,v4_evnt_prcp_f_25,
v4_evnt_prcp_it_26,v4_evnt_prcp_b4_26,v4_evnt_prcp_f_26,
v4_evnt_prcp_it_27,v4_evnt_prcp_b4_27,v4_evnt_prcp_f_27,
v4_evnt_prcp_it_28,v4_evnt_prcp_b4_28,v4_evnt_prcp_f_28,
v4_evnt_prcp_it_29,v4_evnt_prcp_b4_29,v4_evnt_prcp_f_29,
v4_evnt_prcp_it_30,v4_evnt_prcp_b4_30,v4_evnt_prcp_f_30,
v4_evnt_prcp_it_31,v4_evnt_prcp_b4_31,v4_evnt_prcp_f_31)
Please note that all of the following questions refer to suicide attempts and suicidal ideation occurring since the last study visit.
Please not that the following items on suicidal ideation were skipped if this question was not answered positively. If skipped these items are coded -999.
v4_suic_ide_snc_lst_vst<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_suic_ide_snc_lst_vst<-ifelse(c(v4_clin$v4_snx_112_suizged1_x7_suizid_gedanken,rep(-999,dim(v4_con)[1]))==1, "N",
ifelse(c(v4_clin$v4_snx_112_suizged1_x7_suizid_gedanken,rep(-999,dim(v4_con)[1]))==3, "Y", v4_suic_ide_snc_lst_vst))
v4_suic_ide_snc_lst_vst<-factor(v4_suic_ide_snc_lst_vst)
descT(v4_suic_ide_snc_lst_vst)
## -999 N Y <NA>
## [1,] No. cases 320 365 108 750 1543
## [2,] Percent 20.7 23.7 7 48.6 100
This is an ordinal item with the following gradation: “only fleeting thoughts”-1, “serious thoughts (details were elaborated)”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v4_scid_suic_ide<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_scid_suic_ide<-ifelse(v4_suic_ide_snc_lst_vst=="Y"&c(v4_clin$v4_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v4_con)[1]))==1, "1",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v4_con)[1]))==2, "2",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v4_con)[1]))==3, "3",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x8_suizged_inhalt,rep(-999,dim(v4_con)[1]))==4, "4",-999))))
v4_scid_suic_ide<-factor(v4_scid_suic_ide,ordered=T)
descT(v4_scid_suic_ide)
## -999 1 2 3 4 <NA>
## [1,] No. cases 685 69 18 8 13 750 1543
## [2,] Percent 44.4 4.5 1.2 0.5 0.8 48.6 100
This is an ordinal item with the following gradation: “no”-1, “yes, but no details”-2, “yes, including details”-3.
v4_scid_suic_thght_mth<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_scid_suic_thght_mth<-ifelse(v4_suic_ide_snc_lst_vst=="Y"&c(v4_clin$v4_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v4_con)[1]))==1, "1",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v4_con)[1]))==2, "2",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x10_suiz_methoden,rep(-999,dim(v4_con)[1]))==3, "3",-999)))
v4_scid_suic_thght_mth<-factor(v4_scid_suic_thght_mth,ordered=T)
descT(v4_scid_suic_thght_mth)
## -999 1 2 3 <NA>
## [1,] No. cases 685 62 35 10 751 1543
## [2,] Percent 44.4 4 2.3 0.6 48.7 100
This is an ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v4_scid_suic_note_thgts<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_scid_suic_note_thgts<-ifelse(v4_suic_ide_snc_lst_vst=="Y"&c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==1, "1",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==2, "2",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==3, "3",
ifelse(v4_suic_ide_snc_lst_vst=="Y" & c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==4, "4",-999))))
v4_scid_suic_note_thgts<-factor(v4_scid_suic_note_thgts,ordered=T)
descT(v4_scid_suic_note_thgts)
## -999 1 2 4 <NA>
## [1,] No. cases 685 98 3 3 754 1543
## [2,] Percent 44.4 6.4 0.2 0.2 48.9 100
This is an ordinal item with the following gradation: “no”-1, “interruption of attempt”-2, “yes”-3. Please not that the following items on suicidal attempt were skipped if this question was answered with “no”. In that case, items are coded as -999.
v4_suic_attmpt_snc_lst_vst<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_suic_attmpt_snc_lst_vst<-ifelse(c(v4_clin$v4_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v4_con)[1]))==1, "1",
ifelse(c(v4_clin$v4_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v4_con)[1]))==2, "2",
ifelse(c(v4_clin$v4_snx_111_suizvrs1_x1_suiz_vers,rep(-999,dim(v4_con)[1]))==3, "3",-999)))
v4_suic_attmpt_snc_lst_vst<-factor(v4_suic_attmpt_snc_lst_vst,ordered=T)
descT(v4_suic_attmpt_snc_lst_vst)
## -999 1 2 3 <NA>
## [1,] No. cases 320 457 3 2 761 1543
## [2,] Percent 20.7 29.6 0.2 0.1 49.3 100
This is an ordinal item with the following gradation: “1 time”-1, “2 times”-2, “3-times”-3, “4 times”-4, “5 times”-5, “6 or more times”-6.
v4_no_suic_attmpt<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_no_suic_attmpt<-ifelse(v4_suic_attmpt_snc_lst_vst==1, -999, ifelse(v4_suic_attmpt_snc_lst_vst>1, c(v4_clin$v4_snx_111_suizvrs1_x2_suiz_anz,rep(-999,dim(v4_con)[1])),v4_no_suic_attmpt))
v4_no_suic_attmpt<-factor(v4_no_suic_attmpt,ordered=T)
descT(v4_no_suic_attmpt)
## -999 1 3 <NA>
## [1,] No. cases 777 4 1 761 1543
## [2,] Percent 50.4 0.3 0.1 49.3 100
This is an ordinal item with the following gradation: “no preparation (impulsive attempt)”-1, “little preparation”-2, “moderate preparation”-3, “Extensive, all details planned”-4.
v4_prep_suic_attp_ord<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_prep_suic_attp_ord<-ifelse(v4_suic_attmpt_snc_lst_vst==1, -999,
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v4_con)[1]))==1, "1",
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v4_con)[1]))==2, "2",
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v4_con)[1]))==3, "3",
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_111_suizvrs1_x5_suiz_vorb,rep(-999,dim(v4_con)[1]))==4, "4",
v4_prep_suic_attp_ord)))))
v4_prep_suic_attp_ord<-factor(v4_prep_suic_attp_ord,ordered=T)
descT(v4_prep_suic_attp_ord)
## -999 1 3 4 <NA>
## [1,] No. cases 777 1 1 2 762 1543
## [2,] Percent 50.4 0.1 0.1 0.1 49.4 100
This is an ordinal item with the following gradation: “no”-1, “having thought about”-2, “persistent thoughts (serious and less serious)”-3, “options 2 and 3 together”-4.
v4_suic_note_attmpt<-c(rep(NA,dim(v4_clin)[1]),rep(-999,dim(v4_con)[1]))
v4_suic_note_attmpt<-ifelse(v4_suic_attmpt_snc_lst_vst==1, -999,
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==1, "1",
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==2, "2",
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==3, "3",
ifelse(v4_suic_attmpt_snc_lst_vst>1 & c(v4_clin$v4_snx_112_suizged1_x11_best_erledigt,rep(-999,dim(v4_con)[1]))==4, "4",
v4_suic_note_attmpt)))))
v4_suic_note_attmpt<-factor(v4_suic_note_attmpt,ordered=T)
descT(v4_suic_note_attmpt)
## -999 1 2 4 <NA>
## [1,] No. cases 777 2 1 1 762 1543
## [2,] Percent 50.4 0.1 0.1 0.1 49.4 100
Create dataset
v4_suic<-data.frame(v4_suic_ide_snc_lst_vst,v4_scid_suic_ide,v4_scid_suic_thght_mth,v4_scid_suic_note_thgts,
v4_suic_attmpt_snc_lst_vst,v4_no_suic_attmpt,v4_prep_suic_attp_ord,
v4_suic_note_attmpt)
PsyCourse 3.1 contains now medication data. The code below creates the following variables for each person:
Number of antidepressants prescribed (continuous [number], v4_Antidepressants) Number of antipsychotics prescribed (continuous [number], v4_Antipsychotics) Number of mood stabilizers prescribed (continuous [number], v4_Mood_stabilizers) Number of tranquilizers prescribed (continuous [number], v4_Tranquilizers) Number of other psychiatric medications (continuous [number], v4_Other_psychiatric)
#get the following variables from v4_clin
#1. Medication name ["_med_medi_1"]
#2. Medication category ["_med_kategorie_1"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_1"]
#6. Bedarf category ["_bedarf_kategorie_1"]
v4_clin_medication_variables_1<-as.data.frame(v4_clin[,grep("mnppsd|_med_medi_1|_med_kategorie_1|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_1|_bedarf_kategorie_1",names(v4_clin))])
dim(v4_clin_medication_variables_1) #[1] 1223 61
## [1] 1223 61
#recode the variables that are coded as characters/logicals in the "v4_clin_medication_variables_1" as factors
v4_clin_medication_variables_1$v4_medikabehand3_med_medi_199998_15<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_med_medi_199998_15)
v4_clin_medication_variables_1$v4_medikabehand3_med_kategorie_199998_15<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_med_kategorie_199998_15)
v4_clin_medication_variables_1$v4_medikabehand3_med_medi_199998_16<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_med_medi_199998_16)
v4_clin_medication_variables_1$v4_medikabehand3_med_kategorie_199998_16<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_med_kategorie_199998_16)
v4_clin_medication_variables_1$v4_medikabehand3_med_medi_199998_17<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_med_medi_199998_17)
v4_clin_medication_variables_1$v4_medikabehand3_med_kategorie_199998_17<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_med_kategorie_199998_17)
v4_clin_medication_variables_1$v4_medikabehand3_depot_medi_200170_3<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_depot_medi_200170_3)
v4_clin_medication_variables_1$v4_medikabehand3_depot_kategorie_200170_3<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_depot_kategorie_200170_3)
v4_clin_medication_variables_1$v4_medikabehand3_bedarf_medi_199584_8<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_bedarf_medi_199584_8)
v4_clin_medication_variables_1$v4_medikabehand3_bedarf_kategorie_199584_8<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_bedarf_kategorie_199584_8)
v4_clin_medication_variables_1$v4_medikabehand3_bedarf_medi_199584_9<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_bedarf_medi_199584_9)
v4_clin_medication_variables_1$v4_medikabehand3_bedarf_kategorie_199584_9<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_bedarf_kategorie_199584_9)
v4_clin_medication_variables_1$v4_medikabehand3_bedarf_medi_199584_10<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_bedarf_medi_199584_10)
v4_clin_medication_variables_1$v4_medikabehand3_bedarf_kategorie_199584_10<-as.factor(v4_clin_medication_variables_1$v4_medikabehand3_bedarf_kategorie_199584_10)
#make the duplicated data frame
v4_clin_medications_duplicated_1<-as.data.frame(t(apply(v4_clin_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v4_clin_medications_duplicated_1) #1223 30
## [1] 1223 30
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v4_clin, not as character
v4_clin_medication_variables_1[,!c(TRUE, FALSE)][v4_clin_medications_duplicated_1=="TRUE"] <- NA
dim(v4_clin_medication_variables_1) #1223 61
## [1] 1223 61
#bind columns id and medication names, but not categories together
v4_clin_medication_name_1<-as.data.frame(cbind("mnppsd"=v4_clin_medication_variables_1[,1], v4_clin_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v4_clin_medication_name_1) #1223 31
## [1] 1223 31
#get the medication categories from the "_medication_variables_1" dataframe
v4_clin_medication_categories_1<-as.data.frame(v4_clin_medication_variables_1[,c(TRUE, FALSE)])
dim(v4_clin_medication_categories_1) #1223 31
## [1] 1223 31
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v4_clin, not as character
#Important: v4_clin_medication_name_1=="NA" replaced with is.na(v4_clin_medication_name_1)
v4_clin_medication_categories_1[is.na(v4_clin_medication_name_1)] <- NA
#write.csv(v4_clin_medication_categories_1, file="v4_clin_medication_group_1.csv")
#Make a count table of medications
v4_clin_med_table<-data.frame("mnppsd"=v4_clin$mnppsd)
v4_clin_med_table$v4_Antidepressants<-rowSums(v4_clin_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v4_clin_med_table$v4_Antipsychotics<-rowSums(v4_clin_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v4_clin_med_table$v4_Mood_stabilizers<-rowSums(v4_clin_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v4_clin_med_table$v4_Tranquilizers<-rowSums(v4_clin_medication_categories_1 == "Sedativa", na.rm = TRUE)
v4_clin_med_table$v4_Other_psychiatric<-rowSums(v4_clin_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
#get the following variables from v4_con
#1. Medication name ["_med_medi_2"]
#2. Medication category ["_med_kategorie_2"]
#3. Depot name ["_depot_medi_2"]
#4. Depot category ["_depot_kategorie_2"]
#5. Bedarf name ["_bedarf_medi_2"]
#6. Bedarf category ["_bedarf_kategorie_2"]
v4_con_medication_variables_1<-as.data.frame(v4_con[,grep("mnppsd|_med_medi_2|_med_kategorie_2|_depot_medi_2|_depot_kategorie_2|_bedarf_medi_2|_bedarf_kategorie_2",names(v4_con))])
dim(v4_con_medication_variables_1) #[1] 320 29
## [1] 320 29
#recode the variables that are coded as characters/logicals in the "v4_con_medication_variables_1" as factors
v4_con_medication_variables_1$v4_medikabehand3_med_medi_200705_7<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_med_medi_200705_7)
v4_con_medication_variables_1$v4_medikabehand3_med_kategorie_200705_7<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_med_kategorie_200705_7)
v4_con_medication_variables_1$v4_medikabehand3_med_medi_200705_8<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_med_medi_200705_8)
v4_con_medication_variables_1$v4_medikabehand3_med_kategorie_200705_8<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_med_kategorie_200705_8)
v4_con_medication_variables_1$v4_medikabehand3_bedarf_medi_201187_2<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_bedarf_medi_201187_2)
v4_con_medication_variables_1$v4_medikabehand3_bedarf_kategorie_201187_2<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_bedarf_kategorie_201187_2)
v4_con_medication_variables_1$v4_medikabehand3_bedarf_medi_201187_4<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_bedarf_medi_201187_4)
v4_con_medication_variables_1$v4_medikabehand3_bedarf_kategorie_201187_4<-as.factor(v4_con_medication_variables_1$v4_medikabehand3_bedarf_kategorie_201187_4)
#make the duplicated data frame
v4_con_medications_duplicated_1<-as.data.frame(t(apply(v4_con_medication_variables_1[,!c(TRUE,FALSE)], 1, duplicated)))
dim(v4_con_medications_duplicated_1) #320 14
## [1] 320 14
#recode all duplicated variables, i.e. overlay "_medication_variables_" and "_medications_duplicated_".
#Important: quotes from "NA" are removed, because variable are coded as facors in v4_con, not as character
v4_con_medication_variables_1[,!c(TRUE, FALSE)][v4_con_medications_duplicated_1=="TRUE"] <- NA
dim(v4_con_medication_variables_1) #320 29
## [1] 320 29
#bind columns id and medication names, but not categories together
v4_con_medication_name_1<-as.data.frame(cbind("mnppsd"=v4_con_medication_variables_1[,1], v4_con_medication_variables_1[,!c(TRUE, FALSE)]))
dim(v4_con_medication_name_1) #320 15
## [1] 320 15
#get the medication categories from the "_medication_variables_1" dataframe
v4_con_medication_categories_1<-as.data.frame(v4_con_medication_variables_1[,c(TRUE, FALSE)])
dim(v4_con_medication_categories_1) #320 15
## [1] 320 15
#recode all duplicated variables, i.e. overlay "_medication_categories_" and "_medication_name_"
#Important: quotes from "NA" are removed, because variable are coded as facors in v4_con, not as character
#Important: v4_con_medication_name_1=="NA" replaced with is.na(v4_con_medication_name_1)
v4_con_medication_categories_1[is.na(v4_con_medication_name_1)] <- NA
#write.csv(v4_con_medication_categories_1, file="v4_con_medication_group_1.csv")
#Make a count table of medications
v4_con_med_table<-data.frame("mnppsd"=v4_con$mnppsd)
v4_con_med_table$v4_Antidepressants<-rowSums(v4_con_medication_categories_1 == "Antidepressiva", na.rm = TRUE)
v4_con_med_table$v4_Antipsychotics<-rowSums(v4_con_medication_categories_1 == "Antipsychotika", na.rm = TRUE)
v4_con_med_table$v4_Mood_stabilizers<-rowSums(v4_con_medication_categories_1 == "Phasenprophylaktika", na.rm = TRUE)
v4_con_med_table$v4_Tranquilizers<-rowSums(v4_con_medication_categories_1 == "Sedativa", na.rm = TRUE)
v4_con_med_table$v4_Other_psychiatric<-rowSums(v4_con_medication_categories_1 == "Psychopharmaka nicht zuordenbar", na.rm = TRUE)
Bind v4_clin and v4_con together by rows
v4_drugs<-rbind(v4_clin_med_table,v4_con_med_table)
dim(v4_drugs) #1543 6
## [1] 1543 6
#check if the id column of v4_drugs and v1_id match
table(droplevels(v4_drugs[,1])==v1_id)
##
## TRUE
## 1543
v4_clin_adv<-ifelse(v4_clin$v4_medikabehand_medi2_nebenwirk==1,"Y","N")
v4_con_adv<-rep("-999",dim(v4_con)[1])
v4_adv<-factor(c(v4_clin_adv,v4_con_adv))
descT(v4_adv)
## -999 N Y <NA>
## [1,] No. cases 320 159 237 827 1543
## [2,] Percent 20.7 10.3 15.4 53.6 100
v4_clin_medchange<-rep(NA,dim(v4_clin)[1])
v4_clin_medchange<-ifelse(v4_clin$v4_medikabehand_medi3_mediaenderung==1,"Y","N")
v4_con_medchange<-rep("-999",dim(v4_con)[1])
v4_medchange<-as.factor(c(v4_clin_medchange,v4_con_medchange))
descT(v4_medchange)
## -999 N Y <NA>
## [1,] No. cases 320 177 217 829 1543
## [2,] Percent 20.7 11.5 14.1 53.7 100
Please see the section in Visit 1 for explanation.
v4_clin_lith<-rep(NA,dim(v4_clin)[1])
v4_clin_lith<-ifelse(v4_clin$v4_medikabehand_med_zusatz_lithium==1,"Y","N")
v4_con_lith<-rep("-999",dim(v4_con)[1])
v4_lith<-as.factor(c(v4_clin_lith,v4_con_lith))
v4_lith<-as.factor(v4_lith)
descT(v4_lith)
## -999 N Y <NA>
## [1,] No. cases 320 256 147 820 1543
## [2,] Percent 20.7 16.6 9.5 53.1 100
Ordinal variable, gradation the following: “less than one year”-1, “one to two years”-2, “two or more years”-3.
v4_clin_lith_prd<-rep(NA,dim(v4_clin)[1])
v4_con_lith_prd<-rep(-999,dim(v4_con)[1])
v4_clin_lith_prd<-ifelse(v4_clin_lith=="N", -999, ifelse(v4_clin$v4_medikabehand_med_zusatz_dauer==2,1,
ifelse(v4_clin$v4_medikabehand_med_zusatz_dauer==1,2,
ifelse(v4_clin$v4_medikabehand_med_zusatz_dauer==0,3,NA))))
v4_lith_prd<-factor(c(v4_clin_lith_prd,v4_con_lith_prd))
descT(v4_lith_prd)
## -999 1 2 3 <NA>
## [1,] No. cases 576 42 26 79 820 1543
## [2,] Percent 37.3 2.7 1.7 5.1 53.1 100
The ALDA scale (P. Grof et al., 2002) measures reponse to lithium and was thus only used in clinical participants (see below). Control subjects, and
have a -999 in this item. The scale is formally called “Retrospective criteria of long-term treatment response in research subjects with bipolar disorder”. The ALDA scale quantifies symptom improvement in the course of treatment (A score, range 0–10), which is then weighted against five criteria (B score) that assess confounding factors, each scored 0,1, or 2. The total score is then derived by subtracting the total B score from the A score. Negative scores are set to 0 by default so that the total score ranges from 0 to 10 (Hou et al., 2016).
This questionnaire was only assessed if
The scale was also assessed in some clinical participants with other diagnoses, because the bipolar diagnosis criterion had not been formalized at the start of the study.
Now, the ALDA items are coded so that all individuals with values on these item are included in the dataset. If no value is given (NA), and the fourth visit took place, all diagnoses other that BP-I and BP-II (this includes controls), including BP1 and BP2 individuals that never (or for too little time) received lithium, are coded -999.
The ALDA Total Score is given as in the paper CRF, please check yourself if it was correctly calculated
A score (continuous [0,1,2,3,4,5,6,7,8,9,10], v4_alda_A)
v4_clin_alda_A<-rep(NA,dim(v4_clin)[1])
v4_con_alda_A<-rep(-999,dim(v4_con)[1])
v4_clin_alda_A<-ifelse(is.na(v4_clin$v4_lithium_lithium_crit_a_score)==F, v4_clin$v4_lithium_lithium_crit_a_score,
ifelse(is.na(v4_interv_date),NA,
ifelse(!(v1_scid_dsm_dx_cat[v1_stat=="CLINICAL"]%in% c("Bipolar-I Disorder","Bipolar-II Disorder"))
| (v4_clin$v4_medikabehand3_med_zusatz_lithium==0 |
v4_clin$v4_medikabehand3_med_zusatz_dauer==2),-999,NA)))
v4_alda_A<-c(v4_clin_alda_A,v4_con_alda_A)
summary(v4_alda_A[v4_alda_A>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.000 7.000 6.147 8.000 10.000 765
B1 score (continuous [0,1,2], v4_alda_B1)
v4_clin_alda_B1<-rep(NA,dim(v4_clin)[1])
v4_con_alda_B1<-rep(-999,dim(v4_con)[1])
v4_clin_alda_B1<-ifelse(is.na(v4_clin$v4_lithium_lithium_crit_b1)==F, v4_clin$v4_lithium_lithium_crit_b1,
ifelse(is.na(v4_interv_date),NA,
ifelse(!(v1_scid_dsm_dx_cat[v1_stat=="CLINICAL"]%in% c("Bipolar-I Disorder","Bipolar-II Disorder"))
| (v4_clin$v4_medikabehand3_med_zusatz_lithium==0 |
v4_clin$v4_medikabehand3_med_zusatz_dauer==2),-999,NA)))
v4_alda_B1<-c(v4_clin_alda_B1,v4_con_alda_B1)
summary(v4_alda_B1[v4_alda_B1>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.3864 1.0000 2.0000 772
B2 score (continuous [0,1,2], v4_alda_B2)
v4_clin_alda_B2<-rep(NA,dim(v4_clin)[1])
v4_con_alda_B2<-rep(-999,dim(v4_con)[1])
v4_clin_alda_B2<-ifelse(is.na(v4_clin$v4_lithium_lithium_crit_b2)==F, v4_clin$v4_lithium_lithium_crit_b2,
ifelse(is.na(v4_interv_date),NA,
ifelse(!(v1_scid_dsm_dx_cat[v1_stat=="CLINICAL"]%in% c("Bipolar-I Disorder","Bipolar-II Disorder"))
| (v4_clin$v4_medikabehand3_med_zusatz_lithium==0 |
v4_clin$v4_medikabehand3_med_zusatz_dauer==2),-999,NA)))
v4_alda_B2<-c(v4_clin_alda_B2,v4_con_alda_B2)
summary(v4_alda_B2[v4_alda_B2>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0 0.0 0.0 0.5 1.0 2.0 773
B3 score (continuous [0,1,2], v4_alda_B3)
v4_clin_alda_B3<-rep(NA,dim(v4_clin)[1])
v4_con_alda_B3<-rep(-999,dim(v4_con)[1])
v4_clin_alda_B3<-ifelse(is.na(v4_clin$v4_lithium_lithium_crit_b3)==F, v4_clin$v4_lithium_lithium_crit_b3,
ifelse(is.na(v4_interv_date),NA,
ifelse(!(v1_scid_dsm_dx_cat[v1_stat=="CLINICAL"]%in% c("Bipolar-I Disorder","Bipolar-II Disorder"))
| (v4_clin$v4_medikabehand3_med_zusatz_lithium==0 |
v4_clin$v4_medikabehand3_med_zusatz_dauer==2),-999,NA)))
v4_alda_B3<-c(v4_clin_alda_B3,v4_con_alda_B3)
summary(v4_alda_B3[v4_alda_B3>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 0.236 0.000 1.000 771
B4 score (continuous [0,1,2], v4_alda_B4)
v4_clin_alda_B4<-rep(NA,dim(v4_clin)[1])
v4_con_alda_B4<-rep(-999,dim(v4_con)[1])
v4_clin_alda_B4<-ifelse(is.na(v4_clin$v4_lithium_lithium_crit_b4)==F, v4_clin$v4_lithium_lithium_crit_b4,
ifelse(is.na(v4_interv_date),NA,
ifelse(!(v1_scid_dsm_dx_cat[v1_stat=="CLINICAL"]%in% c("Bipolar-I Disorder","Bipolar-II Disorder"))
| (v4_clin$v4_medikabehand3_med_zusatz_lithium==0 |
v4_clin$v4_medikabehand3_med_zusatz_dauer==2),-999,NA)))
v4_alda_B4<-c(v4_clin_alda_B4,v4_con_alda_B4)
summary(v4_alda_B4[v4_alda_B4>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.2727 0.0000 2.0000 772
B5 score (continuous [0,1,2], v4_alda_B5)
v4_clin_alda_B5<-rep(NA,dim(v4_clin)[1])
v4_con_alda_B5<-rep(-999,dim(v4_con)[1])
v4_clin_alda_B5<-ifelse(is.na(v4_clin$v4_lithium_lithium_crit_b5)==F, v4_clin$v4_lithium_lithium_crit_b5,
ifelse(is.na(v4_interv_date),NA,
ifelse(!(v1_scid_dsm_dx_cat[v1_stat=="CLINICAL"]%in% c("Bipolar-I Disorder","Bipolar-II Disorder"))
| (v4_clin$v4_medikabehand3_med_zusatz_lithium==0 |
v4_clin$v4_medikabehand3_med_zusatz_dauer==2),-999,NA)))
v4_alda_B5<-c(v4_clin_alda_B5,v4_con_alda_B5)
summary(v4_alda_B5[v4_alda_B5>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 1.000 2.000 1.299 2.000 2.000 773
Total score (continuous [0,1,2,3,4,5,6,7,8,9,10], v4_alda_tot)
v4_clin_alda_tot<-rep(NA,dim(v4_clin)[1])
v4_con_alda_tot<-rep(-999,dim(v4_con)[1])
v4_clin_alda_tot<-ifelse(is.na(v4_clin$v4_lithium_lithium_total_score)==F, v4_clin$v4_lithium_lithium_total_score,
ifelse(is.na(v4_interv_date),NA,
ifelse(!(v1_scid_dsm_dx_cat[v1_stat=="CLINICAL"]%in% c("Bipolar-I Disorder","Bipolar-II Disorder"))
| (v4_clin$v4_medikabehand3_med_zusatz_lithium==0 |
v4_clin$v4_medikabehand3_med_zusatz_dauer==2),-999,NA)))
v4_clin_alda_tot[v4_clin_alda_tot<0]<-0 #set all negative values to zero
v4_alda_tot<-c(v4_clin_alda_tot,v4_con_alda_tot)
summary(v4_alda_tot[v4_alda_tot>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.8017 0.0000 10.0000 764
Create dataset
v4_med<-data.frame(v4_drugs[,2:6],v4_adv,v4_medchange,v4_lith,v4_lith_prd,v4_alda_A,v4_alda_B1,v4_alda_B2,v4_alda_B3,v4_alda_B4,v4_alda_B5,v4_alda_tot)
For more explanation, see Visit 1
This is a categorical item with four optional answers: “no, still smoker”-NS, “no, still nonsmoker”-NN, and “yes, stopped smoking (more than three months ago)” -YSP, “yes, started smoking (more than three months ago)”-YST.
v4_clin_smk_strt_stp<-rep(NA,dim(v4_clin)[1])
v4_clin_smk_strt_stp<-ifelse(v4_clin$v4_tabalk1_ta1_jemals_rauch==1,"NS",
ifelse(v4_clin$v4_tabalk1_ta1_jemals_rauch==2,"NN",
ifelse(v4_clin$v4_tabalk1_ta1_jemals_rauch==3,"YSP",
ifelse(v4_clin$v4_tabalk1_ta1_jemals_rauch==4,"YST",v4_clin_smk_strt_stp))))
#ATTENTION: answering alternative: e-cigarette only in controls
v4_con_smk_strt_stp<-rep(NA,dim(v4_con)[1])
v4_con_smk_strt_stp<-ifelse(v4_con$v4_tabalk_folge_tabak1==1 | v4_con$v4_tabalk_folge_tabak1==2,"NS",
ifelse(v4_con$v4_tabalk_folge_tabak1==3,"NN",
ifelse(v4_con$v4_tabalk_folge_tabak1==4,"YSP",
ifelse(v4_con$v4_tabalk_folge_tabak1==5,"YST",v4_con_smk_strt_stp))))
v4_smk_strt_stp<-c(v4_clin_smk_strt_stp,v4_con_smk_strt_stp)
descT(v4_smk_strt_stp)
## NN NS YSP YST <NA>
## [1,] No. cases 220 298 11 7 1007 1543
## [2,] Percent 14.3 19.3 0.7 0.5 65.3 100
In the original item, the number of cigarettes is to be entered by the investigator, however there are three options to which timeframe these cigarettes refer to: per day, per week or per month. Here, we have decided to give the cigarettes per year.
Please not that people who have stopped smoking but less than three months ago are still labeled as smokers, therefore zeros can occur.
v4_no_cig<-c(rep(NA,dim(v4_clin)[1]),rep(NA,dim(v4_con)[1]))
v4_no_cig<-ifelse((v4_smk_strt_stp=="NN" | v4_smk_strt_stp=="YSP"), -999,
ifelse((v4_smk_strt_stp=="NS" | v4_smk_strt_stp=="YST") &
c(v4_clin$v4_tabalk1_ta3_zig_pro_zeit,v4_con$v4_tabalk_folge_tabak2_zeit)==1,
c(v4_clin$v4_tabalk1_ta3_anz_zig,v4_con$v4_tabalk_folge_tabak2_anz)*365,
ifelse((v4_smk_strt_stp=="NS" | v4_smk_strt_stp=="YST") &
c(v4_clin$v4_tabalk1_ta3_zig_pro_zeit,v4_con$v4_tabalk_folge_tabak2_zeit)==2,
c(v4_clin$v4_tabalk1_ta3_anz_zig,v4_con$v4_tabalk_folge_tabak2_anz)*52,
ifelse((v4_smk_strt_stp=="NS" | v4_smk_strt_stp=="YST") &
c(v4_clin$v4_tabalk1_ta3_zig_pro_zeit,v4_con$v4_tabalk_folge_tabak2_zeit)==3,
c(v4_clin$v4_tabalk1_ta3_anz_zig,v4_con$v4_tabalk_folge_tabak2_anz)*12,
v4_no_cig))))
summary(v4_no_cig[v4_no_cig>=0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0 3650 7300 6913 9125 21900 1081
This is and ordinal item. Optional answers are: “never”-1, “only on special occasions”-2, “once per month or less”-3, “two to four times per month”-4, “two to three times per week”-5, “four times per week or several times but not daily”-6, “daily”-7.
v4_alc_pst6_mths<-c(v4_clin$v4_tabalk1_ta9_alkkonsum,v4_con$v4_tabalk_folge_alkohol4)
v4_alc_pst6_mths<-factor(v4_alc_pst6_mths, ordered=T)
descT(v4_alc_pst6_mths)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 154 121 61 87 67 23 24 1006 1543
## [2,] Percent 10 7.8 4 5.6 4.3 1.5 1.6 65.2 100
This is an ordinal item. Optional answers are: “never”-1, “once or twice”-2, “three to five times”-3, “six to eleven times”-4, “approximately once per month”-5, “two to three times per month”-6, “one to two times per week”-7, “three to four times per week”-8, “daily or almost daily”-9. Note that this item was skipped if participants chose answering alternatives 1, 2 or 3 in the previous question. In these cases, coding is -999.
v4_alc_5orm<-ifelse(v4_alc_pst6_mths<4,-999,
ifelse(is.na(c(v4_clin$v4_tabalk1_ta10_alk_haeufigk_m1,v4_con$v4_tabalk_folge_alkohol5))==T,
c(v4_clin$v4_tabalk1_ta11_alk_haeufigk_f1,v4_con$v4_tabalk_folge_alkohol6),
c(v4_clin$v4_tabalk1_ta10_alk_haeufigk_m1,v4_con$v4_tabalk_folge_alkohol5)))
v4_alc_5orm<-factor(v4_alc_5orm, ordered=T)
descT(v4_alc_5orm)
## -999 1 2 3 4 5 6 7 8 9 <NA>
## [1,] No. cases 336 123 27 16 5 7 6 10 3 4 1006 1543
## [2,] Percent 21.8 8 1.7 1 0.3 0.5 0.4 0.6 0.2 0.3 65.2 100
For more information see in visit 1 and 2.
“During the past six months, did you take ANY illicit drugs?” (dichotomous, v4_pst6_ill_drg)
v4_pst6_ill_drg<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_pst6_ill_drg<-ifelse(c(v4_clin$v4_drogen1_dg1_konsum,v4_con$v4_drogen_folge_drogenkonsum)==2, "Y", "N")
descT(v4_pst6_ill_drg)
## N Y <NA>
## [1,] No. cases 502 35 1006 1543
## [2,] Percent 32.5 2.3 65.2 100
Create dataset
v4_subst<-data.frame(v4_smk_strt_stp,
v4_no_cig,
v4_alc_pst6_mths,
v4_alc_5orm,
v4_pst6_ill_drg)
For more information on the scale, please see Visit 1
P1 Delusions (ordinal [1,2,3,4,5,6,7], v4_panss_p1)
v4_panss_p1<-c(v4_clin$v4_panss_p_p1_wahnideen,v4_con$v4_panss_p_p1_wahnideen)
v4_panss_p1<-factor(v4_panss_p1, ordered=T)
descT(v4_panss_p1)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 376 27 45 22 7 7 2 1057 1543
## [2,] Percent 24.4 1.7 2.9 1.4 0.5 0.5 0.1 68.5 100
P2 Conceptual disorganization (ordinal [1,2,3,4,5,6,7], v4_panss_p2)
v4_panss_p2<-c(v4_clin$v4_panss_p_p2_form_denkst,v4_con$v4_panss_p_p2_form_denkst)
v4_panss_p2<-factor(v4_panss_p2, ordered=T)
descT(v4_panss_p2)
## 1 2 3 4 5 <NA>
## [1,] No. cases 351 42 59 24 10 1057 1543
## [2,] Percent 22.7 2.7 3.8 1.6 0.6 68.5 100
P3 Hallucinatory behavior (ordinal [1,2,3,4,5,6,7], v4_panss_p3)
v4_panss_p3<-c(v4_clin$v4_panss_p_p3_halluz,v4_con$v4_panss_p_p3_halluz)
v4_panss_p3<-factor(v4_panss_p3, ordered=T)
descT(v4_panss_p3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 413 19 24 15 13 2 1057 1543
## [2,] Percent 26.8 1.2 1.6 1 0.8 0.1 68.5 100
P4 Excitement (ordinal [1,2,3,4,5,6,7], v4_panss_p4)
v4_panss_p4<-c(v4_clin$v4_panss_p_p4_erregung,v4_con$v4_panss_p_p4_erregung)
v4_panss_p4<-factor(v4_panss_p4, ordered=T)
descT(v4_panss_p4)
## 1 2 3 4 5 <NA>
## [1,] No. cases 376 38 54 16 2 1057 1543
## [2,] Percent 24.4 2.5 3.5 1 0.1 68.5 100
P5 Grandiosity (ordinal [1,2,3,4,5,6,7], v4_panss_p5)
v4_panss_p5<-c(v4_clin$v4_panss_p_p5_groessenideen,v4_con$v4_panss_p_p5_groessenideen)
v4_panss_p5<-factor(v4_panss_p5, ordered=T)
descT(v4_panss_p5)
## 1 2 3 4 5 <NA>
## [1,] No. cases 446 17 14 4 5 1057 1543
## [2,] Percent 28.9 1.1 0.9 0.3 0.3 68.5 100
P6 Suspiciousness/persecution (ordinal [1,2,3,4,5,6,7], v4_panss_p6)
v4_panss_p6<-c(v4_clin$v4_panss_p_p6_misstr_verfolg,v4_con$v4_panss_p_p6_misstr_verfolg)
v4_panss_p6<-factor(v4_panss_p6, ordered=T)
descT(v4_panss_p6)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 377 28 54 15 9 3 1057 1543
## [2,] Percent 24.4 1.8 3.5 1 0.6 0.2 68.5 100
P7 Hostility (ordinal [1,2,3,4,5,6,7], v4_panss_p7)
v4_panss_p7<-c(v4_clin$v4_panss_p_p7_feindseligkeit,v4_con$v4_panss_p_p7_feindseligkeit)
v4_panss_p7<-factor(v4_panss_p7, ordered=T)
descT(v4_panss_p7)
## 1 2 3 4 5 <NA>
## [1,] No. cases 440 20 22 3 1 1057 1543
## [2,] Percent 28.5 1.3 1.4 0.2 0.1 68.5 100
PANSS Positive sum score (continuous [7-49], v4_panss_sum_pos)
v4_panss_sum_pos<-as.numeric.factor(v4_panss_p1)+
as.numeric.factor(v4_panss_p2)+
as.numeric.factor(v4_panss_p3)+
as.numeric.factor(v4_panss_p4)+
as.numeric.factor(v4_panss_p5)+
as.numeric.factor(v4_panss_p6)+
as.numeric.factor(v4_panss_p7)
summary(v4_panss_sum_pos)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.000 7.000 8.000 9.658 11.000 27.000 1057
N1 Blunted affect (ordinal [1,2,3,4,5,6,7], v4_panss_n1)
v4_panss_n1<-c(v4_clin$v4_panss_n_n1_affektverflachung,v4_con$v4_panss_n_n1_affektverflachung)
v4_panss_n1<-factor(v4_panss_n1, ordered=T)
descT(v4_panss_n1)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 255 57 78 41 51 4 1057 1543
## [2,] Percent 16.5 3.7 5.1 2.7 3.3 0.3 68.5 100
N2 Emotional withdrawal (ordinal [1,2,3,4,5,6,7], v4_panss_n2)
v4_panss_n2<-c(v4_clin$v4_panss_n_n2_emot_rueckzug,v4_con$v4_panss_n_n2_emot_rueckzug)
v4_panss_n2<-factor(v4_panss_n2, ordered=T)
descT(v4_panss_n2)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 317 47 64 40 14 4 1057 1543
## [2,] Percent 20.5 3 4.1 2.6 0.9 0.3 68.5 100
N3 Poor rapport (ordinal [1,2,3,4,5,6,7], v4_panss_n3)
v4_panss_n3<-c(v4_clin$v4_panss_n_n3_mang_aff_rapp,v4_con$v4_panss_n_n3_mang_aff_rapp)
v4_panss_n3<-factor(v4_panss_n3, ordered=T)
descT(v4_panss_n3)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 338 45 73 14 10 2 1061 1543
## [2,] Percent 21.9 2.9 4.7 0.9 0.6 0.1 68.8 100
N4 Passive/apathetic social withdrawal (ordinal [1,2,3,4,5,6,7], v4_panss_n4)
v4_panss_n4<-c(v4_clin$v4_panss_n_n4_soz_pass_apath,v4_con$v4_panss_n_n4_soz_pass_apath)
v4_panss_n4<-factor(v4_panss_n4, ordered=T)
descT(v4_panss_n4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 306 48 78 26 22 4 1059 1543
## [2,] Percent 19.8 3.1 5.1 1.7 1.4 0.3 68.6 100
N5 difficulty in abstract thinking (ordinal [1,2,3,4,5,6,7], v4_panss_n5)
v4_panss_n5<-c(v4_clin$v4_panss_n_n5_abstr_denken,v4_con$v4_panss_n_n5_abstr_denken)
v4_panss_n5<-factor(v4_panss_n5, ordered=T)
descT(v4_panss_n5)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 267 71 92 35 13 3 1062 1543
## [2,] Percent 17.3 4.6 6 2.3 0.8 0.2 68.8 100
N6 Lack of spontaneity and flow of conversation (ordinal [1,2,3,4,5,6,7], v4_panss_n6)
v4_panss_n6<-c(v4_clin$v4_panss_n_n6_spon_fl_sprache,v4_con$v4_panss_n_n6_spon_fl_sprache)
v4_panss_n6<-factor(v4_panss_n6, ordered=T)
descT(v4_panss_n6)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 375 25 47 23 14 3 1056 1543
## [2,] Percent 24.3 1.6 3 1.5 0.9 0.2 68.4 100
N7 Stereotyped thinking (ordinal [1,2,3,4,5,6,7], v4_panss_n7)
v4_panss_n7<-c(v4_clin$v4_panss_n_n7_stereotyp_ged,v4_con$v4_panss_n_n7_stereotyp_ged)
v4_panss_n7<-factor(v4_panss_n7, ordered=T)
descT(v4_panss_n7)
## 1 2 3 4 5 <NA>
## [1,] No. cases 382 29 55 18 1 1058 1543
## [2,] Percent 24.8 1.9 3.6 1.2 0.1 68.6 100
PANSS Negative sum score (continuous [7-49], v4_panss_sum_neg)
v4_panss_sum_neg<-as.numeric.factor(v4_panss_n1)+
as.numeric.factor(v4_panss_n2)+
as.numeric.factor(v4_panss_n3)+
as.numeric.factor(v4_panss_n4)+
as.numeric.factor(v4_panss_n5)+
as.numeric.factor(v4_panss_n6)+
as.numeric.factor(v4_panss_n7)
summary(v4_panss_sum_neg)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.0 7.0 10.0 12.1 15.0 34.0 1065
G1 Somatic concerns (ordinal [1,2,3,4,5,6,7], v4_panss_g1)
v4_panss_g1<-c(v4_clin$v4_panss_g_g1_sorge_gesundh,v4_con$v4_panss_g_g1_sorge_gesundh)
v4_panss_g1<-factor(v4_panss_g1, ordered=T)
descT(v4_panss_g1)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 336 58 61 20 5 1 1062 1543
## [2,] Percent 21.8 3.8 4 1.3 0.3 0.1 68.8 100
G2 Anxiety (ordinal [1,2,3,4,5,6,7], v4_panss_g2)
v4_panss_g2<-c(v4_clin$v4_panss_g_g2_angst,v4_con$v4_panss_g_g2_angst)
v4_panss_g2<-factor(v4_panss_g2, ordered=T)
descT(v4_panss_g2)
## 1 2 3 4 5 <NA>
## [1,] No. cases 289 49 97 27 21 1060 1543
## [2,] Percent 18.7 3.2 6.3 1.7 1.4 68.7 100
G3 Guilt feelings (ordinal [1,2,3,4,5,6,7], v4_panss_g3)
v4_panss_g3<-c(v4_clin$v4_panss_g_g3_schuldgefuehle,v4_con$v4_panss_g_g3_schuldgefuehle)
v4_panss_g3<-factor(v4_panss_g3, ordered=T)
descT(v4_panss_g3)
## 1 2 3 4 5 <NA>
## [1,] No. cases 357 32 56 29 8 1061 1543
## [2,] Percent 23.1 2.1 3.6 1.9 0.5 68.8 100
G4 Tension (ordinal [1,2,3,4,5,6,7], v4_panss_g4)
v4_panss_g4<-c(v4_clin$v4_panss_g_g4_anspannung,v4_con$v4_panss_g_g4_anspannung)
v4_panss_g4<-factor(v4_panss_g4, ordered=T)
descT(v4_panss_g4)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 323 47 84 22 6 3 1058 1543
## [2,] Percent 20.9 3 5.4 1.4 0.4 0.2 68.6 100
G5 Mannerisms & posturing (ordinal [1,2,3,4,5,6,7], v4_panss_g5)
v4_panss_g5<-c(v4_clin$v4_panss_g_g5_manier_koerperh,v4_con$v4_panss_g_g5_manier_koerperh)
v4_panss_g5<-factor(v4_panss_g5, ordered=T)
descT(v4_panss_g5)
## 1 2 3 4 6 <NA>
## [1,] No. cases 437 17 23 5 1 1060 1543
## [2,] Percent 28.3 1.1 1.5 0.3 0.1 68.7 100
G6 Depression (ordinal [1,2,3,4,5,6,7], v4_panss_g6)
v4_panss_g6<-c(v4_clin$v4_panss_g_g6_depression,v4_con$v4_panss_g_g6_depression)
v4_panss_g6<-factor(v4_panss_g6, ordered=T)
descT(v4_panss_g6)
## 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 279 38 85 45 32 4 1 1059 1543
## [2,] Percent 18.1 2.5 5.5 2.9 2.1 0.3 0.1 68.6 100
G7 Motor retardation (ordinal [1,2,3,4,5,6,7], v4_panss_g7)
v4_panss_g7<-c(v4_clin$v4_panss_g_g7_mot_verlangs,v4_con$v4_panss_g_g7_mot_verlangs)
v4_panss_g7<-factor(v4_panss_g7, ordered=T)
descT(v4_panss_g7)
## 1 2 3 4 5 <NA>
## [1,] No. cases 331 41 76 31 5 1059 1543
## [2,] Percent 21.5 2.7 4.9 2 0.3 68.6 100
G8 Uncooperativeness (ordinal [1,2,3,4,5,6,7], v4_panss_g8)
v4_panss_g8<-c(v4_clin$v4_panss_g_g8_unkoop_verh,v4_con$v4_panss_g_g8_unkoop_verh)
v4_panss_g8<-factor(v4_panss_g8, ordered=T)
descT(v4_panss_g8)
## 1 2 3 5 <NA>
## [1,] No. cases 452 16 14 2 1059 1543
## [2,] Percent 29.3 1 0.9 0.1 68.6 100
G9 Unusual thought content (ordinal [1,2,3,4,5,6,7], v4_panss_g9)
v4_panss_g9<-c(v4_clin$v4_panss_g_g9_ungew_denkinh,v4_con$v4_panss_g_g9_ungew_denkinh)
v4_panss_g9<-factor(v4_panss_g9, ordered=T)
descT(v4_panss_g9)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 381 27 54 15 6 1 1059 1543
## [2,] Percent 24.7 1.7 3.5 1 0.4 0.1 68.6 100
G10 Disorientation (ordinal [1,2,3,4,5,6,7], v4_panss_g10)
v4_panss_g10<-c(v4_clin$v4_panss_g_g10_desorient,v4_con$v4_panss_g_g10_desorient)
v4_panss_g10<-factor(v4_panss_g10, ordered=T)
descT(v4_panss_g10)
## 1 2 3 <NA>
## [1,] No. cases 458 19 8 1058 1543
## [2,] Percent 29.7 1.2 0.5 68.6 100
G11 Poor attention (ordinal [1,2,3,4,5,6,7], v4_panss_g11)
v4_panss_g11<-c(v4_clin$v4_panss_g_g11_mang_aufmerks,v4_con$v4_panss_g_g11_mang_aufmerks)
v4_panss_g11<-factor(v4_panss_g11, ordered=T)
descT(v4_panss_g11)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 295 46 105 29 1 1 1066 1543
## [2,] Percent 19.1 3 6.8 1.9 0.1 0.1 69.1 100
G12 Lack of judgement & insight (ordinal [1,2,3,4,5,6,7], v4_panss_g12)
v4_panss_g12<-c(v4_clin$v4_panss_g_g12_mang_urt_einsi,v4_con$v4_panss_g_g12_mang_urt_einsi)
v4_panss_g12<-factor(v4_panss_g12, ordered=T)
descT(v4_panss_g12)
## 1 2 3 4 5 7 <NA>
## [1,] No. cases 406 34 18 19 5 2 1059 1543
## [2,] Percent 26.3 2.2 1.2 1.2 0.3 0.1 68.6 100
G13 Disturbance of volition (ordinal [1,2,3,4,5,6,7], v4_panss_g13)
v4_panss_g13<-c(v4_clin$v4_panss_g_g13_willensschwae,v4_con$v4_panss_g_g13_willensschwae)
v4_panss_g13<-factor(v4_panss_g13, ordered=T)
descT(v4_panss_g13)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 405 21 46 9 2 1 1059 1543
## [2,] Percent 26.2 1.4 3 0.6 0.1 0.1 68.6 100
G14 Poor impulse control (ordinal [1,2,3,4,5,6,7], v4_panss_g14)
v4_panss_g14<-c(v4_clin$v4_panss_g_g14_mang_impulsk,v4_con$v4_panss_g_g14_mang_impulsk)
v4_panss_g14<-factor(v4_panss_g14, ordered=T)
descT(v4_panss_g14)
## 1 2 3 4 6 <NA>
## [1,] No. cases 413 24 40 3 2 1061 1543
## [2,] Percent 26.8 1.6 2.6 0.2 0.1 68.8 100
G15 Preoccupation (ordinal [1,2,3,4,5,6,7], v4_panss_g15)
v4_panss_g15<-c(v4_clin$v4_panss_g_g15_selbstbezog,v4_con$v4_panss_g_g15_selbstbezog)
v4_panss_g15<-factor(v4_panss_g15, ordered=T)
descT(v4_panss_g15)
## 1 2 3 4 5 <NA>
## [1,] No. cases 423 25 28 4 2 1061 1543
## [2,] Percent 27.4 1.6 1.8 0.3 0.1 68.8 100
G16 Active social avoidance (ordinal [1,2,3,4,5,6,7], v4_panss_g16)
v4_panss_g16<-c(v4_clin$v4_panss_g_g16_aktsoz_vermeid,v4_con$v4_panss_g_g16_aktsoz_vermeid)
v4_panss_g16<-factor(v4_panss_g16, ordered=T)
descT(v4_panss_g16)
## 1 2 3 4 5 6 <NA>
## [1,] No. cases 360 32 59 19 12 1 1060 1543
## [2,] Percent 23.3 2.1 3.8 1.2 0.8 0.1 68.7 100
PANSS General Psychopathology sum score (continuous [16-112], v4_panss_sum_gen)
v4_panss_sum_gen<-as.numeric.factor(v4_panss_g1)+
as.numeric.factor(v4_panss_g2)+
as.numeric.factor(v4_panss_g3)+
as.numeric.factor(v4_panss_g4)+
as.numeric.factor(v4_panss_g5)+
as.numeric.factor(v4_panss_g6)+
as.numeric.factor(v4_panss_g7)+
as.numeric.factor(v4_panss_g8)+
as.numeric.factor(v4_panss_g9)+
as.numeric.factor(v4_panss_g10)+
as.numeric.factor(v4_panss_g11)+
as.numeric.factor(v4_panss_g12)+
as.numeric.factor(v4_panss_g13)+
as.numeric.factor(v4_panss_g14)+
as.numeric.factor(v4_panss_g15)+
as.numeric.factor(v4_panss_g16)
summary(v4_panss_sum_gen)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 16.0 18.0 21.0 23.3 27.0 50.0 1083
Create PANSS Total score (continuous [30-210], v4_panss_sum_tot)
v4_panss_sum_tot<-v4_panss_sum_pos+v4_panss_sum_neg+v4_panss_sum_gen
summary(v4_panss_sum_tot)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 30.00 34.00 40.00 44.82 51.00 100.00 1087
Create dataset
v4_symp_panss<-data.frame(v4_panss_p1,v4_panss_p2,v4_panss_p3,v4_panss_p4,v4_panss_p5,v4_panss_p6,v4_panss_p7,
v4_panss_n1,v4_panss_n2,v4_panss_n3,v4_panss_n4,v4_panss_n5,v4_panss_n6,v4_panss_n7,
v4_panss_g1,v4_panss_g2,v4_panss_g3,v4_panss_g4,v4_panss_g5,v4_panss_g6,v4_panss_g7,
v4_panss_g8,v4_panss_g9,v4_panss_g10,v4_panss_g11,v4_panss_g12,v4_panss_g13,v4_panss_g14,
v4_panss_g15,v4_panss_g16,v4_panss_sum_pos,v4_panss_sum_neg,v4_panss_sum_gen,
v4_panss_sum_tot)
For more information on the scale, please see Visit 1
Item 1 Sleep onset insomnia (ordinal [0,1,2,3], v4_idsc_itm1)
v4_idsc_itm1<-c(v4_clin$v4_ids_c_s1_ids1_einschlafschw,v4_con$v4_ids_c_s1_ids1_einschlafschw)
v4_idsc_itm1<-factor(v4_idsc_itm1, ordered=T)
descT(v4_idsc_itm1)
## 0 1 2 3 <NA>
## [1,] No. cases 343 56 48 36 1060 1543
## [2,] Percent 22.2 3.6 3.1 2.3 68.7 100
Item 2 Mid-nocturnal insomnia (ordinal [0,1,2,3], v4_idsc_itm2)
v4_idsc_itm2<-c(v4_clin$v4_ids_c_s1_ids2_naechtl_aufw,v4_con$v4_ids_c_s1_ids2_naechtl_aufw)
v4_idsc_itm2<-factor(v4_idsc_itm2, ordered=T)
descT(v4_idsc_itm2)
## 0 1 2 3 <NA>
## [1,] No. cases 298 72 74 39 1060 1543
## [2,] Percent 19.3 4.7 4.8 2.5 68.7 100
Item 3 Early morning insomnia (ordinal [0,1,2,3], v4_idsc_itm3)
v4_idsc_itm3<-c(v4_clin$v4_ids_c_s1_ids3_frueh_aufw,v4_con$v4_ids_c_s1_ids3_frueh_aufw)
v4_idsc_itm3<-factor(v4_idsc_itm3, ordered=T)
descT(v4_idsc_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 388 38 31 25 1061 1543
## [2,] Percent 25.1 2.5 2 1.6 68.8 100
Item 4 Hypersomnia (ordinal [0,1,2,3], v4_idsc_itm4)
v4_idsc_itm4<-c(v4_clin$v4_ids_c_s1_ids4_hypersomnie,v4_con$v4_ids_c_s1_ids4_hypersomnie)
v4_idsc_itm4<-factor(v4_idsc_itm4, ordered=T)
descT(v4_idsc_itm4)
## 0 1 2 3 <NA>
## [1,] No. cases 287 134 48 15 1059 1543
## [2,] Percent 18.6 8.7 3.1 1 68.6 100
Item 5 Mood (sad) (ordinal [0,1,2,3], v4_idsc_itm5)
v4_idsc_itm5<-c(v4_clin$v4_ids_c_s1_ids5_stimmung_trgk,v4_con$v4_ids_c_s1_ids5_stimmung_trgk)
v4_idsc_itm5<-factor(v4_idsc_itm5, ordered=T)
descT(v4_idsc_itm5)
## 0 1 2 3 <NA>
## [1,] No. cases 296 121 50 17 1059 1543
## [2,] Percent 19.2 7.8 3.2 1.1 68.6 100
Item 6 Mood (irritable) (ordinal [0,1,2,3], v4_idsc_itm6)
v4_idsc_itm6<-c(v4_clin$v4_ids_c_s1_ids6_stimmung_grzt,v4_con$v4_ids_c_s1_ids6_stimmung_grzt)
v4_idsc_itm6<-factor(v4_idsc_itm6, ordered=T)
descT(v4_idsc_itm6)
## 0 1 2 3 <NA>
## [1,] No. cases 361 85 28 8 1061 1543
## [2,] Percent 23.4 5.5 1.8 0.5 68.8 100
Item 7 Mood (anxious) (ordinal [0,1,2,3], v4_idsc_itm7)
v4_idsc_itm7<-c(v4_clin$v4_ids_c_s1_ids7_stimmung_agst,v4_con$v4_ids_c_s1_ids7_stimmung_agst)
v4_idsc_itm7<-factor(v4_idsc_itm7, ordered=T)
descT(v4_idsc_itm7)
## 0 1 2 3 <NA>
## [1,] No. cases 313 112 38 19 1061 1543
## [2,] Percent 20.3 7.3 2.5 1.2 68.8 100
Item 8 Reactivity of mood (ordinal [0,1,2,3], v4_idsc_itm8)
v4_idsc_itm8<-c(v4_clin$v4_ids_c_s1_ids8_reakt_stimmung,v4_con$v4_ids_c_s1_ids8_reakt_stimmung)
v4_idsc_itm8<-factor(v4_idsc_itm8, ordered=T)
descT(v4_idsc_itm8)
## 0 1 2 3 <NA>
## [1,] No. cases 388 65 24 6 1060 1543
## [2,] Percent 25.1 4.2 1.6 0.4 68.7 100
Item 9 Mood Variation (ordinal [0,1,2,3], v4_idsc_itm9)
v4_idsc_itm9<-c(v4_clin$v4_ids_c_s1_ids9_stimmungsschw,v4_con$v4_ids_c_s1_ids9_stimmungsschw)
v4_idsc_itm9<-factor(v4_idsc_itm9, ordered=T)
descT(v4_idsc_itm9)
## 0 1 2 3 <NA>
## [1,] No. cases 377 37 21 46 1062 1543
## [2,] Percent 24.4 2.4 1.4 3 68.8 100
Item 9A (categorical [M, A, N], v4_idsc_itm9a)
Additional information if the answer on item 9 was 1,2 or 3: “When was the mood usually worse?” (“M”-morning, “A”-afternoon, “N”-night).
v4_idsc_itm9a_pre<-c(v4_clin$v4_ids_c_s1_ids9a_stimmungsschw,v4_con$v4_ids_c_s1_ids9a_stimmungsschw)
v4_idsc_itm9a<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_idsc_itm9a<-ifelse(v4_idsc_itm9!=0 & v4_idsc_itm9a_pre==1, "M", ifelse(v4_idsc_itm9==0, -999, v4_idsc_itm9a))
v4_idsc_itm9a<-ifelse(v4_idsc_itm9!=0 & v4_idsc_itm9a_pre==2, "A", ifelse(v4_idsc_itm9==0, -999, v4_idsc_itm9a))
v4_idsc_itm9a<-ifelse(v4_idsc_itm9!=0 & v4_idsc_itm9a_pre==3, "N", ifelse(v4_idsc_itm9==0, -999, v4_idsc_itm9a))
v4_idsc_itm9a<-factor(v4_idsc_itm9a, ordered=F)
descT(v4_idsc_itm9a)
## -999 A M N <NA>
## [1,] No. cases 377 6 64 14 1082 1543
## [2,] Percent 24.4 0.4 4.1 0.9 70.1 100
Item 9B (dichotomous, v4_idsc_itm9b) Additional information if the answer on item 9 was 1,2 or 3: “Is mood variation attributed to environment by the patient?”.
v4_idsc_itm9b_pre<-c(v4_clin$v4_ids_c_s1_ids9b_stimmungsschw,v4_con$v4_ids_c_s1_ids9b_stimmungsschw)
v4_idsc_itm9b<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_idsc_itm9b<-ifelse(v4_idsc_itm9!=0 & v4_idsc_itm9b_pre==0, "N", ifelse(v4_idsc_itm9==0, -999, v4_idsc_itm9b))
v4_idsc_itm9b<-ifelse(v4_idsc_itm9!=0 & v4_idsc_itm9b_pre==1, "Y", ifelse(v4_idsc_itm9==0, -999, v4_idsc_itm9b))
v4_idsc_itm9b<-factor(v4_idsc_itm9b, ordered=F)
descT(v4_idsc_itm9b)
## -999 N Y <NA>
## [1,] No. cases 377 26 36 1104 1543
## [2,] Percent 24.4 1.7 2.3 71.5 100
Item 10 Quality of mood (ordinal [0,1,2,3], v4_idsc_itm10)
v4_idsc_itm10<-c(v4_clin$v4_ids_c_s1_ids10_quali_stimmung,v4_con$v4_ids_c_s1_ids10_quali_stimmung)
v4_idsc_itm10<-factor(v4_idsc_itm10, ordered=T)
descT(v4_idsc_itm10)
## 0 1 2 3 <NA>
## [1,] No. cases 419 32 14 9 1069 1543
## [2,] Percent 27.2 2.1 0.9 0.6 69.3 100
Items 11-14 Appetite and weight
Please not that item 11 assesses decreased appetite and item 13 assesses weight loss during the past two weeks. Item 12 assesses increased appetite and item 14 weight gain during the past two weeks.
The interviewer is supposed to rate either items 11 and 13 or items 12 and 14.
Item 11 (ordinal [0,1,2,3], v4_idsc_itm11)
v4_idsc_app_verm<-c(v4_clin$v4_ids_c_s2_ids11_appetit_verm,v4_con$v4_ids_c_s2_ids11_appetit_verm)
v4_idsc_app_gest<-c(v4_clin$v4_ids_c_s2_ids12_appetit_steig,v4_con$v4_ids_c_s2_ids12_appetit_steig)
v4_idsc_itm11<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_idsc_itm11<-ifelse(is.na(v4_idsc_app_verm)==T & is.na(v4_idsc_app_gest)==T, NA,
ifelse(is.na(v4_idsc_app_verm)==T & is.na(v4_idsc_app_gest)==F, -999,
ifelse(is.na(v4_idsc_app_verm)==F & is.na(v4_idsc_app_gest)==T,
v4_idsc_app_verm,
ifelse(is.na(v4_idsc_app_verm)==F & is.na(v4_idsc_app_gest)==F &
(v4_idsc_app_verm>v4_idsc_app_gest), v4_idsc_app_verm, ifelse(is.na(v4_idsc_app_verm)==F & is.na(v4_idsc_app_gest)==F & (v4_idsc_app_gest>=v4_idsc_app_verm),-999,v4_idsc_itm11)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v4_idsc_itm11)
## -999 0 1 2 3 <NA>
## [1,] No. cases 161 268 38 13 3 1060 1543
## [2,] Percent 10.4 17.4 2.5 0.8 0.2 68.7 100
Item 12 (ordinal [0,1,2,3], v4_idsc_itm12)
v4_idsc_itm12<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_idsc_itm12<-ifelse(is.na(v4_idsc_app_verm)==T & is.na(v4_idsc_app_gest)==T, NA,
ifelse(is.na(v4_idsc_app_verm)==T & is.na(v4_idsc_app_gest)==F,
v4_idsc_app_gest,
ifelse(is.na(v4_idsc_app_verm)==F & is.na(v4_idsc_app_gest)==T,
-999,
ifelse(is.na(v4_idsc_app_verm)==F & is.na(v4_idsc_app_gest)==F &
(v4_idsc_app_verm>v4_idsc_app_gest), -999,
ifelse(is.na(v4_idsc_app_verm)==F & is.na(v4_idsc_app_gest)==F & (v4_idsc_app_gest>=v4_idsc_app_verm),
v4_idsc_app_gest,v4_idsc_itm12)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v4_idsc_itm12)
## -999 0 1 2 3 <NA>
## [1,] No. cases 322 77 51 17 16 1060 1543
## [2,] Percent 20.9 5 3.3 1.1 1 68.7 100
Item 13 (ordinal [0,1,2,3], v4_idsc_itm13)
v4_idsc_gew_abn<-c(v4_clin$v4_ids_c_s2_ids13_gewichtsabn,v4_con$v4_ids_c_s2_ids13_gewichtsabn)
v4_idsc_gew_zun<-c(v4_clin$v4_ids_c_s2_ids14_gewichtszun,v4_con$v4_ids_c_s2_ids14_gewichtszun)
v4_idsc_itm13<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_idsc_itm13<-ifelse(is.na(v4_idsc_gew_abn)==T & is.na(v4_idsc_gew_zun)==T, NA,
ifelse(is.na(v4_idsc_gew_abn)==T & is.na(v4_idsc_gew_zun)==F, -999,
ifelse(is.na(v4_idsc_gew_abn)==F & is.na(v4_idsc_gew_zun)==T,
v4_idsc_gew_abn,
ifelse(is.na(v4_idsc_gew_abn)==F & is.na(v4_idsc_gew_zun)==F &
(v4_idsc_gew_abn>v4_idsc_gew_zun), v4_idsc_gew_abn, ifelse(is.na(v4_idsc_gew_abn)==F & is.na(v4_idsc_gew_zun)==F & (v4_idsc_gew_zun >= v4_idsc_gew_abn),-999,v4_idsc_itm13)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v4_idsc_itm13)
## -999 0 1 2 3 <NA>
## [1,] No. cases 175 247 28 20 13 1060 1543
## [2,] Percent 11.3 16 1.8 1.3 0.8 68.7 100
Item 14 (ordinal [0,1,2,3], v4_idsc_itm14)
v4_idsc_itm14<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_idsc_itm14<-ifelse(is.na(v4_idsc_gew_abn)==T & is.na(v4_idsc_gew_zun)==T, NA,
ifelse(is.na(v4_idsc_gew_abn)==T & is.na(v4_idsc_gew_zun)==F,
v4_idsc_gew_zun,
ifelse(is.na(v4_idsc_gew_abn)==F & is.na(v4_idsc_gew_zun)==T,
-999,
ifelse(is.na(v4_idsc_gew_abn)==F & is.na(v4_idsc_gew_zun)==F &
(v4_idsc_gew_abn>v4_idsc_gew_zun), -999,
ifelse(is.na(v4_idsc_gew_abn)==F & is.na(v4_idsc_gew_zun)==F & (v4_idsc_gew_zun>=v4_idsc_gew_abn),
v4_idsc_gew_zun,v4_idsc_itm14)))))
#Important: do not code as factor, see after calculation of sum score!
descT(v4_idsc_itm14)
## -999 0 1 2 3 <NA>
## [1,] No. cases 308 99 37 22 17 1060 1543
## [2,] Percent 20 6.4 2.4 1.4 1.1 68.7 100
Item 15 Concentration/decision making (ordinal [0,1,2,3], v4_idsc_itm15)
v4_idsc_itm15<-c(v4_clin$v4_ids_c_s2_ids15_konz_entscheid,v4_con$v4_ids_c_s2_ids15_konz_entscheid)
v4_idsc_itm15<-factor(v4_idsc_itm15, ordered=T)
descT(v4_idsc_itm15)
## 0 1 2 3 <NA>
## [1,] No. cases 236 149 77 19 1062 1543
## [2,] Percent 15.3 9.7 5 1.2 68.8 100
Item 16 Outlook (self) (ordinal [0,1,2,3], v4_idsc_itm16)
v4_idsc_itm16<-c(v4_clin$v4_ids_c_s2_ids16_selbstbild,v4_con$v4_ids_c_s2_ids16_selbstbild)
v4_idsc_itm16<-factor(v4_idsc_itm16, ordered=T)
descT(v4_idsc_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 347 90 16 28 1062 1543
## [2,] Percent 22.5 5.8 1 1.8 68.8 100
Item 17 Outlook (future) (ordinal [0,1,2,3], v4_idsc_itm17)
v4_idsc_itm17<-c(v4_clin$v4_ids_c_s2_ids17_zukunftssicht,v4_con$v4_ids_c_s2_ids17_zukunftssicht)
v4_idsc_itm17<-factor(v4_idsc_itm17, ordered=T)
descT(v4_idsc_itm17)
## 0 1 2 3 <NA>
## [1,] No. cases 299 141 37 5 1061 1543
## [2,] Percent 19.4 9.1 2.4 0.3 68.8 100
Item 18 Suicidal ideation (ordinal [0,1,2,3], v4_idsc_itm18)
v4_idsc_itm18<-c(v4_clin$v4_ids_c_s2_ids18_selbstmordged,v4_con$v4_ids_c_s2_ids18_selbstmordged)
v4_idsc_itm18<-factor(v4_idsc_itm18, ordered=T)
descT(v4_idsc_itm18)
## 0 1 2 <NA>
## [1,] No. cases 434 29 20 1060 1543
## [2,] Percent 28.1 1.9 1.3 68.7 100
Item 19 Involvement (ordinal [0,1,2,3], v4_idsc_itm19)
v4_idsc_itm19<-c(v4_clin$v4_ids_c_s2_ids19_interess_aktiv,v4_con$v4_ids_c_s2_ids19_interess_aktiv)
v4_idsc_itm19<-factor(v4_idsc_itm19, ordered=T)
descT(v4_idsc_itm19)
## 0 1 2 3 <NA>
## [1,] No. cases 369 74 22 17 1061 1543
## [2,] Percent 23.9 4.8 1.4 1.1 68.8 100
Item 20 Energy/fatigability (ordinal [0,1,2,3], v4_idsc_itm20)
v4_idsc_itm20<-c(v4_clin$v4_ids_c_s2_ids20_energ_ermued,v4_con$v4_ids_c_s2_ids20_energ_ermued)
v4_idsc_itm20<-factor(v4_idsc_itm20, ordered=T)
descT(v4_idsc_itm20)
## 0 1 2 3 <NA>
## [1,] No. cases 302 101 71 9 1060 1543
## [2,] Percent 19.6 6.5 4.6 0.6 68.7 100
Item 21 Pleasure/enjoyment (exclude sexual activities) (ordinal [0,1,2,3], v4_idsc_itm21)
v4_idsc_itm21<-c(v4_clin$v4_ids_c_s3_ids21_vergn_genuss,v4_con$v4_ids_c_s3_ids21_vergn_genuss)
v4_idsc_itm21<-factor(v4_idsc_itm21, ordered=T)
descT(v4_idsc_itm21)
## 0 1 2 3 <NA>
## [1,] No. cases 384 63 24 11 1061 1543
## [2,] Percent 24.9 4.1 1.6 0.7 68.8 100
Item 22 Sexual interest (ordinal [0,1,2,3], v4_idsc_itm22)
v4_idsc_itm22<-c(v4_clin$v4_ids_c_s3_ids22_sex_interesse,v4_con$v4_ids_c_s3_ids22_sex_interesse)
v4_idsc_itm22<-factor(v4_idsc_itm22, ordered=T)
descT(v4_idsc_itm22)
## 0 1 2 3 <NA>
## [1,] No. cases 341 35 57 44 1066 1543
## [2,] Percent 22.1 2.3 3.7 2.9 69.1 100
Item 23 Psychomotor slowing (ordinal [0,1,2,3], v4_idsc_itm23)
v4_idsc_itm23<-c(v4_clin$v4_ids_c_s3_ids23_psymo_hemm,v4_con$v4_ids_c_s3_ids23_psymo_hemm)
v4_idsc_itm23<-factor(v4_idsc_itm23, ordered=T)
descT(v4_idsc_itm23)
## 0 1 2 3 <NA>
## [1,] No. cases 358 99 21 4 1061 1543
## [2,] Percent 23.2 6.4 1.4 0.3 68.8 100
Item 24 Psychomotor agitation (ordinal [0,1,2,3], v4_idsc_itm24)
v4_idsc_itm24<-c(v4_clin$v4_ids_c_s3_ids24_psymo_agitht,v4_con$v4_ids_c_s3_ids24_psymo_agitht)
v4_idsc_itm24<-factor(v4_idsc_itm24, ordered=T)
descT(v4_idsc_itm24)
## 0 1 2 3 <NA>
## [1,] No. cases 382 76 18 2 1065 1543
## [2,] Percent 24.8 4.9 1.2 0.1 69 100
Item 25 Somatic complaints (ordinal [0,1,2,3], v4_idsc_itm25)
v4_idsc_itm25<-c(v4_clin$v4_ids_c_s3_ids25_som_beschw,v4_con$v4_ids_c_s3_ids25_som_beschw)
v4_idsc_itm25<-factor(v4_idsc_itm25, ordered=T)
descT(v4_idsc_itm25)
## 0 1 2 3 <NA>
## [1,] No. cases 326 117 26 12 1062 1543
## [2,] Percent 21.1 7.6 1.7 0.8 68.8 100
Item 26 Sympathetic arousal (ordinal [0,1,2,3], v4_idsc_itm26)
v4_idsc_itm26<-c(v4_clin$v4_ids_c_s3_ids26_veg_erreg,v4_con$v4_ids_c_s3_ids26_veg_erreg)
v4_idsc_itm26<-factor(v4_idsc_itm26, ordered=T)
descT(v4_idsc_itm26)
## 0 1 2 3 <NA>
## [1,] No. cases 352 104 17 8 1062 1543
## [2,] Percent 22.8 6.7 1.1 0.5 68.8 100
Item 27 Panic/phobic symptoms (ordinal [0,1,2,3], v4_idsc_itm27)
v4_idsc_itm27<-c(v4_clin$v4_ids_c_s3_ids27_panik_phob,v4_con$v4_ids_c_s3_ids27_panik_phob)
v4_idsc_itm27<-factor(v4_idsc_itm27, ordered=T)
descT(v4_idsc_itm27)
## 0 1 2 3 <NA>
## [1,] No. cases 420 41 15 7 1060 1543
## [2,] Percent 27.2 2.7 1 0.5 68.7 100
Item 28 Gastrointestinal (ordinal [0,1,2,3], v4_idsc_itm28)
v4_idsc_itm28<-c(v4_clin$v4_ids_c_s3_ids28_verdauung,v4_con$v4_ids_c_s3_ids28_verdauung)
v4_idsc_itm28<-factor(v4_idsc_itm28, ordered=T)
descT(v4_idsc_itm28)
## 0 1 2 3 <NA>
## [1,] No. cases 408 44 23 8 1060 1543
## [2,] Percent 26.4 2.9 1.5 0.5 68.7 100
Item 29 Interpersonal sensitivity (ordinal [0,1,2,3], v4_idsc_itm29)
v4_idsc_itm29<-c(v4_clin$v4_ids_c_s3_ids29_pers_bezieh,v4_con$v4_ids_c_s3_ids29_pers_bezieh)
v4_idsc_itm29<-factor(v4_idsc_itm29, ordered=T)
descT(v4_idsc_itm29)
## 0 1 2 3 <NA>
## [1,] No. cases 382 55 30 12 1064 1543
## [2,] Percent 24.8 3.6 1.9 0.8 69 100
Item 30 Leaden paralysis/physical energy (ordinal [0,1,2,3], v4_idsc_itm30)
v4_idsc_itm30<-c(v4_clin$v4_ids_c_s3_ids30_schwgf_k_energ,v4_con$v4_ids_c_s3_ids30_schwgf_k_energ)
v4_idsc_itm30<-factor(v4_idsc_itm30, ordered=T)
descT(v4_idsc_itm30)
## 0 1 2 3 <NA>
## [1,] No. cases 383 63 26 10 1061 1543
## [2,] Percent 24.8 4.1 1.7 0.6 68.8 100
Create IDS-C30 total score (continuous [0-84], v4_idsc_sum) Please note that calculation of the sum score involves selecting either item 11 or item 12 and selecting either item 13 or item 14. If both items are coded, the higher one is taken, according to the official rating instructions.
v4_idsc_sum<-as.numeric.factor(v4_idsc_itm1)+
as.numeric.factor(v4_idsc_itm2)+
as.numeric.factor(v4_idsc_itm3)+
as.numeric.factor(v4_idsc_itm4)+
as.numeric.factor(v4_idsc_itm5)+
as.numeric.factor(v4_idsc_itm6)+
as.numeric.factor(v4_idsc_itm7)+
as.numeric.factor(v4_idsc_itm8)+
as.numeric.factor(v4_idsc_itm9)+
as.numeric.factor(v4_idsc_itm10)+
ifelse(is.na(v4_idsc_itm11)==T & is.na(v4_idsc_itm12)==T, NA,
ifelse((v4_idsc_itm11==-999 & v4_idsc_itm12!=-999), v4_idsc_itm12,
ifelse((v4_idsc_itm11!=-999 & v4_idsc_itm12==-999),v4_idsc_itm11, NA)))+
ifelse(is.na(v4_idsc_itm13)==T & is.na(v4_idsc_itm14)==T, NA,
ifelse((v4_idsc_itm13==-999 & v4_idsc_itm14!=-999), v4_idsc_itm14,
ifelse((v4_idsc_itm13!=-999 & v4_idsc_itm14==-999),v4_idsc_itm13, NA)))+
as.numeric.factor(v4_idsc_itm15)+
as.numeric.factor(v4_idsc_itm16)+
as.numeric.factor(v4_idsc_itm17)+
as.numeric.factor(v4_idsc_itm18)+
as.numeric.factor(v4_idsc_itm19)+
as.numeric.factor(v4_idsc_itm20)+
as.numeric.factor(v4_idsc_itm21)+
as.numeric.factor(v4_idsc_itm22)+
as.numeric.factor(v4_idsc_itm23)+
as.numeric.factor(v4_idsc_itm24)+
as.numeric.factor(v4_idsc_itm25)+
as.numeric.factor(v4_idsc_itm26)+
as.numeric.factor(v4_idsc_itm27)+
as.numeric.factor(v4_idsc_itm28)+
as.numeric.factor(v4_idsc_itm29)+
as.numeric.factor(v4_idsc_itm30)
summary(v4_idsc_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0 4.0 8.0 11.3 16.0 55.0 1107
Code itm 11, 12, 13 and 14 as factors (omitted before due to ifelse condition)
v4_idsc_itm11<-factor(v4_idsc_itm11,ordered=T)
v4_idsc_itm12<-factor(v4_idsc_itm12,ordered=T)
v4_idsc_itm13<-factor(v4_idsc_itm13,ordered=T)
v4_idsc_itm14<-factor(v4_idsc_itm14,ordered=T)
Create dataset
v4_symp_ids_c<-data.frame(v4_idsc_itm1,v4_idsc_itm2,v4_idsc_itm3,v4_idsc_itm4,v4_idsc_itm5,v4_idsc_itm6,v4_idsc_itm7,
v4_idsc_itm8,v4_idsc_itm9,v4_idsc_itm9a,v4_idsc_itm9b,v4_idsc_itm10,v4_idsc_itm11,v4_idsc_itm12,
v4_idsc_itm13,v4_idsc_itm14,v4_idsc_itm15,v4_idsc_itm16,v4_idsc_itm17,v4_idsc_itm18,v4_idsc_itm19,
v4_idsc_itm20,v4_idsc_itm21,v4_idsc_itm22,v4_idsc_itm23,v4_idsc_itm24,v4_idsc_itm25,v4_idsc_itm26,
v4_idsc_itm27,v4_idsc_itm28,v4_idsc_itm29,v4_idsc_itm30,v4_idsc_sum)
For more information on the scale, please see Visit 1
Item 1 Elevated mood (ordinal [0,1,2,3,4], v4_ymrs_itm1)
v4_ymrs_itm1<-c(v4_clin$v4_ymrs_ymrs1_gehob_stimm,v4_con$v4_ymrs_ymrs1_gehob_stimm)
v4_ymrs_itm1<-factor(v4_ymrs_itm1, ordered=T)
descT(v4_ymrs_itm1)
## 0 1 2 <NA>
## [1,] No. cases 422 48 11 1062 1543
## [2,] Percent 27.3 3.1 0.7 68.8 100
Item 2 Increased motor activity or energy (ordinal [0,1,2,3,4], v4_ymrs_itm2)
v4_ymrs_itm2<-c(v4_clin$v4_ymrs_ymrs2_gest_aktiv,v4_con$v4_ymrs_ymrs2_gest_aktiv)
v4_ymrs_itm2<-factor(v4_ymrs_itm2, ordered=T)
descT(v4_ymrs_itm2)
## 0 1 2 3 4 <NA>
## [1,] No. cases 427 34 14 3 1 1064 1543
## [2,] Percent 27.7 2.2 0.9 0.2 0.1 69 100
Item 3 Sexual interest (ordinal [0,1,2,3,4], v4_ymrs_itm3)
v4_ymrs_itm3<-c(v4_clin$v4_ymrs_ymrs3_sex_interesse,v4_con$v4_ymrs_ymrs3_sex_interesse)
v4_ymrs_itm3<-factor(v4_ymrs_itm3, ordered=T)
descT(v4_ymrs_itm3)
## 0 1 2 3 <NA>
## [1,] No. cases 457 10 10 1 1065 1543
## [2,] Percent 29.6 0.6 0.6 0.1 69 100
Item 4 Sleep (ordinal [0,1,2,3,4], v4_ymrs_itm4)
v4_ymrs_itm4<-c(v4_clin$v4_ymrs_ymrs4_schlaf,v4_con$v4_ymrs_ymrs4_schlaf)
v4_ymrs_itm4<-factor(v4_ymrs_itm4, ordered=T)
descT(v4_ymrs_itm4)
## 0 1 2 3 <NA>
## [1,] No. cases 443 18 12 8 1062 1543
## [2,] Percent 28.7 1.2 0.8 0.5 68.8 100
Item 5 Irritability (ordinal [0,2,4,6,8], v4_ymrs_itm5)
v4_ymrs_itm5<-c(v4_clin$v4_ymrs_ymrs5_reizbarkeit,v4_con$v4_ymrs_ymrs5_reizbarkeit)
v4_ymrs_itm5<-factor(v4_ymrs_itm5, ordered=T)
descT(v4_ymrs_itm5)
## 0 2 4 6 <NA>
## [1,] No. cases 395 77 8 1 1062 1543
## [2,] Percent 25.6 5 0.5 0.1 68.8 100
Item 6 Speech: rate & amount (ordinal [0,2,4,6,8], v4_ymrs_itm6)
v4_ymrs_itm6<-c(v4_clin$v4_ymrs_ymrs6_sprechweise,v4_con$v4_ymrs_ymrs6_sprechweise)
v4_ymrs_itm6<-factor(v4_ymrs_itm6, ordered=T)
descT(v4_ymrs_itm6)
## 0 2 4 6 8 <NA>
## [1,] No. cases 410 39 28 3 1 1062 1543
## [2,] Percent 26.6 2.5 1.8 0.2 0.1 68.8 100
Item 7 Language: thought disorder (ordinal [0,1,2,3,4], v4_ymrs_itm7)
v4_ymrs_itm7<-c(v4_clin$v4_ymrs_ymrs7_sprachstoer,v4_con$v4_ymrs_ymrs7_sprachstoer)
v4_ymrs_itm7<-factor(v4_ymrs_itm7, ordered=T)
descT(v4_ymrs_itm7)
## 0 1 2 <NA>
## [1,] No. cases 432 41 8 1062 1543
## [2,] Percent 28 2.7 0.5 68.8 100
Item 8 Content (ordinal [0,2,4,6,8], v4_ymrs_itm8)
v4_ymrs_itm8<-c(v4_clin$v4_ymrs_ymrs8_inhalte,v4_con$v4_ymrs_ymrs8_inhalte)
v4_ymrs_itm8<-factor(v4_ymrs_itm8, ordered=T)
descT(v4_ymrs_itm8)
## 0 2 4 6 8 <NA>
## [1,] No. cases 456 8 1 7 9 1062 1543
## [2,] Percent 29.6 0.5 0.1 0.5 0.6 68.8 100
Item 9 Disruptive or aggressive behavior (ordinal [0,2,4,6,8], v4_ymrs_itm9)
v4_ymrs_itm9<-c(v4_clin$v4_ymrs_ymrs9_exp_aggr_verh,v4_con$v4_ymrs_ymrs9_exp_aggr_verh)
v4_ymrs_itm9<-factor(v4_ymrs_itm9, ordered=T)
descT(v4_ymrs_itm9)
## 0 2 6 <NA>
## [1,] No. cases 465 14 1 1063 1543
## [2,] Percent 30.1 0.9 0.1 68.9 100
Item 10 Appearance (ordinal [0,1,2,3,4], v4_ymrs_itm10)
v4_ymrs_itm10<-c(v4_clin$v4_ymrs_ymrs10_erscheinung,v4_con$v4_ymrs_ymrs10_erscheinung)
v4_ymrs_itm10<-factor(v4_ymrs_itm10, ordered=T)
descT(v4_ymrs_itm10)
## 0 1 2 3 <NA>
## [1,] No. cases 419 46 12 2 1064 1543
## [2,] Percent 27.2 3 0.8 0.1 69 100
Item 11 Insight (ordinal [0,1,2,3,4], v4_ymrs_itm11)
v4_ymrs_itm11<-c(v4_clin$v4_ymrs_ymrs11_krkh_einsicht,v4_con$v4_ymrs_ymrs11_krkh_einsicht)
v4_ymrs_itm11<-factor(v4_ymrs_itm11, ordered=T)
descT(v4_ymrs_itm11)
## 0 1 2 3 4 <NA>
## [1,] No. cases 459 11 6 2 2 1063 1543
## [2,] Percent 29.7 0.7 0.4 0.1 0.1 68.9 100
Create YMRS total score (continuous [0-60], v4_ymrs_sum)
v4_ymrs_sum<-(as.numeric.factor(v4_ymrs_itm1)+
as.numeric.factor(v4_ymrs_itm2)+
as.numeric.factor(v4_ymrs_itm3)+
as.numeric.factor(v4_ymrs_itm4)+
as.numeric.factor(v4_ymrs_itm5)+
as.numeric.factor(v4_ymrs_itm6)+
as.numeric.factor(v4_ymrs_itm7)+
as.numeric.factor(v4_ymrs_itm8)+
as.numeric.factor(v4_ymrs_itm9)+
as.numeric.factor(v4_ymrs_itm10)+
as.numeric.factor(v4_ymrs_itm11))
summary(v4_ymrs_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 2.074 2.000 24.000 1069
Create dataset
v4_symp_ymrs<-data.frame(v4_ymrs_itm1,
v4_ymrs_itm2,
v4_ymrs_itm3,
v4_ymrs_itm4,
v4_ymrs_itm5,
v4_ymrs_itm6,
v4_ymrs_itm7,
v4_ymrs_itm8,
v4_ymrs_itm9,
v4_ymrs_itm10,
v4_ymrs_itm11,
v4_ymrs_sum)
Please see Visit 1 for more details and explicit rating instructions.
v4_cgi_s<-c(v4_clin$v4_cgi1_cgi1_schweregrad,rep(-999,dim(v4_con)[1]))
v4_cgi_s[v4_cgi_s==0]<- -999
v4_cgi_s<-factor(v4_cgi_s, ordered=T)
descT(v4_cgi_s)
## -999 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 321 11 48 155 125 108 29 1 745 1543
## [2,] Percent 20.8 0.7 3.1 10 8.1 7 1.9 0.1 48.3 100
Here, the interviewer is supposed to comprehensively assess change in illness state since the last study visit. A patient should be rated 0 if not conclusively assessable, so here zero is repaced with “-999” and the remaining seven gradations are on an ordinal scale. These range from “very much improved”-1 to “very much worse”-7.
v4_cgi_c<-c(v4_clin$v4_cgi1_cgi2_gesamt_urteil,rep(-999,dim(v4_con)[1]))
v4_cgi_c[v4_cgi_c==0]<- -999
v4_cgi_c<-factor(v4_cgi_c, ordered=T)
descT(v4_cgi_c)
## -999 1 2 3 4 5 6 7 <NA>
## [1,] No. cases 341 6 55 95 187 77 16 2 764 1543
## [2,] Percent 22.1 0.4 3.6 6.2 12.1 5 1 0.1 49.5 100
Please see Visit 1 for more details and explicit rating instructions.
v4_gaf<-c(v4_clin$v4_gaf_gaf_code,v4_con$v4_gaf_gaf_code)
v4_gaf[v4_gaf==0]<- -999
summary(v4_gaf[v4_gaf>0])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 14.00 51.00 60.00 61.69 71.00 99.00 1056
boxplot(v4_gaf[v4_gaf>0 & v1_stat=="CLINICAL"], v4_gaf[v4_gaf>0 & v1_stat=="CONTROL"],ylab="GAF score",ylim=c(0,100),names=c("Clinical","Control"))
v4_ill_sev<-data.frame(v4_cgi_s,v4_cgi_c,v4_gaf)
There are no differences compared to the test battery assessed in Visit 2 or Visit 3.
General comments on the testing (character, v4_nrpsy_com) If there were no comments, this item was coded -999.
Language proficiency of the participant (ordinal [“mother tongue”,“good”,“sufficient”,“not sufficient”], v4_nrpsy_lng)
v4_nrpsy_lng<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_nrpsy_lng<-ifelse(c(v4_clin$v4_npu1_np_sprach,v4_con$v4_npu_folge_np_sprach)==0, "mother tongue",
ifelse(c(v4_clin$v4_npu1_np_sprach,v4_con$v4_npu_folge_np_sprach)==1, "good",
ifelse(c(v4_clin$v4_npu1_np_sprach,v4_con$v4_npu_folge_np_sprach)==2, "sufficient",
ifelse(c(v4_clin$v4_npu1_np_sprach,v4_con$v4_npu_folge_np_sprach)==3, "not sufficient",v4_nrpsy_lng))))
v4_nrpsy_lng<-factor(v4_nrpsy_lng, ordered=T, levels=c("mother tongue","good",
"sufficient","not sufficient"))
descT(v4_nrpsy_lng)
## mother tongue good sufficient not sufficient <NA>
## [1,] No. cases 495 22 4 0 1022 1543
## [2,] Percent 32.1 1.4 0.3 0 66.2 100
Motivation of the participant (ordinal [“poor”,“average”,“good”], v4_nrpsy_mtv)
v4_nrpsy_mtv_pre<-c(v4_clin$v4_npu1_np_mot,v4_con$v4_npu_folge_np_mot)
v4_nrpsy_mtv<-ifelse(v4_nrpsy_mtv_pre==0, "poor",
ifelse(v4_nrpsy_mtv_pre==1, "average",
ifelse(v4_nrpsy_mtv_pre==2, "good", NA)))
v4_nrpsy_mtv<-factor(v4_nrpsy_mtv, ordered=T, levels=c("poor","average","good"))
descT(v4_nrpsy_mtv)
## poor average good <NA>
## [1,] No. cases 13 51 451 1028 1543
## [2,] Percent 0.8 3.3 29.2 66.6 100
For a description of the test and the variables, see Visit 2.
Re-coding of incomplete VLMT Tests To be able to use the maximum number of tests available, we have now also included the data of incomplete tests (see variable “VLMT_introcheck”). Our expert team has checked every incompletete test and assessed the scores that are usable. Here, we set certain subscores of the VLMT to the appropriate scores.
## [1] 198
## [1] 908
## [1] 246
## [1] 908
## [1] 894
## [1] 912
## [1] 78
## [1] 908
## [1] 909
## [1] 910
## [1] 911
## [1] 912
## [1] 957
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
## [14] 14 15 16 17 18 19 20 21 22 23 24 25 26
## [27] 27 28 29 30 31 32 33 34 35 36 37 38 39
## [40] 40 41 42 43 44 45 46 47 48 49 50 51 52
## [53] 53 54 55 56 57 58 59 60 61 62 63 64 65
## [66] 66 67 68 69 70 71 72 73 74 75 76 77 78
## [79] 79 80 81 82 83 84 85 86 87 88 89 90 91
## [92] 92 93 94 95 96 97 98 99 100 101 102 103 104
## [105] 105 106 107 108 109 110 111 112 113 114 115 116 117
## [118] 118 119 120 121 122 123 124 125 126 127 128 129 130
## [131] 131 132 133 134 135 136 137 138 139 140 141 142 143
## [144] 144 145 146 147 148 149 150 151 152 153 154 155 156
## [157] 157 158 159 160 161 162 163 164 165 166 167 168 169
## [170] 170 171 172 173 174 175 176 177 178 179 180 181 182
## [183] 183 184 185 186 187 188 189 190 191 192 193 194 195
## [196] 196 197 198 199 200 201 202 203 204 205 206 207 208
## [209] 209 210 211 212 213 214 215 216 217 218 219 220 221
## [222] 222 223 224 225 226 227 228 229 230 231 232 233 234
## [235] 235 236 237 238 239 240 241 242 243 244 245 246 247
## [248] 248 249 250 251 252 253 254 255 256 257 258 259 260
## [261] 261 262 263 264 265 266 267 268 269 270 271 272 273
## [274] 274 275 276 277 278 279 280 281 282 283 284 285 286
## [287] 287 288 289 290 291 292 293 294 295 296 297 298 299
## [300] 300 301 302 303 304 305 306 307 308 309 310 311 312
## [313] 313 314 315 316 317 318 319 320 321 322 323 324 325
## [326] 326 327 328 329 330 331 332 333 334 335 336 337 338
## [339] 339 340 341 342 343 344 345 346 347 348 349 350 351
## [352] 352 353 354 355 356 357 358 359 360 361 362 363 364
## [365] 365 366 367 368 369 370 371 372 373 374 375 376 377
## [378] 378 379 380 381 382 383 384 385 386 387 388 389 390
## [391] 391 392 393 394 395 396 397 398 399 400 401 402 403
## [404] 404 405 406 407 408 409 410 411 412 413 414 415 416
## [417] 417 418 419 420 421 422 423 424 425 426 427 428 429
## [430] 430 431 432 433 434 435 436 437 438 439 440 441 442
## [443] 443 444 445 446 447 448 449 450 451 452 453 454 455
## [456] 456 457 458 459 460 461 462 463 464 465 466 467 468
## [469] 469 470 471 472 473 474 475 476 477 478 479 480 481
## [482] 482 483 484 485 486 487 488 489 490 491 492 493 494
## [495] 495 496 497 498 499 500 501 502 503 504 505 506 507
## [508] 508 509 510 511 512 513 514 515 516 517 518 519 520
## [521] 521 522 523 524 525 526 527 528 529 530 531 532 533
## [534] 534 535 536 537 538 539 540 541 542 543 544 545 546
## [547] 547 548 549 550 551 552 553 554 555 556 557 558 559
## [560] 560 561 562 563 564 565 566 567 568 569 570 571 572
## [573] 573 574 575 576 577 578 579 580 581 582 583 584 585
## [586] 586 587 588 589 590 591 592 593 594 595 596 597 598
## [599] 599 600 601 602 603 604 605 606 607 608 609 610 611
## [612] 612 613 614 615 616 617 618 619 620 621 622 623 624
## [625] 625 626 627 628 629 630 631 632 633 634 635 636 637
## [638] 638 639 640 641 642 643 644 645 646 647 648 649 650
## [651] 651 652 653 654 655 656 657 658 659 660 661 662 663
## [664] 664 665 666 667 668 669 670 671 672 673 674 675 676
## [677] 677 678 679 680 681 682 683 684 685 686 687 688 689
## [690] 690 691 692 693 694 695 696 697 698 699 700 701 702
## [703] 703 704 705 706 707 708 709 710 711 712 713 714 715
## [716] 716 717 718 719 720 721 722 723 724 725 726 727 728
## [729] 729 730 731 732 733 734 735 736 737 738 739 740 741
## [742] 742 743 744 745 746 747 748 749 750 751 752 753 754
## [755] 755 756 757 758 759 760 761 762 763 764 765 766 767
## [768] 768 769 770 771 772 773 774 775 776 777 778 779 780
## [781] 781 782 783 784 785 786 787 788 789 790 791 792 793
## [794] 794 795 796 797 798 799 800 801 802 803 804 805 806
## [807] 807 808 809 810 811 812 813 814 815 816 817 818 819
## [820] 820 821 822 823 824 825 826 827 828 829 830 831 832
## [833] 833 834 835 836 837 838 839 840 841 842 843 844 845
## [846] 846 847 848 849 850 851 852 853 854 855 856 857 858
## [859] 859 860 861 862 863 864 865 866 867 868 869 870 871
## [872] 872 873 874 875 876 877 878 879 880 881 882 883 884
## [885] 885 886 887 888 889 890 891 892 893 894 895 896 897
## [898] 898 899 900 901 902 903 904 905 906 907 908 909 910
## [911] 911 912 913 914 915 916 917 918 919 920 921 922 923
## [924] 924 925 926 927 928 929 930 931 932 933 934 935 936
## [937] 937 938 939 940 941 942 943 944 945 946 947 948 949
## [950] 950 951 952 953 954 955 956 957 958 959 960 961 962
## [963] 963 964 965 966 967 968 969 970 971 972 973 974 975
## [976] 976 977 978 979 980 981 982 983 984 985 986 987 988
## [989] 989 990 991 992 993 994 995 996 997 998 999 1000 1001
## [1002] 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
## [1015] 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
## [1028] 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
## [1041] 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
## [1054] 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
## [1067] 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
## [1080] 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
## [1093] 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
## [1106] 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
## [1119] 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
## [1132] 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
## [1145] 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
## [1158] 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
## [1171] 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
## [1184] 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
## [1197] 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
## [1210] 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
## [1223] 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
## [1236] 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
## [1249] 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
## [1262] 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
## [1275] 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
## [1288] 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
## [1301] 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
## [1314] 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
## [1327] 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
## [1340] 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
## [1353] 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
## [1366] 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
## [1379] 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
## [1392] 1392 1393
## [1] 908
## [1] 909
## [1] 910
## [1] 911
## [1] 912
## [1] 745
## [1] 911
## [1] 456
## [1] 912
## [1] 248
## [1] 908
## [1] 691
## [1] 910
## [1] 254
## [1] 908
## [1] 663
## [1] 910
VLMT_introcheck (categorical [0, 1, 9], v4_nrpsy_vlmt_check)
v4_nrpsy_vlmt_check<-c(v4_clin$v4_vlmt_vlmt_introcheck1,v4_con$v4_npu_folge_np_vlmt)
descT(v4_nrpsy_vlmt_check)
## 0 1 9 <NA>
## [1,] No. cases 42 483 18 1000 1543
## [2,] Percent 2.7 31.3 1.2 64.8 100
Sum of correctly recalled words across all five presentations of list 1 (continuous [number of words], v4_nrpsy_vlmt_corr)
v4_nrpsy_vlmt_corr<-c(v4_clin$v4_vlmt_vlmt3_sw_a5d,v4_con$v4_npu_folge_np_vlmt_gl)
summary(v4_nrpsy_vlmt_corr)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 9.00 39.00 49.00 48.32 58.00 76.00 1046
Loss of recalled words (compared to recall after last presentation of list 1) from list 1 after distraction (presentation and recall of list 2) (continuous [number of words], v4_nrpsy_vlmt_lss_d)
v4_nrpsy_vlmt_lss_d<-c(v4_clin$v4_vlmt_vlmt5_aw_ilsd6,v4_con$v4_npu_folge_np_vlmt_vni)
summary(v4_nrpsy_vlmt_lss_d)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -3.000 0.000 2.000 1.886 3.000 8.000 1052
Loss of recalled words (compared to recall after last presentation of list 1) after time interval (25-30 min.) (continuous [number of words], v4_nrpsy_vlmt_lss_t)
v4_nrpsy_vlmt_lss_t<-c(v4_clin$v4_vlmt_vlmt6_aw_vwd7,v4_con$v4_npu_folge_np_vlmt_vnzv)
summary(v4_nrpsy_vlmt_lss_t)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -3.000 1.000 2.000 2.101 3.000 14.000 1057
Recognition performance (corrected for falsely recognized words) (continuous [number of words], v4_nrpsy_vlmt_rec)
v4_nrpsy_vlmt_rec<-c(v4_clin$v4_vlmt_vlmt8_kwl,v4_con$v4_npu_folge_np_vlmt_kw)
summary(v4_nrpsy_vlmt_rec)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -8.00 9.00 13.00 11.05 14.00 15.00 1059
For a description of the test, see Visit 1.
TMT Part A, time (continuous [seconds], v4_nrpsy_tmt_A_rt)
v4_nrpsy_tmt_A_rt<-c(v4_clin$v4_npu1_tmt_001,v4_con$v4_npu_folge_np_tmt_001)
summary(v4_nrpsy_tmt_A_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 10.00 21.00 28.00 32.08 39.00 151.00 1024
TMT Part A, errors (continuous [number of errors], v4_nrpsy_tmt_A_err) We did not impose any cut-off value to errors (see Visit 1).
v4_nrpsy_tmt_A_err<-c(v4_clin$v4_npu1_tmt_af_001,v4_con$v4_npu_folge_np_tmtfehler_001)
summary(v4_nrpsy_tmt_A_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.0904 0.0000 3.0000 1023
TMT Part B, time (continuous [seconds], v4_nrpsy_tmt_B_rt) As recommended by Strauss (2006), paricipants with a time >300s were set to 300s. We checked for values <10s, but there were none present.
v4_nrpsy_tmt_B_rt<-c(v4_clin$v4_npu1_tmt_002,v4_con$v4_npu_folge_tmt_002)
v4_nrpsy_tmt_B_rt[v4_nrpsy_tmt_B_rt>300]<-300
summary(v4_nrpsy_tmt_B_rt)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 24.00 50.50 68.00 77.39 90.00 300.00 1052
TMT Part B, errors (continuous [number of errors], v4_nrpsy_tmt_B_err)
v4_nrpsy_tmt_B_err<-c(v4_clin$v4_npu1_tmt_af_002,v4_con$v4_npu_folge_tmt_af_002)
summary(v4_nrpsy_tmt_B_err)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.5295 1.0000 6.0000 1052
For a description of the test, see Visit 1.
Forward (continuous [number of items], v4_nrpsy_dgt_sp_frw)
v4_nrpsy_dgt_sp_frw<-c(v4_clin$v4_npu1_zns_001,v4_con$v4_npu_folge_np_wie_001)
summary(v4_nrpsy_dgt_sp_frw)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 8.00 9.00 9.47 11.00 15.00 1035
Backward (continuous [number of items], v4_nrpsy_dgt_sp_bck)
## [1] 33
## [1] 926
v4_nrpsy_dgt_sp_bck<-c(v4_clin$v4_npu1_zns_002,v4_con$v4_npu_folge_np_wie_002)
summary(v4_nrpsy_dgt_sp_bck)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.000 6.000 6.357 8.000 14.000 1036
For a description of the test, see Visit 1.
v4_introcheck3<-c(v4_clin$v4_npu1_np_introcheck3,v4_con$v4_npu_folge_np_hawier)
v4_nrpsy_dg_sym_pre<-c(v4_clin$v4_npu1_zst_001,v4_con$v4_npu_folge_np_hawier_001)
v4_nrpsy_dg_sym<-ifelse(v4_introcheck3==1, v4_nrpsy_dg_sym_pre,
ifelse(v4_introcheck3==9,-999,
ifelse(v4_introcheck3==0,NA,NA)))
summary(subset(v4_nrpsy_dg_sym,v4_nrpsy_dg_sym>=0))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 13.00 49.00 64.00 63.86 78.00 132.00
Create dataset
v4_nrpsy<-data.frame(v4_nrpsy_com,
v4_nrpsy_lng,
v4_nrpsy_mtv,
v4_nrpsy_vlmt_check,
v4_nrpsy_vlmt_corr,
v4_nrpsy_vlmt_lss_d,
v4_nrpsy_vlmt_lss_t,
v4_nrpsy_vlmt_rec,
v4_nrpsy_tmt_A_rt,
v4_nrpsy_tmt_A_err,
v4_nrpsy_tmt_B_rt,
v4_nrpsy_tmt_B_err,
v4_nrpsy_dgt_sp_frw,
v4_nrpsy_dgt_sp_bck,
v4_nrpsy_dg_sym)
Participants were asked to fill out questionnaires on the following topics: current medication adherence (compliance), current depressive symptoms (BDI-II), current manic symptoms (ASRM and MSS), life events in the past six months, and current quality of life (WHOQOL-BREF). Additionally, interviews of clinical participants included questions on whether experienced life events during the past six months are attributed to the development of an illness episode (if any occured in between Visit 3 and 4) and medication adherence (compliance). Control participants additionally completed the Short Form Health Survey (SF-12). As in Visit 1, 2 and 3, all questionnaires are checked on whether they were filled out correctly or not and only those correctly filled-out are included in this dataset.
For explanation, please refer to the section in Visit 1
“How satisfied are you currently with your overall life” (ordinal [1,2,3,4,5,6,7,8,9,10], v4_sf12_itm0) Answering alternatives are the following: “Very dissatisfied”-1 to “Completely satisfied”-10.
v4_sf12_recode(v4_con$v4_sf12_sf_allgemein,"v4_sf12_itm0")
## -999 1 3 4 5 6 7 8 9 10 <NA>
## [1,] No. cases 1223 1 1 1 2 2 8 17 20 11 257 1543
## [2,] Percent 79.3 0.1 0.1 0.1 0.1 0.1 0.5 1.1 1.3 0.7 16.7 100
“In general, would you say your health is…” (ordinal [1,2,3,4,5], v4_sf12_itm1) Answering alternatives are the following: “Excellent”-1, “Very Good”-2, “Good”-3, “Fair”-4, “Poor”-5.
v4_sf12_recode(v4_con$v4_sf12_sf1,"v4_sf12_itm1")
## -999 1 2 3 4 <NA>
## [1,] No. cases 1223 12 20 29 3 256 1543
## [2,] Percent 79.3 0.8 1.3 1.9 0.2 16.6 100
“The following questions are about activities you might do during a typical day. Does YOUR HEALTH NOW LIMIT YOU in these activities? If so, how much?”
“MODERATE ACTIVITIES, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf” (ordinal [1,2,3], v4_sf12_itm2)
Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v4_sf12_recode(v4_con$v4_sf12_sf2,"v4_sf12_itm2")
## -999 2 3 <NA>
## [1,] No. cases 1223 5 59 256 1543
## [2,] Percent 79.3 0.3 3.8 16.6 100
“Climbing SEVERAL flights of stairs” (ordinal [1,2,3], v4_sf12_itm3) Answering alternatives are the following: “Yes, Limited A Lot”-1, “Yes, Limited A Little”-2, “No, Not Limited At All”-3.
v4_sf12_recode(v4_con$v4_sf12_sf3,"v4_sf12_itm3")
## -999 2 3 <NA>
## [1,] No. cases 1223 6 58 256 1543
## [2,] Percent 79.3 0.4 3.8 16.6 100
During the PAST 4 WEEKS have you had any of the following problems with your work or other regular activities AS A RESULT OF YOUR PHYSICAL HEALTH?
“ACCOMPLISHED LESS than you would like” (dichotomous [1,2], v4_sf12_itm4) Answering alternatives are the following: “Yes”-1, “No”-2.
v4_sf12_recode(v4_con$v4_sf12_sf4,"v4_sf12_itm4")
## -999 1 2 <NA>
## [1,] No. cases 1223 8 54 258 1543
## [2,] Percent 79.3 0.5 3.5 16.7 100
“Didn’t do work or other activities as carefully as usual” (dichotomous [1,2], v4_sf12_itm5) Answering alternatives are the following: “Yes”-1, “No”-2.
v4_sf12_recode(v4_con$v4_sf12_sf5,"v4_sf12_itm5")
## -999 1 2 <NA>
## [1,] No. cases 1223 2 59 259 1543
## [2,] Percent 79.3 0.1 3.8 16.8 100
During the PAST 4 WEEKS, were you limited in the kind of work you do or other regular activities AS A RESULT OF ANY EMOTIONAL PROBLEMS (such as feeling depressed or anxious)?
“ACCOMPLISHED LESS than you would like:” (dichotomous [1,2], v4_sf12_itm6) Answering alternatives are the following: “Yes”-1, “No”-2.
v4_sf12_recode(v4_con$v4_sf12_sf6,"v4_sf12_itm6")
## -999 1 2 <NA>
## [1,] No. cases 1223 8 54 258 1543
## [2,] Percent 79.3 0.5 3.5 16.7 100
“Didn’t do work or other activities as CAREFULLY as usual” (dichotomous [1,2], v4_sf12_itm7) Answering alternatives are the following: “Yes”-1, “No”-2.
v4_sf12_recode(v4_con$v4_sf12_sf7,"v4_sf12_itm7")
## -999 1 2 <NA>
## [1,] No. cases 1223 3 59 258 1543
## [2,] Percent 79.3 0.2 3.8 16.7 100
“During the PAST 4 WEEKS, how much did PAIN interfere with your normal work (including both work outside the home and housework)?” (ordinal [1,2,3], v4_sf12_itm8) Answering alternatives are the following: “Not At All”-1, “A Little Bit”-2, “Moderately”-3, “Quite A Bit”-4, “Extremely”-5.
v4_sf12_recode(v4_con$v4_sf12_st8,"v4_sf12_itm8")
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 1223 33 15 10 3 1 258 1543
## [2,] Percent 79.3 2.1 1 0.6 0.2 0.1 16.7 100
The next three questions are about how you feel and how things have been DURING THE PAST 4 WEEKS. For each question, please give the one answer that comes closest to the way you have been feeling. How much of the time during the PAST 4 WEEKS
Answering alternatives are the following: “All of the Time”-1, “Most of the Time”-2, “A Good Bit of the Time”-3, “Some of the Time”-4, “A Little of the Time”-5, “None of the Time”-6.
“Have you felt calm and peaceful?” (ordinal [1,2,3,4,5,6], v4_sf12_itm9)
v4_sf12_recode(v4_con$v4_sf12_st9,"v4_sf12_itm9")
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 1223 11 35 12 2 2 258 1543
## [2,] Percent 79.3 0.7 2.3 0.8 0.1 0.1 16.7 100
“Did you have a lot of energy?” (ordinal [1,2,3,4,5,6], v4_sf12_itm10)
v4_sf12_recode(v4_con$v4_sf12_st10,"v4_sf12_itm10")
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 1223 2 34 11 13 2 258 1543
## [2,] Percent 79.3 0.1 2.2 0.7 0.8 0.1 16.7 100
“Have you felt downhearted and blue?” (ordinal [1,2,3,4,5,6], v4_sf12_itm11)
v4_sf12_recode(v4_con$v4_sf12_st11,"v4_sf12_itm11")
## -999 1 2 3 4 5 6 <NA>
## [1,] No. cases 1223 1 1 2 5 28 25 258 1543
## [2,] Percent 79.3 0.1 0.1 0.1 0.3 1.8 1.6 16.7 100
“During the PAST 4 WEEKS, how much of the time has your PHYSICAL HEALTH OR EMOTIONAL PROBLEMS interfered with your social activities (like visiting with friends, relatives, etc.)?” (ordinal [0,1,2,3], v4_sf12_itm12) Answering alternatives are the following: “All of the Time”-1 to “None of the Time”-5.
ATTENTION: there appears to be something wrong with the coding of this item, i.e. the export of the item and the display in the GUI of the database are inconsistent. NOT CONTAINED IN DATASET FOR NOW
v4_sf12_recode(v4_con$v4_sf12_st12,"v4_sf12_itm12")
Create dataset
v4_sf12<-data.frame(v4_sf12_itm0,
v4_sf12_itm1,
v4_sf12_itm2,
v4_sf12_itm3,
v4_sf12_itm4,
v4_sf12_itm5,
v4_sf12_itm6,
v4_sf12_itm7,
v4_sf12_itm8,
v4_sf12_itm9,
v4_sf12_itm10,
v4_sf12_itm11)
#INCLUDE v4_sf12_itm12 when issues are settled
For a description of the questionnaire, see Visit 1. Controls all have “-999”, as here the questionaire was introduced from the start of data collection.
Religion Christianity (dichotomous, v4_rel_chr)
v4_rel_chris<-c(v4_clin$v4_religion_christ,rep(-999,dim(v4_con)[1]))
v4_rel_chr<-ifelse(v4_rel_chris==1, "Y",ifelse(v4_rel_chris==0,"N",ifelse(v4_rel_chris==-999,"-999",NA)))
descT(v4_rel_chr)
## -999 N Y <NA>
## [1,] No. cases 320 13 274 936 1543
## [2,] Percent 20.7 0.8 17.8 60.7 100
Religion Islam (dichotomous, v4_rel_isl)
v4_rel_islam<-c(v4_clin$v4_religion_islam_jn,rep(-999,dim(v4_con)[1]))
v4_rel_isl<-ifelse(v4_rel_islam==1, "Y",ifelse(v4_rel_islam==0,"N",ifelse(v4_rel_islam==-999,"-999",NA)))
descT(v4_rel_isl)
## -999 N Y <NA>
## [1,] No. cases 320 57 6 1160 1543
## [2,] Percent 20.7 3.7 0.4 75.2 100
Other religion (categorical,[v4_rel_oth])
v4_rel_var<-c(v4_clin$v4_religion_religion,rep(-999,dim(v4_con)[1]))
v4_rel_oth<-ifelse(v4_rel_var==1, "Judaism",
ifelse(v4_rel_var==2, "Hinduism",
ifelse(v4_rel_var==3, "Buddhism",
ifelse(v4_rel_var==4, "Other",
ifelse(v4_rel_var==5, "No denomination",
ifelse(v4_rel_var==-999, "-999", NA))))))
descT(v4_rel_oth)
## -999 Buddhism Hinduism Judaism No denomination Other <NA>
## [1,] No. cases 320 6 1 1 89 7 1119
## [2,] Percent 20.7 0.4 0.1 0.1 5.8 0.5 72.5
##
## [1,] 1543
## [2,] 100
“How actively do you practice your belief?” (ordinal [1,2,3,4,5], v4_rel_act) This is an ordinal item with the following answer possibilities and the assigned gadation: “not at all”-1,“little active”-2,“moderately active”-3,“rather active”-4,“very actively”-5.
v4_rel_act<-c(v4_clin$v4_religion_religion_aktiv,rep(-999,dim(v4_con)[1]))
descT(v4_rel_act)
## -999 1 2 3 4 5 <NA>
## [1,] No. cases 320 105 133 98 56 20 811 1543
## [2,] Percent 20.7 6.8 8.6 6.4 3.6 1.3 52.6 100
Create dataset
v4_rlgn<-data.frame(v4_rel_chr,v4_rel_isl,v4_rel_oth,v4_rel_act)
For a description of the questionnaire, see Visit 1.
Past seven days (ordinal [1,2,3,4,5,6], v4_med_pst_wk)
v4_med_chk<-c(v4_clin$v4_compl_verwer_fragebogen,rep(1,dim(v4_con)[1]))
v4_med_pst_wk_pre<-c(v4_clin$v4_compl_psychopharm_7_tag,rep(-999,dim(v4_con)[1]))
v4_med_pst_wk<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_med_pst_wk<-ifelse((is.na(v4_med_chk) | v4_med_chk!=2),
v4_med_pst_wk_pre, v4_med_pst_wk)
descT(v4_med_pst_wk)
## -999 1 2 3 4 6 <NA>
## [1,] No. cases 320 395 38 16 1 4 769 1543
## [2,] Percent 20.7 25.6 2.5 1 0.1 0.3 49.8 100
Past six months (ordinal [1,2,3,4,5,6], v4_med_pst_sx_mths)
v4_med_pre<-c(v4_clin$v4_compl_psychopharm_6_mon,rep(-999,dim(v4_con)[1]))
v4_med_pst_sx_mths<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_med_pst_sx_mths<-ifelse((is.na(v4_med_chk) | v4_med_chk!=2),
v4_med_pre, v4_med_pst_sx_mths)
descT(v4_med_pst_sx_mths)
## -999 1 2 3 4 6 <NA>
## [1,] No. cases 320 358 55 32 7 2 769 1543
## [2,] Percent 20.7 23.2 3.6 2.1 0.5 0.1 49.8 100
Create dataset
v4_med_adh<-data.frame(v4_med_pst_wk,v4_med_pst_sx_mths)
For explanation, please refer to the section in Visit 1
1. Sadness (ordinal [0,1,2,3], v4_bdi2_itm1)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi1_traurigkeit,v4_con$v4_bdi2_s1_bdi1,"v4_bdi2_itm1")
## 0 1 2 3 <NA>
## [1,] No. cases 371 134 10 7 1021 1543
## [2,] Percent 24 8.7 0.6 0.5 66.2 100
2. Pessimism (ordinal [0,1,2,3], v4_bdi2_itm2)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi2_pessimismus,v4_con$v4_bdi2_s1_bdi2,"v4_bdi2_itm2")
## 0 1 2 3 <NA>
## [1,] No. cases 379 92 42 8 1022 1543
## [2,] Percent 24.6 6 2.7 0.5 66.2 100
3. Past failure (ordinal [0,1,2,3], v4_bdi2_itm3)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi3_versagensgef,v4_con$v4_bdi2_s1_bdi3,"v4_bdi2_itm3")
## 0 1 2 3 <NA>
## [1,] No. cases 340 108 65 8 1022 1543
## [2,] Percent 22 7 4.2 0.5 66.2 100
4. Loss of pleasure (ordinal [0,1,2,3], v4_bdi2_itm4)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi4_verlust_freude,v4_con$v4_bdi2_s1_bdi4,"v4_bdi2_itm4")
## 0 1 2 3 <NA>
## [1,] No. cases 315 155 30 19 1024 1543
## [2,] Percent 20.4 10 1.9 1.2 66.4 100
5. Guilty feelings (ordinal [0,1,2,3], v4_bdi2_itm5)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi5_schuldgef,v4_con$v4_bdi2_s1_bdi5,"v4_bdi2_itm5")
## 0 1 2 3 <NA>
## [1,] No. cases 376 123 14 6 1024 1543
## [2,] Percent 24.4 8 0.9 0.4 66.4 100
6. Punishment feelings (ordinal [0,1,2,3], v4_bdi2_itm6)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi6_bestrafungsgef,v4_con$v4_bdi2_s1_bdi6,"v4_bdi2_itm6")
## 0 1 2 3 <NA>
## [1,] No. cases 426 70 2 24 1021 1543
## [2,] Percent 27.6 4.5 0.1 1.6 66.2 100
7. Self-dislike (ordinal [0,1,2,3], v4_bdi2_itm7)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi7_selbstablehnung,v4_con$v4_bdi2_s1_bdi7,"v4_bdi2_itm7")
## 0 1 2 3 <NA>
## [1,] No. cases 403 80 31 8 1021 1543
## [2,] Percent 26.1 5.2 2 0.5 66.2 100
8. Self-criticalness (ordinal [0,1,2,3], v4_bdi2_itm8)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi8_selbstvorwuerfe,v4_con$v4_bdi2_s1_bdi8,"v4_bdi2_itm8")
## 0 1 2 3 <NA>
## [1,] No. cases 350 132 30 11 1020 1543
## [2,] Percent 22.7 8.6 1.9 0.7 66.1 100
9. Suicidal thoughts or wishes (ordinal [0,1,2,3], v4_bdi2_itm9)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi9_selbstmordged,v4_con$v4_bdi2_s1_bdi9,"v4_bdi2_itm9")
## 0 1 2 3 <NA>
## [1,] No. cases 433 83 4 3 1020 1543
## [2,] Percent 28.1 5.4 0.3 0.2 66.1 100
10. Crying (ordinal [0,1,2,3], v4_bdi2_itm10)
v4_bdi2_recode(v4_clin$v4_bdi2_s1_bdi10_weinen,v4_con$v4_bdi2_s1_bdi10,"v4_bdi2_itm10")
## 0 1 2 3 <NA>
## [1,] No. cases 411 56 9 41 1026 1543
## [2,] Percent 26.6 3.6 0.6 2.7 66.5 100
11. Agitation (ordinal [0,1,2,3], v4_bdi2_itm11)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi11_unruhe,v4_con$v4_bdi2_s2_bdi11,"v4_bdi2_itm11")
## 0 1 2 3 <NA>
## [1,] No. cases 392 104 13 8 1026 1543
## [2,] Percent 25.4 6.7 0.8 0.5 66.5 100
12. Loss of interest (ordinal [0,1,2,3], v4_bdi2_itm12)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi12_interessverl,v4_con$v4_bdi2_s2_bdi12,"v4_bdi2_itm12")
## 0 1 2 3 <NA>
## [1,] No. cases 353 115 29 21 1025 1543
## [2,] Percent 22.9 7.5 1.9 1.4 66.4 100
13. Indecisiveness (ordinal [0,1,2,3], v4_bdi2_itm13)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi13_entschlussunf,v4_con$v4_bdi2_s2_bdi13,"v4_bdi2_itm13")
## 0 1 2 3 <NA>
## [1,] No. cases 331 132 34 19 1027 1543
## [2,] Percent 21.5 8.6 2.2 1.2 66.6 100
14. Worthlessness (ordinal [0,1,2,3], v4_bdi2_itm14)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi14_wertlosigkeit,v4_con$v4_bdi2_s2_bdi14,"v4_bdi2_itm14")
## 0 1 2 3 <NA>
## [1,] No. cases 391 82 37 6 1027 1543
## [2,] Percent 25.3 5.3 2.4 0.4 66.6 100
15. Loss of energy (ordinal [0,1,2,3], v4_bdi2_itm15)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi15_energieverlust,v4_con$v4_bdi2_s2_bdi15,"v4_bdi2_itm15")
## 0 1 2 3 <NA>
## [1,] No. cases 289 165 54 7 1028 1543
## [2,] Percent 18.7 10.7 3.5 0.5 66.6 100
16. Changes in sleeping pattern (ordinal [0,1,2,3], v4_bdi2_itm16) Here, there are seven answer alternatives: “I have not experienced changes in sleeping patterns”, “I sleep somewhat less than usual”,“I sleep somewhat more than usual”, “I sleep a lot less than usual”, “I sleep a lot more than usual”, “I sleep most of the day”, I wake up 1-2 hours early and can’t get back to sleep“. There is a thus a distinction between sleeping more and sleeping less. We have coded the questionaire so that sleep difficulties (sleeping more or slepping less) receive the same points. The distinction between whether somebody slept more or less is therefore lost.
v4_itm_bdi2_chk<-c(v4_clin$v4_bdi2_s1_verwer_fragebogen,v4_con$v4_bdi2_s1_bdi_korrekt)
v4_itm_bdi2_itm16_clin_con<-c(v4_clin$v4_bdi2_s2_bdi16_schlafgewohn,v4_con$v4_bdi2_s2_bdi16)
v4_bdi2_itm16<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_bdi2_itm16<-ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) & v4_itm_bdi2_itm16_clin_con==0, 0,
ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) &
(v4_itm_bdi2_itm16_clin_con==1 | v4_itm_bdi2_itm16_clin_con==100), 1,
ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) &
(v4_itm_bdi2_itm16_clin_con==2 | v4_itm_bdi2_itm16_clin_con==200), 2,
ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) &
(v4_itm_bdi2_itm16_clin_con==3 | v4_itm_bdi2_itm16_clin_con==300), 3, v4_bdi2_itm16))))
v4_bdi2_itm16<-factor(v4_bdi2_itm16,ordered=T)
descT(v4_bdi2_itm16)
## 0 1 2 3 <NA>
## [1,] No. cases 291 158 40 29 1025 1543
## [2,] Percent 18.9 10.2 2.6 1.9 66.4 100
17. Irritability (ordinal [0,1,2,3], v4_bdi2_itm17)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi17_reizbarkeit,v4_con$v4_bdi2_s2_bdi17,"v4_bdi2_itm17")
## 0 1 2 3 <NA>
## [1,] No. cases 425 81 8 3 1026 1543
## [2,] Percent 27.5 5.2 0.5 0.2 66.5 100
18. Change in appetite (ordinal [0,1,2,3], v4_bdi2_itm18)
As above (item 16), there are several answer alternatives: “I have not experienced any change in my appetite”, “My appetite is somewhat less than usual”, “My appetite is somewhat more than usual”, “My appetite is much less than before”, “My appetite is much more than before”, “I have no appetite at all”, “I crave food all the time”. More explicity, there is a distinction between more and less appetite. We have coded the questionaire so that changes in appetite receive the same points. The distinction between whether somebody had more or less appetite is therefore lost.
v4_itm_bdi2_itm18_clin_con<-c(v4_clin$v4_bdi2_s2_bdi18_appetit,v4_con$v4_bdi2_s2_bdi18)
v4_bdi2_itm18<-rep(NA,dim(v4_clin)[1]+dim(v4_con)[1])
v4_bdi2_itm18<-ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) & v4_itm_bdi2_itm18_clin_con==0, 0,
ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) &
(v4_itm_bdi2_itm18_clin_con==1 | v4_itm_bdi2_itm18_clin_con==100), 1,
ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) &
(v4_itm_bdi2_itm18_clin_con==2 | v4_itm_bdi2_itm18_clin_con==200), 2,
ifelse((is.na(v4_itm_bdi2_chk) | v4_itm_bdi2_chk!=2) &
(v4_itm_bdi2_itm18_clin_con==3 | v4_itm_bdi2_itm18_clin_con==300), 3, v4_bdi2_itm18))))
v4_bdi2_itm18<-factor(v4_bdi2_itm18,ordered=T)
descT(v4_bdi2_itm18)
## 0 1 2 3 <NA>
## [1,] No. cases 341 136 24 15 1027 1543
## [2,] Percent 22.1 8.8 1.6 1 66.6 100
19. Concentration difficulty (ordinal [0,1,2,3], v4_bdi2_itm19)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi19_konzschw,v4_con$v4_bdi2_s2_bdi19,"v4_bdi2_itm19")
## 0 1 2 3 <NA>
## [1,] No. cases 294 152 65 6 1026 1543
## [2,] Percent 19.1 9.9 4.2 0.4 66.5 100
20. Tiredness or fatigue (ordinal [0,1,2,3], v4_bdi2_itm20)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi20_ermued_ersch,v4_con$v4_bdi2_s2_bdi20,"v4_bdi2_itm20")
## 0 1 2 3 <NA>
## [1,] No. cases 292 178 36 10 1027 1543
## [2,] Percent 18.9 11.5 2.3 0.6 66.6 100
21. Loss of interest in sex (ordinal [0,1,2,3], v4_bdi2_itm21)
v4_bdi2_recode(v4_clin$v4_bdi2_s2_bdi21_sex_interess,v4_con$v4_bdi2_s2_bdi21,"v4_bdi2_itm21")
## 0 1 2 3 <NA>
## [1,] No. cases 340 88 40 46 1029 1543
## [2,] Percent 22 5.7 2.6 3 66.7 100
BDI-II sum score calculation (continuous [0-63], v4_bdi2_sum)
v4_bdi2_sum<-as.numeric.factor(v4_bdi2_itm1)+
as.numeric.factor(v4_bdi2_itm2)+
as.numeric.factor(v4_bdi2_itm3)+
as.numeric.factor(v4_bdi2_itm4)+
as.numeric.factor(v4_bdi2_itm5)+
as.numeric.factor(v4_bdi2_itm6)+
as.numeric.factor(v4_bdi2_itm7)+
as.numeric.factor(v4_bdi2_itm8)+
as.numeric.factor(v4_bdi2_itm9)+
as.numeric.factor(v4_bdi2_itm10)+
as.numeric.factor(v4_bdi2_itm11)+
as.numeric.factor(v4_bdi2_itm12)+
as.numeric.factor(v4_bdi2_itm13)+
as.numeric.factor(v4_bdi2_itm14)+
as.numeric.factor(v4_bdi2_itm15)+
as.numeric.factor(v4_bdi2_itm16)+
as.numeric.factor(v4_bdi2_itm17)+
as.numeric.factor(v4_bdi2_itm18)+
as.numeric.factor(v4_bdi2_itm19)+
as.numeric.factor(v4_bdi2_itm20)+
as.numeric.factor(v4_bdi2_itm21)
summary(v4_bdi2_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 1.000 5.000 8.866 13.000 47.000 1050
Create dataset
v4_bdi2<-data.frame(v4_bdi2_itm1,v4_bdi2_itm2,v4_bdi2_itm3,v4_bdi2_itm4,v4_bdi2_itm5,
v4_bdi2_itm6,v4_bdi2_itm7,v4_bdi2_itm8,v4_bdi2_itm9,v4_bdi2_itm10,
v4_bdi2_itm11,v4_bdi2_itm12,v4_bdi2_itm13,v4_bdi2_itm14,
v4_bdi2_itm15,v4_bdi2_itm16,v4_bdi2_itm17,v4_bdi2_itm18,
v4_bdi2_itm19,v4_bdi2_itm20,v4_bdi2_itm21, v4_bdi2_sum)
For explanation, please refer to the section in Visit 1
1. Positive Mood (ordinal [0,1,2,3,4], v4_asrm_itm1)
v4_asrm_recode(v4_clin$v4_asrm_asrm1_gluecklich,v4_con$v4_asrm_asrm1,"v4_asrm_itm1")
## 0 1 2 3 4 <NA>
## [1,] No. cases 397 86 22 11 4 1023 1543
## [2,] Percent 25.7 5.6 1.4 0.7 0.3 66.3 100
2 Self-Confidence (ordinal [0,1,2,3,4], v4_asrm_itm2)
v4_asrm_recode(v4_clin$v4_asrm_asrm2_selbstbewusst,v4_con$v4_asrm_asrm2,"v4_asrm_itm2")
## 0 1 2 3 4 <NA>
## [1,] No. cases 397 100 17 3 2 1024 1543
## [2,] Percent 25.7 6.5 1.1 0.2 0.1 66.4 100
3. Sleep (ordinal [0,1,2,3,4], v4_asrm_itm3)
v4_asrm_recode(v4_clin$v4_asrm_asrm3_schlaf,v4_con$v4_asrm_asrm3,"v4_asrm_itm3")
## 0 1 2 3 4 <NA>
## [1,] No. cases 430 72 12 3 3 1023 1543
## [2,] Percent 27.9 4.7 0.8 0.2 0.2 66.3 100
4. Speech (ordinal [0,1,2,3,4], v4_asrm_itm4)
v4_asrm_recode(v4_clin$v4_asrm_asrm4_reden,v4_con$v4_asrm_asrm4,"v4_asrm_itm4")
## 0 1 2 3 4 <NA>
## [1,] No. cases 420 86 10 2 1 1024 1543
## [2,] Percent 27.2 5.6 0.6 0.1 0.1 66.4 100
5. Activity Level (ordinal [0,1,2,3,4], v4_asrm_itm5)
v4_asrm_recode(v4_clin$v4_asrm_asrm5_aktiv,v4_con$v4_asrm_asrm5,"v4_asrm_itm5")
## 0 1 2 3 4 <NA>
## [1,] No. cases 393 105 16 3 3 1023 1543
## [2,] Percent 25.5 6.8 1 0.2 0.2 66.3 100
Create ASRM sum score (continuous [0-20],v4_asrm_sum)
v4_asrm_sum<-as.numeric.factor(v4_asrm_itm1)+
as.numeric.factor(v4_asrm_itm2)+
as.numeric.factor(v4_asrm_itm3)+
as.numeric.factor(v4_asrm_itm4)+
as.numeric.factor(v4_asrm_itm5)
summary(v4_asrm_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 0.000 1.386 2.000 13.000 1027
Create dataset
v4_asrm<-data.frame(v4_asrm_itm1,v4_asrm_itm2,v4_asrm_itm3,v4_asrm_itm4,v4_asrm_itm5,v4_asrm_sum)
For explanation, please refer to the section in Visit 1
1. “I had more energy” (dichotomous, v4_mss_itm1)
v4_mss_recode(v4_clin$v4_mss_s1_mss1_energie,v4_con$v4_mss_s1_mss1,"v4_mss_itm1")
## N Y <NA>
## [1,] No. cases 412 102 1029 1543
## [2,] Percent 26.7 6.6 66.7 100
2. “I had trouble sitting still” (dichotomous, v4_mss_itm2)
v4_mss_recode(v4_clin$v4_mss_s1_mss2_ruhig_sitzen,v4_con$v4_mss_s1_mss2,"v4_mss_itm2")
## N Y <NA>
## [1,] No. cases 444 69 1030 1543
## [2,] Percent 28.8 4.5 66.8 100
3. “I drove faster” (dichotomous, v4_mss_itm3)
v4_mss_recode(v4_clin$v4_mss_s1_mss3_auto_fahren,v4_con$v4_mss_s1_mss3,"v4_mss_itm3")
## N Y <NA>
## [1,] No. cases 479 11 1053 1543
## [2,] Percent 31 0.7 68.2 100
4. “I drank more alcoholic beverages” (dichotomous, v4_mss_itm4)
v4_mss_recode(v4_clin$v4_mss_s1_mss4_alkohol,v4_con$v4_mss_s1_mss4,"v4_mss_itm4")
## N Y <NA>
## [1,] No. cases 477 33 1033 1543
## [2,] Percent 30.9 2.1 66.9 100
5. “I changed clothes several times a day” (dichotomous, v4_mss_itm5)
v4_mss_recode(v4_clin$v4_mss_s1_mss5_umziehen, v4_con$v4_mss_s1_mss5,"v4_mss_itm5")
## N Y <NA>
## [1,] No. cases 473 38 1032 1543
## [2,] Percent 30.7 2.5 66.9 100
6. “I wore brighter clothes/make-up” (dichotomous, v4_mss_itm6)
v4_mss_recode(v4_clin$v4_mss_s1_mss6_bunter,v4_con$v4_mss_s1_mss6,"v4_mss_itm6")
## N Y <NA>
## [1,] No. cases 494 19 1030 1543
## [2,] Percent 32 1.2 66.8 100
7. “I played music louder” (dichotomous, v4_mss_itm7)
v4_mss_recode(v4_clin$v4_mss_s1_mss7_musik_lauter,v4_con$v4_mss_s1_mss7,"v4_mss_itm7")
## N Y <NA>
## [1,] No. cases 443 71 1029 1543
## [2,] Percent 28.7 4.6 66.7 100
8. “I ate faster than usual” (dichotomous, v4_mss_itm8)
v4_mss_recode(v4_clin$v4_mss_s1_mss8_hastiger_essen,v4_con$v4_mss_s1_mss8,"v4_mss_itm8")
## N Y <NA>
## [1,] No. cases 459 54 1030 1543
## [2,] Percent 29.7 3.5 66.8 100
9. “I ate more than usual” (dichotomous, v4_mss_itm9)
v4_mss_recode(v4_clin$v4_mss_s1_mss9_mehr_essen,v4_con$v4_mss_s1_mss9,"v4_mss_itm9")
## N Y <NA>
## [1,] No. cases 420 93 1030 1543
## [2,] Percent 27.2 6 66.8 100
10. “I slept fewer hours than usual” (dichotomous, v4_mss_itm10)
v4_mss_recode(v4_clin$v4_mss_s1_mss10_weniger_schlaf,v4_con$v4_mss_s1_mss10,"v4_mss_itm10")
## N Y <NA>
## [1,] No. cases 447 66 1030 1543
## [2,] Percent 29 4.3 66.8 100
11. “I started things that I didn’t finish” (dichotomous, v4_mss_itm11)
v4_mss_recode(v4_clin$v4_mss_s1_mss11_unbeendet,v4_con$v4_mss_s1_mss11,"v4_mss_itm11")
## N Y <NA>
## [1,] No. cases 410 103 1030 1543
## [2,] Percent 26.6 6.7 66.8 100
12. “I gave away my own possessions” (dichotomous, v4_mss_itm12)
v4_mss_recode(v4_clin$v4_mss_s1_mss12_weggeben,v4_con$v4_mss_s1_mss12,"v4_mss_itm12")
## N Y <NA>
## [1,] No. cases 472 42 1029 1543
## [2,] Percent 30.6 2.7 66.7 100
13. “I bought gifts for people” (dichotomous, v4_mss_itm13)
v4_mss_recode(v4_clin$v4_mss_s1_mss13_geschenke,v4_con$v4_mss_s1_mss13,"v4_mss_itm13")
## N Y <NA>
## [1,] No. cases 472 41 1030 1543
## [2,] Percent 30.6 2.7 66.8 100
14. “I spent money more freely” (dichotomous, v4_mss_itm14)
v4_mss_recode(v4_clin$v4_mss_s1_mss14_mehr_geld,v4_con$v4_mss_s1_mss14,"v4_mss_itm14")
## N Y <NA>
## [1,] No. cases 415 98 1030 1543
## [2,] Percent 26.9 6.4 66.8 100
15. “I accumulated debts” (dichotomous, v4_mss_itm15)
v4_mss_recode(v4_clin$v4_mss_s1_mss15_schulden,v4_con$v4_mss_s1_mss15,"v4_mss_itm15")
## N Y <NA>
## [1,] No. cases 486 27 1030 1543
## [2,] Percent 31.5 1.7 66.8 100
16. “I made unwise business decisions” (dichotomous, v4_mss_itm16)
v4_mss_recode(v4_clin$v4_mss_s1_mss16_unkluge_entsch,v4_con$v4_mss_s1_mss16,"v4_mss_itm16")
## N Y <NA>
## [1,] No. cases 492 21 1030 1543
## [2,] Percent 31.9 1.4 66.8 100
17. “I partied more” (dichotomous, v4_mss_itm17)
v4_mss_recode(v4_clin$v4_mss_s1_mss17_parties,v4_con$v4_mss_s1_mss17,"v4_mss_itm17")
## N Y <NA>
## [1,] No. cases 493 21 1029 1543
## [2,] Percent 32 1.4 66.7 100
18. “I enjoyed flirting” (dichotomous, v4_mss_itm18)
v4_mss_recode(v4_clin$v4_mss_s1_mss18_flirten,v4_con$v4_mss_s1_mss18,"v4_mss_itm18")
## N Y <NA>
## [1,] No. cases 489 22 1032 1543
## [2,] Percent 31.7 1.4 66.9 100
19. “I masturbated more often” (dichotomous, v4_mss_itm19)
v4_mss_recode(v4_clin$v4_mss_s2_mss19_selbstbefried,v4_con$v4_mss_s2_mss19,"v4_mss_itm19")
## N Y <NA>
## [1,] No. cases 480 24 1039 1543
## [2,] Percent 31.1 1.6 67.3 100
20. “I was more interested in sex than usual” (dichotomous, v4_mss_itm20)
v4_mss_recode(v4_clin$v4_mss_s2_mss20_sex_interess,v4_con$v4_mss_s2_mss20,"v4_mss_itm20")
## N Y <NA>
## [1,] No. cases 459 44 1040 1543
## [2,] Percent 29.7 2.9 67.4 100
21. “I had sex with people that I usually wouldn’t have sex with” (dichotomous, v4_mss_itm21)
v4_mss_recode(v4_clin$v4_mss_s2_mss21_sexpartner,v4_con$v4_mss_s2_mss21,"v4_mss_itm21")
## N Y <NA>
## [1,] No. cases 500 4 1039 1543
## [2,] Percent 32.4 0.3 67.3 100
22. “I spent more time on the phone” (dichotomous, v4_mss_itm22)
v4_mss_recode(v4_clin$v4_mss_s2_mss22_mehr_telefon,v4_con$v4_mss_s2_mss22,"v4_mss_itm22")
## N Y <NA>
## [1,] No. cases 429 75 1039 1543
## [2,] Percent 27.8 4.9 67.3 100
23. “I spoke louder than usual” (dichotomous, v4_mss_itm23)
v4_mss_recode(v4_clin$v4_mss_s2_mss23_sprache_lauter,v4_con$v4_mss_s2_mss23,"v4_mss_itm23")
## N Y <NA>
## [1,] No. cases 461 41 1041 1543
## [2,] Percent 29.9 2.7 67.5 100
24. “I spoke so fast that people said they couldn’t understand me” (dichotomous, v4_mss_itm24)
v4_mss_recode(v4_clin$v4_mss_s2_mss24_spr_schneller,v4_con$v4_mss_s2_mss24,"v4_mss_itm24")
## N Y <NA>
## [1,] No. cases 476 30 1037 1543
## [2,] Percent 30.8 1.9 67.2 100
25. “1 enjoyed punning or rhyming” (dichotomous, v4_mss_itm25)
v4_mss_recode(v4_clin$v4_mss_s2_mss25_witze,v4_con$v4_mss_s2_mss25,"v4_mss_itm25")
## N Y <NA>
## [1,] No. cases 457 48 1038 1543
## [2,] Percent 29.6 3.1 67.3 100
26. “I butted into conversations” (dichotomous, v4_mss_itm26)
v4_mss_recode(v4_clin$v4_mss_s2_mss26_einmischen,v4_con$v4_mss_s2_mss26,"v4_mss_itm26")
## N Y <NA>
## [1,] No. cases 484 22 1037 1543
## [2,] Percent 31.4 1.4 67.2 100
27. “I spoke on and on and couldn’t be interrupted” (dichotomous, v4_mss_itm27)
v4_mss_recode(v4_clin$v4_mss_s2_mss27_red_pausenlos,v4_con$v4_mss_s2_mss27,"v4_mss_itm27")
## N Y <NA>
## [1,] No. cases 490 16 1037 1543
## [2,] Percent 31.8 1 67.2 100
28. “I enjoyed being the centre of attention” (dichotomous, v4_mss_itm28)
v4_mss_recode(v4_clin$v4_mss_s2_mss28_mittelpunkt,v4_con$v4_mss_s2_mss28,"v4_mss_itm28")
## N Y <NA>
## [1,] No. cases 479 26 1038 1543
## [2,] Percent 31 1.7 67.3 100
29. “I liked to joke and laugh” (dichotomous, v4_mss_itm29)
v4_mss_recode(v4_clin$v4_mss_s2_mss29_herumalbern,v4_con$v4_mss_s2_mss29,"v4_mss_itm29")
## N Y <NA>
## [1,] No. cases 448 58 1037 1543
## [2,] Percent 29 3.8 67.2 100
30. “People found me entertaining” (dichotomous, v4_mss_itm30)
v4_mss_recode(v4_clin$v4_mss_s2_mss30_unterhaltsamer,v4_con$v4_mss_s2_mss30,"v4_mss_itm30")
## N Y <NA>
## [1,] No. cases 471 33 1039 1543
## [2,] Percent 30.5 2.1 67.3 100
31. “I felt as if I was on top of the world” (dichotomous, v4_mss_itm31)
v4_mss_recode(v4_clin$v4_mss_s2_mss31_obenauf,v4_con$v4_mss_s2_mss31,"v4_mss_itm31")
## N Y <NA>
## [1,] No. cases 470 34 1039 1543
## [2,] Percent 30.5 2.2 67.3 100
32. “I was more cheerful than my usual self” (dichotomous, v4_mss_itm32)
v4_mss_recode(v4_clin$v4_mss_s2_mss32_froehlicher,v4_con$v4_mss_s2_mss32,"v4_mss_itm32")
## N Y <NA>
## [1,] No. cases 426 78 1039 1543
## [2,] Percent 27.6 5.1 67.3 100
33. “Other people got on my nerves” (dichotomous, v4_mss_itm33)
v4_mss_recode(v4_clin$v4_mss_s2_mss33_ungeduldiger,v4_con$v4_mss_s2_mss33,"v4_mss_itm33")
## N Y <NA>
## [1,] No. cases 400 105 1038 1543
## [2,] Percent 25.9 6.8 67.3 100
34. “I was getting into arguments” (dichotomous, v4_mss_itm34)
v4_mss_recode(v4_clin$v4_mss_s2_mss34_streiten,v4_con$v4_mss_s2_mss34,"v4_mss_itm34")
## N Y <NA>
## [1,] No. cases 472 34 1037 1543
## [2,] Percent 30.6 2.2 67.2 100
35. “I had so many ideas that I couldn’t get around to doing them all” (dichotomous, v4_mss_itm35)
v4_mss_recode(v4_clin$v4_mss_s2_mss35_ideen,v4_con$v4_mss_s2_mss35,"v4_mss_itm35")
## N Y <NA>
## [1,] No. cases 437 68 1038 1543
## [2,] Percent 28.3 4.4 67.3 100
36. “My thoughts raced through my mind” (dichotomous, v4_mss_itm36)
v4_mss_recode(v4_clin$v4_mss_s2_mss36_gedanken,v4_con$v4_mss_s2_mss36,"v4_mss_itm36")
## N Y <NA>
## [1,] No. cases 389 114 1040 1543
## [2,] Percent 25.2 7.4 67.4 100
37. “I couldn’t concentrate on a single topic for longer than a minute” (dichotomous, v4_mss_itm37)
v4_mss_recode(v4_clin$v4_mss_s2_mss37_konzentration,v4_con$v4_mss_s2_mss37,"v4_mss_itm37")
## N Y <NA>
## [1,] No. cases 426 79 1038 1543
## [2,] Percent 27.6 5.1 67.3 100
38. “I thought I was an especially important person” (dichotomous, v4_mss_itm38)
v4_mss_recode(v4_clin$v4_mss_s2_mss38_etw_besonderes,v4_con$v4_mss_s2_mss38,"v4_mss_itm38")
## N Y <NA>
## [1,] No. cases 469 35 1039 1543
## [2,] Percent 30.4 2.3 67.3 100
39. “I thought I could change the world” (dichotomous, v4_mss_itm39)
v4_mss_recode(v4_clin$v4_mss_s2_mss39_welt_veraender,v4_con$v4_mss_s2_mss39,"v4_mss_itm39")
## N Y <NA>
## [1,] No. cases 485 21 1037 1543
## [2,] Percent 31.4 1.4 67.2 100
40. “I thought I was right most of the time” (dichotomous, v4_mss_itm40)
v4_mss_recode(v4_clin$v4_mss_s2_mss40_recht_haben,v4_con$v4_mss_s2_mss40,"v4_mss_itm40")
## N Y <NA>
## [1,] No. cases 481 22 1040 1543
## [2,] Percent 31.2 1.4 67.4 100
41. “I thought I was superior to others” (dichotomous, v4_mss_itm41)
v4_mss_recode(v4_clin$v4_mss_s3_mss41_ueberlegen,v4_con$v4_mss_s3_mss41,"v4_mss_itm41")
## N Y <NA>
## [1,] No. cases 489 20 1034 1543
## [2,] Percent 31.7 1.3 67 100
42. “I wanted to take on jobs that I was not trained to handle” (dichotomous, v4_mss_itm42)
v4_mss_recode(v4_clin$v4_mss_s3_mss42_uebermut,v4_con$v4_mss_s3_mss42,"v4_mss_itm42")
## N Y <NA>
## [1,] No. cases 481 28 1034 1543
## [2,] Percent 31.2 1.8 67 100
43. “I thought I knew what other people were thinking” (dichotomous, v4_mss_itm43)
v4_mss_recode(v4_clin$v4_mss_s3_mss43_ged_lesen_akt,v4_con$v4_mss_s3_mss43,"v4_mss_itm43")
## N Y <NA>
## [1,] No. cases 475 34 1034 1543
## [2,] Percent 30.8 2.2 67 100
44. “I thought other people knew what I was thinking” (dichotomous, v4_mss_itm44)
v4_mss_recode(v4_clin$v4_mss_s3_mss44_ged_lesen_pas,v4_con$v4_mss_s3_mss44,"v4_mss_itm44")
## N Y <NA>
## [1,] No. cases 479 30 1034 1543
## [2,] Percent 31 1.9 67 100
45. “I thought someone wanted to harm me” (dichotomous, v4_mss_itm45)
v4_mss_recode(v4_clin$v4_mss_s3_mss45_etw_antun,v4_con$v4_mss_s3_mss45,"v4_mss_itm45")
## N Y <NA>
## [1,] No. cases 484 25 1034 1543
## [2,] Percent 31.4 1.6 67 100
46. “I heard voices when people weren’t there” (dichotomous, v4_mss_itm46)
v4_mss_recode(v4_clin$v4_mss_s3_mss46_stimmen,v4_con$v4_mss_s3_mss46,"v4_mss_itm46")
## N Y <NA>
## [1,] No. cases 468 41 1034 1543
## [2,] Percent 30.3 2.7 67 100
47. “I had false beliefs concerning who I was” (dichotomous, v4_mss_itm47)
v4_mss_recode(v4_clin$v4_mss_s3_mss47_jmd_anders,v4_con$v4_mss_s3_mss47,"v4_mss_itm47")
## N Y <NA>
## [1,] No. cases 494 14 1035 1543
## [2,] Percent 32 0.9 67.1 100
48. “I knew I was getting ill” (dichotomous, v4_mss_itm48)
v4_mss_recode(v4_clin$v4_mss_s3_mss48_krank_einsicht,v4_con$v4_mss_s3_mss48,"v4_mss_itm48")
## N Y <NA>
## [1,] No. cases 440 65 1038 1543
## [2,] Percent 28.5 4.2 67.3 100
Create MSS sum score (continuous [0-48],v4_mss_sum)
v4_mss_sum<-ifelse(v4_mss_itm1=="Y",1,0)+
ifelse(v4_mss_itm2=="Y",1,0)+
ifelse(v4_mss_itm3=="Y",1,0)+
ifelse(v4_mss_itm4=="Y",1,0)+
ifelse(v4_mss_itm5=="Y",1,0)+
ifelse(v4_mss_itm6=="Y",1,0)+
ifelse(v4_mss_itm7=="Y",1,0)+
ifelse(v4_mss_itm8=="Y",1,0)+
ifelse(v4_mss_itm9=="Y",1,0)+
ifelse(v4_mss_itm10=="Y",1,0)+
ifelse(v4_mss_itm11=="Y",1,0)+
ifelse(v4_mss_itm12=="Y",1,0)+
ifelse(v4_mss_itm13=="Y",1,0)+
ifelse(v4_mss_itm14=="Y",1,0)+
ifelse(v4_mss_itm15=="Y",1,0)+
ifelse(v4_mss_itm16=="Y",1,0)+
ifelse(v4_mss_itm17=="Y",1,0)+
ifelse(v4_mss_itm18=="Y",1,0)+
ifelse(v4_mss_itm19=="Y",1,0)+
ifelse(v4_mss_itm20=="Y",1,0)+
ifelse(v4_mss_itm21=="Y",1,0)+
ifelse(v4_mss_itm22=="Y",1,0)+
ifelse(v4_mss_itm23=="Y",1,0)+
ifelse(v4_mss_itm24=="Y",1,0)+
ifelse(v4_mss_itm25=="Y",1,0)+
ifelse(v4_mss_itm26=="Y",1,0)+
ifelse(v4_mss_itm27=="Y",1,0)+
ifelse(v4_mss_itm28=="Y",1,0)+
ifelse(v4_mss_itm29=="Y",1,0)+
ifelse(v4_mss_itm30=="Y",1,0)+
ifelse(v4_mss_itm31=="Y",1,0)+
ifelse(v4_mss_itm32=="Y",1,0)+
ifelse(v4_mss_itm33=="Y",1,0)+
ifelse(v4_mss_itm34=="Y",1,0)+
ifelse(v4_mss_itm35=="Y",1,0)+
ifelse(v4_mss_itm36=="Y",1,0)+
ifelse(v4_mss_itm37=="Y",1,0)+
ifelse(v4_mss_itm38=="Y",1,0)+
ifelse(v4_mss_itm39=="Y",1,0)+
ifelse(v4_mss_itm40=="Y",1,0)+
ifelse(v4_mss_itm41=="Y",1,0)+
ifelse(v4_mss_itm42=="Y",1,0)+
ifelse(v4_mss_itm43=="Y",1,0)+
ifelse(v4_mss_itm44=="Y",1,0)+
ifelse(v4_mss_itm45=="Y",1,0)+
ifelse(v4_mss_itm46=="Y",1,0)+
ifelse(v4_mss_itm47=="Y",1,0)+
ifelse(v4_mss_itm48=="Y",1,0)
summary(v4_mss_sum)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 0.000 2.000 4.007 6.000 36.000 1092
Create dataset
v4_mss<-data.frame(v4_mss_itm1,v4_mss_itm2,v4_mss_itm3,v4_mss_itm4,v4_mss_itm5,v4_mss_itm6,
v4_mss_itm7,v4_mss_itm8,v4_mss_itm9,v4_mss_itm10,v4_mss_itm11,
v4_mss_itm12,v4_mss_itm13,v4_mss_itm14,v4_mss_itm15,v4_mss_itm16,
v4_mss_itm17,v4_mss_itm18,v4_mss_itm19,v4_mss_itm20,v4_mss_itm21,
v4_mss_itm22,v4_mss_itm23,v4_mss_itm24,v4_mss_itm25,v4_mss_itm26,
v4_mss_itm27,v4_mss_itm28,v4_mss_itm29,v4_mss_itm30,v4_mss_itm31,
v4_mss_itm32,v4_mss_itm33,v4_mss_itm34,v4_mss_itm35,v4_mss_itm36,
v4_mss_itm37,v4_mss_itm38,v4_mss_itm39,v4_mss_itm40,v4_mss_itm41,
v4_mss_itm42,v4_mss_itm43,v4_mss_itm44,v4_mss_itm45,v4_mss_itm46,
v4_mss_itm47,v4_mss_itm48, v4_mss_sum)
For explanation, please refer to the section in Visit 1
1. “Major personal illness or injury”
1A Nature (dichotomous [“good”,“bad”], v4_leq_A_1A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq1a_schw_krankh,v4_con$v4_leq_a_leq1a,"v4_leq_A_1A")
## -999 bad good <NA>
## [1,] No. cases 337 120 18 1068 1543
## [2,] Percent 21.8 7.8 1.2 69.2 100
1B Impact (ordinal [0,1,2,3], v4_leq_A_1B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq1e_schw_krankh,v4_con$v4_leq_a_leq1e,"v4_leq_A_1B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 336 8 32 48 51 1068 1543
## [2,] Percent 21.8 0.5 2.1 3.1 3.3 69.2 100
2. “Major change in eating habits”
2A Nature (dichotomous [“good”,“bad”], v4_leq_A_2A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq2a_ernaehrung,v4_con$v4_leq_a_leq2a,"v4_leq_A_2A")
## -999 bad good <NA>
## [1,] No. cases 353 49 73 1068 1543
## [2,] Percent 22.9 3.2 4.7 69.2 100
2B Impact (ordinal [0,1,2,3], v4_leq_A_2B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq2e_ernaehrung,v4_con$v4_leq_a_leq2e,"v4_leq_A_2B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 353 8 31 53 30 1068 1543
## [2,] Percent 22.9 0.5 2 3.4 1.9 69.2 100
3. “Major change in sleeping habits”
3A Nature (dichotomous [“good”,“bad”], v4_leq_A_3A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq3a_schlaf,v4_con$v4_leq_a_leq3a,"v4_leq_A_3A")
## -999 bad good <NA>
## [1,] No. cases 353 74 48 1068 1543
## [2,] Percent 22.9 4.8 3.1 69.2 100
3B Impact (ordinal [0,1,2,3], v4_leq_A_3B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq3e_schlaf,v4_con$v4_leq_a_leq3e,"v4_leq_A_3B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 353 12 35 37 38 1068 1543
## [2,] Percent 22.9 0.8 2.3 2.4 2.5 69.2 100
4. “Major change in usual type and/or amount of recreation”
4A Nature (dichotomous [“good”,“bad”], v4_leq_A_4A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq4a_freizeit,v4_con$v4_leq_a_leq4a,"v4_leq_A_4A")
## -999 bad good <NA>
## [1,] No. cases 347 45 83 1068 1543
## [2,] Percent 22.5 2.9 5.4 69.2 100
4B Impact (ordinal [0,1,2,3], v4_leq_A_4B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq4e_freizeit,v4_con$v4_leq_a_leq4e,"v4_leq_A_4B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 347 6 27 56 39 1068 1543
## [2,] Percent 22.5 0.4 1.7 3.6 2.5 69.2 100
5. “Major dental work”
5A Nature (dichotomous [“good”,“bad”], v4_leq_A_5A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq5a_zahnarzt,v4_con$v4_leq_a_leq5a,"v4_leq_A_5A")
## -999 bad good <NA>
## [1,] No. cases 392 41 42 1068 1543
## [2,] Percent 25.4 2.7 2.7 69.2 100
5B Impact (ordinal [0,1,2,3], v4_leq_A_5B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq5e_zahnarzt,v4_con$v4_leq_a_leq5e,"v4_leq_A_5B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 390 19 31 18 17 1068 1543
## [2,] Percent 25.3 1.2 2 1.2 1.1 69.2 100
6. “(Female) Pregnancy”
6A Nature (dichotomous [“good”,“bad”], v4_leq_A_6A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq6a_schwanger,v4_con$v4_leq_a_leq6a,"v4_leq_A_6A")
## -999 good <NA>
## [1,] No. cases 472 3 1068 1543
## [2,] Percent 30.6 0.2 69.2 100
6B Impact (ordinal [0,1,2,3], v4_leq_A_6B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq6e_schwanger,v4_con$v4_leq_a_leq6e,"v4_leq_A_6B")
## -999 0 3 <NA>
## [1,] No. cases 471 1 3 1068 1543
## [2,] Percent 30.5 0.1 0.2 69.2 100
7. “(Female) Miscarriage or abortion”
7A Nature (dichotomous [“good”,“bad”], v4_leq_A_7A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq7a_fehlg_abtr,v4_con$v4_leq_a_leq7a,"v4_leq_A_7A")
## -999 <NA>
## [1,] No. cases 475 1068 1543
## [2,] Percent 30.8 69.2 100
7B Impact (ordinal [0,1,2,3], v4_leq_A_7B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq7e_fehlg_abtr,v4_con$v4_leq_a_leq7e,"v4_leq_A_7B")
## -999 0 <NA>
## [1,] No. cases 474 1 1068 1543
## [2,] Percent 30.7 0.1 69.2 100
8. “(Female) Started menopause”
8A Nature (dichotomous [“good”,“bad”], v4_leq_A_8A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq8a_wechseljahre,v4_con$v4_leq_a_leq8a,"v4_leq_A_8A")
## -999 bad good <NA>
## [1,] No. cases 460 11 4 1068 1543
## [2,] Percent 29.8 0.7 0.3 69.2 100
8B Impact (ordinal [0,1,2,3], v4_leq_A_8B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq8e_wechseljahre,v4_con$v4_leq_a_leq8e,"v4_leq_A_8B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 459 4 3 4 5 1068 1543
## [2,] Percent 29.7 0.3 0.2 0.3 0.3 69.2 100
9. “Major difficulties with birth control pills or devices”
9A Nature (dichotomous [“good”,“bad”], v4_leq_A_9A)
v4_leq_a_recode(v4_clin$v4_leq_a_leq9a_verhuetung,v4_con$v4_leq_a_leq9a,"v4_leq_A_9A")
## -999 good <NA>
## [1,] No. cases 471 4 1068 1543
## [2,] Percent 30.5 0.3 69.2 100
9B Impact (ordinal [0,1,2,3], v4_leq_A_9B)
v4_leq_b_recode(v4_clin$v4_leq_a_leq9e_verhuetung,v4_con$v4_leq_a_leq9e,"v4_leq_A_9B")
## -999 0 1 3 <NA>
## [1,] No. cases 470 2 2 1 1068 1543
## [2,] Percent 30.5 0.1 0.1 0.1 69.2 100
Create dataset
v4_leq_A<-data.frame(v4_leq_A_1A,v4_leq_A_1B,v4_leq_A_2A,v4_leq_A_2B,v4_leq_A_3A,
v4_leq_A_3B,v4_leq_A_4A,v4_leq_A_4B,v4_leq_A_5A,v4_leq_A_5B,
v4_leq_A_6A,v4_leq_A_6B,v4_leq_A_7A,v4_leq_A_7B,v4_leq_A_8A,
v4_leq_A_8B,v4_leq_A_9A,v4_leq_A_9B)
10. “Difficulty finding a job”
10A Nature (dichotomous [“good”,“bad”], v4_leq_B_10A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq10a_arbeitssuche,v4_con$v4_leq_b_leq10a,"v4_leq_B_10A")
## -999 bad good <NA>
## [1,] No. cases 429 38 8 1068 1543
## [2,] Percent 27.8 2.5 0.5 69.2 100
10B Impact (ordinal [0,1,2,3], v4_leq_B_10B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq10e_arbeitssuche,v4_con$v4_leq_b_leq10e,"v4_leq_B_10B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 428 3 11 14 19 1068 1543
## [2,] Percent 27.7 0.2 0.7 0.9 1.2 69.2 100
11. “Beginning work outside the home”
11A Nature (dichotomous [“good”,“bad”], v4_leq_B_11A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq11a_arbeit_aussen,v4_con$v4_leq_b_leq11a,"v4_leq_B_11A")
## -999 bad good <NA>
## [1,] No. cases 432 8 35 1068 1543
## [2,] Percent 28 0.5 2.3 69.2 100
11B Impact (ordinal [0,1,2,3], v4_leq_B_11B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq11e_arbeit_aussen,v4_con$v4_leq_b_leq11e,"v4_leq_B_11B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 430 4 9 16 16 1068 1543
## [2,] Percent 27.9 0.3 0.6 1 1 69.2 100
12. “Changing to a new type of work” 12A Nature (dichotomous [“good”,“bad”], v4_leq_B_12A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq12a_arbeitswechs,v4_con$v4_leq_b_leq12a,"v4_leq_B_12A")
## -999 bad good <NA>
## [1,] No. cases 423 8 44 1068 1543
## [2,] Percent 27.4 0.5 2.9 69.2 100
12B Impact (ordinal [0,1,2,3], v4_leq_B_12B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq12e_arbeitswechs,v4_con$v4_leq_b_leq12e,"v4_leq_B_12B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 421 3 12 16 23 1068 1543
## [2,] Percent 27.3 0.2 0.8 1 1.5 69.2 100
13. “Changing your work hours or conditions”
13A Nature (dichotomous [“good”,“bad”], v4_leq_B_13A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq13a_veraend_arb,v4_con$v4_leq_b_leq13a,"v4_leq_B_13A")
## -999 bad good <NA>
## [1,] No. cases 404 17 54 1068 1543
## [2,] Percent 26.2 1.1 3.5 69.2 100
13B Impact (ordinal [0,1,2,3], v4_leq_B_13B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq13e_veraend_arb,v4_con$v4_leq_b_leq13e,"v4_leq_B_13B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 403 3 21 26 22 1068 1543
## [2,] Percent 26.1 0.2 1.4 1.7 1.4 69.2 100
14. “Change in your responsibilities at work” 14A Nature (dichotomous [“good”,“bad”], v4_leq_B_14A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq14a_veraend_ba,v4_con$v4_leq_b_leq14a,"v4_leq_B_14A")
## -999 bad good <NA>
## [1,] No. cases 409 15 51 1068 1543
## [2,] Percent 26.5 1 3.3 69.2 100
14B Impact (ordinal [0,1,2,3], v4_leq_B_14B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq14e_veraend_ba,v4_con$v4_leq_b_leq14e,"v4_leq_B_14B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 408 4 12 32 19 1068 1543
## [2,] Percent 26.4 0.3 0.8 2.1 1.2 69.2 100
15. “Troubles at work with your employer or co-worker”
15A Nature (dichotomous [“good”,“bad”], v4_leq_B_15A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq15a_schw_arbeit,v4_con$v4_leq_b_leq15a,"v4_leq_B_15A")
## -999 bad good <NA>
## [1,] No. cases 432 35 8 1068 1543
## [2,] Percent 28 2.3 0.5 69.2 100
15B Impact (ordinal [0,1,2,3], v4_leq_B_15B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq15e_schw_arbeit,v4_con$v4_leq_b_leq15e,"v4_leq_B_15B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 431 5 13 17 9 1068 1543
## [2,] Percent 27.9 0.3 0.8 1.1 0.6 69.2 100
16. “Major business readjustment”
16A Nature (dichotomous [“good”,“bad”], v4_leq_B_16A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq16a_betr_reorg,v4_con$v4_leq_b_leq16a,"v4_leq_B_16A")
## -999 bad good <NA>
## [1,] No. cases 459 9 7 1068 1543
## [2,] Percent 29.7 0.6 0.5 69.2 100
16B Impact (ordinal [0,1,2,3], v4_leq_B_16B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq16e_betr_reorg,v4_con$v4_leq_b_leq16e,"v4_leq_B_16B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 458 1 6 3 7 1068 1543
## [2,] Percent 29.7 0.1 0.4 0.2 0.5 69.2 100
17. “Being fired or laid off from work”
17A Nature (dichotomous [“good”,“bad”], v4_leq_B_17A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq17a_kuendigung,v4_con$v4_leq_b_leq17a,"v4_leq_B_17A")
## -999 bad good <NA>
## [1,] No. cases 464 7 4 1068 1543
## [2,] Percent 30.1 0.5 0.3 69.2 100
17B Impact (ordinal [0,1,2,3], v4_leq_B_17B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq17e_kuendigung,v4_con$v4_leq_b_leq17e,"v4_leq_B_17B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 463 2 3 1 6 1068 1543
## [2,] Percent 30 0.1 0.2 0.1 0.4 69.2 100
18. “Retirement from work”
18A Nature (dichotomous [“good”,“bad”], v4_leq_B_18A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq18a_ende_beruf,v4_con$v4_leq_b_leq18a,"v4_leq_B_18A")
## -999 bad good <NA>
## [1,] No. cases 464 3 8 1068 1543
## [2,] Percent 30.1 0.2 0.5 69.2 100
18B Impact (ordinal [0,1,2,3], v4_leq_B_18B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq18e_ende_beruf,v4_con$v4_leq_b_leq18e,"v4_leq_B_18B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 463 1 3 1 7 1068 1543
## [2,] Percent 30 0.1 0.2 0.1 0.5 69.2 100
19. “Taking courses by mail or studying at home to help you in your work”
19A Nature (dichotomous [“good”,“bad”], v4_leq_B_19A)
v4_leq_a_recode(v4_clin$v4_leq_b_leq19a_fortbildung,v4_con$v4_leq_b_leq19a,"v4_leq_B_19A")
## -999 bad good <NA>
## [1,] No. cases 455 3 17 1068 1543
## [2,] Percent 29.5 0.2 1.1 69.2 100
19B Impact (ordinal [0,1,2,3], v4_leq_B_19B)
v4_leq_b_recode(v4_clin$v4_leq_b_leq19e_fortbildung,v4_con$v4_leq_b_leq19e,"v4_leq_B_19B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 454 1 8 7 5 1068 1543
## [2,] Percent 29.4 0.1 0.5 0.5 0.3 69.2 100
v4_leq_B<-data.frame(v4_leq_B_10A,v4_leq_B_10B,v4_leq_B_11A,v4_leq_B_11B,v4_leq_B_12A,
v4_leq_B_12B,v4_leq_B_13A,v4_leq_B_13B,v4_leq_B_14A,v4_leq_B_14B,
v4_leq_B_15A,v4_leq_B_15B,v4_leq_B_16A,v4_leq_B_16B,v4_leq_B_17A,
v4_leq_B_17B,v4_leq_B_18A,v4_leq_B_18B,v4_leq_B_19A,v4_leq_B_19B)
20. “Beginning or ceasing school, college, or training program”
20A Nature (dichotomous [“good”,“bad”], v4_leq_C_20A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq20a_beginn_ende,v4_con$v4_leq_c_d_leq20a,"v4_leq_C_20A")
## -999 bad good <NA>
## [1,] No. cases 450 1 24 1068 1543
## [2,] Percent 29.2 0.1 1.6 69.2 100
20B Impact (ordinal [0,1,2,3], v4_leq_C_20B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq20e_beginn_ende,v4_con$v4_leq_c_d_leq20e,"v4_leq_C_20B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 449 1 5 7 13 1068 1543
## [2,] Percent 29.1 0.1 0.3 0.5 0.8 69.2 100
21. “Change of school, college, or training program”
21A Nature (dichotomous [“good”,“bad”], v4_leq_C_21A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq21a_schulwechsel,v4_con$v4_leq_c_d_leq21a,"v4_leq_C_21A")
## -999 bad good <NA>
## [1,] No. cases 465 2 8 1068 1543
## [2,] Percent 30.1 0.1 0.5 69.2 100
21B Impact (ordinal [0,1,2,3], v4_leq_C_21B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq21e_schulwechsel,v4_con$v4_leq_c_d_leq21e,"v4_leq_C_21B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 464 1 2 2 6 1068 1543
## [2,] Percent 30.1 0.1 0.1 0.1 0.4 69.2 100
22. “Change in career goal or academic major”
A Nature (dichotomous [“good”,“bad”], v4_leq_C_22A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq22a_aend_karriere,v4_con$v4_leq_c_d_leq22a,"v4_leq_C_22A")
## -999 bad good <NA>
## [1,] No. cases 464 2 9 1068 1543
## [2,] Percent 30.1 0.1 0.6 69.2 100
B Impact (ordinal [0,1,2,3], v4_leq_C_22B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq22e_aend_karriere,v4_con$v4_leq_c_d_leq22e,"v4_leq_C_22B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 463 1 4 3 4 1068 1543
## [2,] Percent 30 0.1 0.3 0.2 0.3 69.2 100
23. “Problem in school, college, or training program”
23A Nature (dichotomous [“good”,“bad”], v4_leq_C_23A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq23a_schulprob,v4_con$v4_leq_c_d_leq23a,"v4_leq_C_23A")
## -999 bad good <NA>
## [1,] No. cases 465 8 2 1068 1543
## [2,] Percent 30.1 0.5 0.1 69.2 100
23B Impact (ordinal [0,1,2,3], v4_leq_C_23B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq23e_schulprob,v4_con$v4_leq_c_d_leq23e,"v4_leq_C_23B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 464 1 3 2 5 1068 1543
## [2,] Percent 30.1 0.1 0.2 0.1 0.3 69.2 100
Create dataset
v4_leq_C<-data.frame(v4_leq_C_20A,v4_leq_C_20B,v4_leq_C_21A,v4_leq_C_21B,v4_leq_C_22A,v4_leq_C_22B,v4_leq_C_23A,v4_leq_C_23B)
24. “Difficulty finding housing”
24A Nature (dichotomous [“good”,“bad”], v4_leq_D_24A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq24a_schw_wsuche,v4_con$v4_leq_c_d_leq24a,"v4_leq_D_24A")
## -999 bad good <NA>
## [1,] No. cases 452 18 5 1068 1543
## [2,] Percent 29.3 1.2 0.3 69.2 100
24B Impact (ordinal [0,1,2,3], v4_leq_D_24B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq24e_schw_wsuche,v4_con$v4_leq_c_d_leq24e,"v4_leq_D_24B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 450 2 5 7 11 1068 1543
## [2,] Percent 29.2 0.1 0.3 0.5 0.7 69.2 100
25. “Changing residence within the same town or city”
A Nature (dichotomous [“good”,“bad”], v4_leq_D_25A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq25a_umzug_nah,v4_con$v4_leq_c_d_leq25a,"v4_leq_D_25A")
## -999 bad good <NA>
## [1,] No. cases 442 3 30 1068 1543
## [2,] Percent 28.6 0.2 1.9 69.2 100
B Impact (ordinal [0,1,2,3], v4_leq_D_25B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq25e_umzug_nah,v4_con$v4_leq_c_d_leq25e,"v4_leq_D_25B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 440 2 5 10 18 1068 1543
## [2,] Percent 28.5 0.1 0.3 0.6 1.2 69.2 100
26. “Moving to a different town, city, state, or country”
26A Nature (dichotomous [“good”,“bad”], v4_leq_D_26A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq26a_umzug_fern,v4_con$v4_leq_c_d_leq26a,"v4_leq_D_26A")
## -999 bad good <NA>
## [1,] No. cases 466 2 7 1068 1543
## [2,] Percent 30.2 0.1 0.5 69.2 100
26B Impact (ordinal [0,1,2,3], v4_leq_D_26B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq26e_umzug_fern,v4_con$v4_leq_c_d_leq26e,"v4_leq_D_26B")
## -999 0 2 3 <NA>
## [1,] No. cases 465 2 2 6 1068 1543
## [2,] Percent 30.1 0.1 0.1 0.4 69.2 100
27. “Major change in your life conditions (home improvements or a decline in your home or neighborhood)”
27A Nature (dichotomous [“good”,“bad”], v4_leq_D_27A)
v4_leq_a_recode(v4_clin$v4_leq_c_d_leq27a_veraend_lu,v4_con$v4_leq_c_d_leq27a,"v4_leq_D_27A")
## -999 bad good <NA>
## [1,] No. cases 418 18 39 1068 1543
## [2,] Percent 27.1 1.2 2.5 69.2 100
27B Impact (ordinal [0,1,2,3], v4_leq_D_27B)
v4_leq_b_recode(v4_clin$v4_leq_c_d_leq27e_veraend_lu,v4_con$v4_leq_c_d_leq27e,"v4_leq_D_27B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 417 1 9 19 29 1068 1543
## [2,] Percent 27 0.1 0.6 1.2 1.9 69.2 100
Create dataset
v4_leq_D<-data.frame(v4_leq_D_24A,v4_leq_D_24B,v4_leq_D_25A,v4_leq_D_25B,v4_leq_D_26A,
v4_leq_D_26B,v4_leq_D_27A,v4_leq_D_27B)
28. “Began a new, close, personal relationship”
28A Nature (dichotomous [“good”,“bad”], v4_leq_E_28A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq28a_neue_bez,v4_con$v4_leq_e_leq28a,"v4_leq_E_28A")
## -999 bad good <NA>
## [1,] No. cases 448 1 26 1068 1543
## [2,] Percent 29 0.1 1.7 69.2 100
28B Impact (ordinal [0,1,2,3], v4_leq_E_28B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq28e_neue_bez,v4_con$v4_leq_e_leq28e,"v4_leq_E_28B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 447 1 4 9 14 1068 1543
## [2,] Percent 29 0.1 0.3 0.6 0.9 69.2 100
29. “Became engaged”
29A Nature (dichotomous [“good”,“bad”], v4_leq_E_29A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq29a_verlobung,v4_con$v4_leq_e_leq29a,"v4_leq_E_29A")
## -999 good <NA>
## [1,] No. cases 471 4 1068 1543
## [2,] Percent 30.5 0.3 69.2 100
29B Impact (ordinal [0,1,2,3], v4_leq_E_29B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq29e_verlobung,v4_con$v4_leq_e_leq29e,"v4_leq_E_29B")
## -999 0 2 3 <NA>
## [1,] No. cases 470 1 2 2 1068 1543
## [2,] Percent 30.5 0.1 0.1 0.1 69.2 100
30. “Girlfriend or boyfriend problems”
30A Nature (dichotomous [“good”,“bad”], v4_leq_E_30A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq30a_prob_partner,v4_con$v4_leq_e_leq30a,"v4_leq_E_30A")
## -999 bad good <NA>
## [1,] No. cases 440 32 3 1068 1543
## [2,] Percent 28.5 2.1 0.2 69.2 100
30B Impact (ordinal [0,1,2,3], v4_leq_E_30B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq30e_prob_partner,v4_con$v4_leq_e_leq30e,"v4_leq_E_30B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 439 3 10 9 14 1068 1543
## [2,] Percent 28.5 0.2 0.6 0.6 0.9 69.2 100
31. “Breaking up with a girlfriend or breaking an engagement”
31A Nature (dichotomous [“good”,“bad”], v4_leq_E_31A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq31a_trennung,v4_con$v4_leq_e_leq31a,"v4_leq_E_31A")
## -999 bad good <NA>
## [1,] No. cases 460 10 5 1068 1543
## [2,] Percent 29.8 0.6 0.3 69.2 100
31B Impact (ordinal [0,1,2,3], v4_leq_E_31B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq31e_trennung,v4_con$v4_leq_e_leq31e,"v4_leq_E_31B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 459 1 4 2 9 1068 1543
## [2,] Percent 29.7 0.1 0.3 0.1 0.6 69.2 100
32. “(Male) Wife or girlfriend’s pregnancy”
32A Nature (dichotomous [“good”,“bad”], v4_leq_E_32A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq32a_schwanger_p,v4_con$v4_leq_e_leq32a,"v4_leq_E_32A")
## -999 good <NA>
## [1,] No. cases 473 2 1068 1543
## [2,] Percent 30.7 0.1 69.2 100
32B Impact (ordinal [0,1,2,3], v4_leq_E_32B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq32e_schwanger_p,v4_con$v4_leq_e_leq32e,"v4_leq_E_32B")
## -999 2 3 <NA>
## [1,] No. cases 473 1 1 1068 1543
## [2,] Percent 30.7 0.1 0.1 69.2 100
33. “(Male) Wife or girlfriend having a miscarriage or abortion”
33A Nature (dichotomous [“good”,“bad”], v4_leq_E_33A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq33a_fehlg_abtr_p,v4_con$v4_leq_e_leq33a,"v4_leq_E_33A")
## -999 <NA>
## [1,] No. cases 475 1068 1543
## [2,] Percent 30.8 69.2 100
33B Impact (ordinal [0,1,2,3], v4_leq_E_33B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq33e_fehlg_abtr_p,v4_con$v4_leq_e_leq33e,"v4_leq_E_33B")
## -999 <NA>
## [1,] No. cases 475 1068 1543
## [2,] Percent 30.8 69.2 100
34. “Getting married (or beginning to live with someone)”
34A Nature (dichotomous [“good”,“bad”], v4_leq_E_34A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq34a_heirat,v4_con$v4_leq_e_leq34a,"v4_leq_E_34A")
## -999 good <NA>
## [1,] No. cases 470 5 1068 1543
## [2,] Percent 30.5 0.3 69.2 100
34B Impact (ordinal [0,1,2,3], v4_leq_E_34B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq34e_heirat,v4_con$v4_leq_e_leq34e,"v4_leq_E_34B")
## -999 0 2 3 <NA>
## [1,] No. cases 469 1 3 2 1068 1543
## [2,] Percent 30.4 0.1 0.2 0.1 69.2 100
35. “A change in closeness with your partner”
35A Nature (dichotomous [“good”,“bad”], v4_leq_E_35A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq35a_veraend_naehe,v4_con$v4_leq_e_leq35a,"v4_leq_E_35A")
## -999 bad good <NA>
## [1,] No. cases 434 13 28 1068 1543
## [2,] Percent 28.1 0.8 1.8 69.2 100
35B Impact (ordinal [0,1,2,3], v4_leq_E_35B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq35e_veraend_naehe,v4_con$v4_leq_e_leq35e,"v4_leq_E_35B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 433 1 8 13 20 1068 1543
## [2,] Percent 28.1 0.1 0.5 0.8 1.3 69.2 100
36. “Infidelity”
36A Nature (dichotomous [“good”,“bad”], v4_leq_E_36A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq36a_untreue,v4_con$v4_leq_e_leq36a,"v4_leq_E_36A")
## -999 bad good <NA>
## [1,] No. cases 472 2 1 1068 1543
## [2,] Percent 30.6 0.1 0.1 69.2 100
36B Impact (ordinal [0,1,2,3], v4_leq_E_36B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq36e_untreue,v4_con$v4_leq_e_leq36e,"v4_leq_E_36B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 471 1 1 1 1 1068 1543
## [2,] Percent 30.5 0.1 0.1 0.1 0.1 69.2 100
37. “Trouble with in-laws”
37A Nature (dichotomous [“good”,“bad”], v4_leq_E_37A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq37a_konf_schwiege,v4_con$v4_leq_e_leq37a,"v4_leq_E_37A")
## -999 bad good <NA>
## [1,] No. cases 466 8 1 1068 1543
## [2,] Percent 30.2 0.5 0.1 69.2 100
37B Impact (ordinal [0,1,2,3], v4_leq_E_37B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq37e_konf_schwiege,v4_con$v4_leq_e_leq37e,"v4_leq_E_37B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 465 1 3 5 1 1068 1543
## [2,] Percent 30.1 0.1 0.2 0.3 0.1 69.2 100
38. “Separation from spouse or partner due to conflict”
38A Nature (dichotomous [“good”,“bad”], v4_leq_E_38A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq38a_trennung_str,v4_con$v4_leq_e_leq38a,"v4_leq_E_38A")
## -999 bad good <NA>
## [1,] No. cases 471 3 1 1068 1543
## [2,] Percent 30.5 0.2 0.1 69.2 100
38B Impact (ordinal [0,1,2,3], v4_leq_E_38B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq38e_trennung_str,v4_con$v4_leq_e_leq38e,"v4_leq_E_38B")
## -999 0 1 3 <NA>
## [1,] No. cases 470 1 2 2 1068 1543
## [2,] Percent 30.5 0.1 0.1 0.1 69.2 100
39. “Separation from spouse or partner due to work, travel, etc.”
39A Nature (dichotomous [“good”,“bad”], v4_leq_E_39A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq39a_trennung_ber,v4_con$v4_leq_e_leq39a,"v4_leq_E_39A")
## -999 bad good <NA>
## [1,] No. cases 473 1 1 1068 1543
## [2,] Percent 30.7 0.1 0.1 69.2 100
39B Impact (ordinal [0,1,2,3], v4_leq_E_39B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq39e_trennung_ber,v4_con$v4_leq_e_leq39e,"v4_leq_E_39B")
## -999 0 1 3 <NA>
## [1,] No. cases 472 1 1 1 1068 1543
## [2,] Percent 30.6 0.1 0.1 0.1 69.2 100
40. “Reconciliation with spouse or partner”
40A Nature (dichotomous [“good”,“bad”], v4_leq_E_40A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq40a_versoehnung,v4_con$v4_leq_e_leq40a,"v4_leq_E_40A")
## -999 good <NA>
## [1,] No. cases 466 9 1068 1543
## [2,] Percent 30.2 0.6 69.2 100
40B Impact (ordinal [0,1,2,3], v4_leq_E_40B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq40a_versoehnung,v4_con$v4_leq_e_leq40e,"v4_leq_E_40B")
## -999 1 3 <NA>
## [1,] No. cases 466 8 1 1068 1543
## [2,] Percent 30.2 0.5 0.1 69.2 100
41. “Divorce”
41A Nature (dichotomous [“good”,“bad”], v4_leq_E_41A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq41a_scheidung,v4_con$v4_leq_e_leq41a,"v4_leq_E_41A")
## -999 bad <NA>
## [1,] No. cases 474 1 1068 1543
## [2,] Percent 30.7 0.1 69.2 100
41B Impact (ordinal [0,1,2,3], v4_leq_E_41B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq41e_scheidung,v4_con$v4_leq_e_leq41e,"v4_leq_E_41B")
## -999 0 3 <NA>
## [1,] No. cases 473 1 1 1068 1543
## [2,] Percent 30.7 0.1 0.1 69.2 100
42. “Change in your spouse or partner’s work outside the home (beginning work, ceasing work, changing jobs, retirement, etc.”
42A Nature (dichotomous [“good”,“bad”], v4_leq_E_42A)
v4_leq_a_recode(v4_clin$v4_leq_e_leq42a_veraend_taet,v4_con$v4_leq_e_leq42a,"v4_leq_E_42A")
## -999 bad good <NA>
## [1,] No. cases 459 4 12 1068 1543
## [2,] Percent 29.7 0.3 0.8 69.2 100
42B Impact (ordinal [0,1,2,3], v4_leq_E_42B)
v4_leq_b_recode(v4_clin$v4_leq_e_leq42e_veraend_taet,v4_con$v4_leq_e_leq42e,"v4_leq_E_42B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 458 2 3 8 4 1068 1543
## [2,] Percent 29.7 0.1 0.2 0.5 0.3 69.2 100
Create dataset
v4_leq_E<-data.frame(v4_leq_E_28A,v4_leq_E_28B,v4_leq_E_29A,v4_leq_E_29B,v4_leq_E_30A,
v4_leq_E_30B,v4_leq_E_31A,v4_leq_E_31B,v4_leq_E_32A,v4_leq_E_32B,
v4_leq_E_33A,v4_leq_E_33B,v4_leq_E_34A,v4_leq_E_34B,v4_leq_E_35A,
v4_leq_E_35B,v4_leq_E_36A,v4_leq_E_36B,v4_leq_E_37A,v4_leq_E_37B,
v4_leq_E_38A,v4_leq_E_38B,v4_leq_E_39A,v4_leq_E_39B,v4_leq_E_40A,
v4_leq_E_40B,v4_leq_E_41A,v4_leq_E_41B,v4_leq_E_42A,v4_leq_E_42B)
43. “Gain of a new family member (through birth, adoption, relative moving in, etc)”
43A Nature (dichotomous [“good”,“bad”], v4_leq_F_43A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq43a_neu_fmitglied,v4_con$v4_leq_f_g_leq43a,"v4_leq_F_43A")
## -999 bad good <NA>
## [1,] No. cases 453 2 20 1068 1543
## [2,] Percent 29.4 0.1 1.3 69.2 100
43B Impact (ordinal [0,1,2,3], v4_leq_F_43B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq43e_neu_fmitglied,v4_con$v4_leq_f_g_leq43e,"v4_leq_F_43B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 452 3 5 1 14 1068 1543
## [2,] Percent 29.3 0.2 0.3 0.1 0.9 69.2 100
44. “Child or family member leaving home (due to marriage, to attend college, or for some other reason)”
44A Nature (dichotomous [“good”,“bad”], v4_leq_F_44A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq44a_auszug_fm,v4_con$v4_leq_f_g_leq44a,"v4_leq_F_44A")
## -999 bad good <NA>
## [1,] No. cases 467 5 3 1068 1543
## [2,] Percent 30.3 0.3 0.2 69.2 100
44B Impact (ordinal [0,1,2,3], v4_leq_F_44B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq44e_auszug_fm,v4_con$v4_leq_f_g_leq44e,"v4_leq_F_44B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 466 1 1 3 4 1068 1543
## [2,] Percent 30.2 0.1 0.1 0.2 0.3 69.2 100
45. “Major change in the health or behavior of a family member or close friend (illness, accidents, drug or disciplinary problems, etc.)”
45A Nature (dichotomous [“good”,“bad”], v4_leq_F_45A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq45a_gz_verh_fm,v4_con$v4_leq_f_g_leq45a,"v4_leq_F_45A")
## -999 bad good <NA>
## [1,] No. cases 411 58 6 1068 1543
## [2,] Percent 26.6 3.8 0.4 69.2 100
45B Impact (ordinal [0,1,2,3], v4_leq_F_45B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq45e_gz_verh_fm,v4_con$v4_leq_f_g_leq45e,"v4_leq_F_45B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 409 6 14 19 27 1068 1543
## [2,] Percent 26.5 0.4 0.9 1.2 1.7 69.2 100
46. “Death of spouse or partner”
46A Nature (dichotomous [“good”,“bad”], v4_leq_F_46A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq46a_tod_partner,v4_con$v4_leq_f_g_leq46a,"v4_leq_F_46A")
## -999 bad good <NA>
## [1,] No. cases 473 1 1 1068 1543
## [2,] Percent 30.7 0.1 0.1 69.2 100
46B Impact (ordinal [0,1,2,3], v4_leq_F_46B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq46e_tod_partner,v4_con$v4_leq_f_g_leq46e,"v4_leq_F_46B")
## -999 0 1 2 <NA>
## [1,] No. cases 472 1 1 1 1068 1543
## [2,] Percent 30.6 0.1 0.1 0.1 69.2 100
47. “Death of a child”
47A Nature (dichotomous [“good”,“bad”], v4_leq_F_47A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq47a_tod_kind,v4_con$v4_leq_f_g_leq47a,"v4_leq_F_47A")
## -999 <NA>
## [1,] No. cases 475 1068 1543
## [2,] Percent 30.8 69.2 100
47B Impact (ordinal [0,1,2,3], v4_leq_F_47B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq47e_tod_kind,v4_con$v4_leq_f_g_leq47e,"v4_leq_F_47B")
## -999 0 <NA>
## [1,] No. cases 474 1 1068 1543
## [2,] Percent 30.7 0.1 69.2 100
48. “Death of family member or close friend”
48A Nature (dichotomous [“good”,“bad”], v4_leq_F_48A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq48a_tod_fm_ef,v4_con$v4_leq_f_g_leq48a,"v4_leq_F_48A")
## -999 bad good <NA>
## [1,] No. cases 429 43 3 1068 1543
## [2,] Percent 27.8 2.8 0.2 69.2 100
48B Impact (ordinal [0,1,2,3], v4_leq_F_48B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq48e_tod_fm_ef,v4_con$v4_leq_f_g_leq48e,"v4_leq_F_48B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 428 4 10 15 18 1068 1543
## [2,] Percent 27.7 0.3 0.6 1 1.2 69.2 100
49. “Birth of a grandchild”
49A Nature (dichotomous [“good”,“bad”], v4_leq_F_49A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq49a_geb_enkel,v4_con$v4_leq_f_g_leq49a,"v4_leq_F_49A")
## -999 good <NA>
## [1,] No. cases 462 13 1068 1543
## [2,] Percent 29.9 0.8 69.2 100
49B Impact (ordinal [0,1,2,3], v4_leq_F_49B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq49e_geb_enkel,v4_con$v4_leq_f_g_leq49e,"v4_leq_F_49B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 461 4 2 3 5 1068 1543
## [2,] Percent 29.9 0.3 0.1 0.2 0.3 69.2 100
50. “Change in marital status of your parents”
50A Nature (dichotomous [“good”,“bad”], v4_leq_F_50A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq50a_fstand_eltern,v4_con$v4_leq_f_g_leq50a,"v4_leq_F_50A")
## -999 bad good <NA>
## [1,] No. cases 467 6 2 1068 1543
## [2,] Percent 30.3 0.4 0.1 69.2 100
50B Impact (ordinal [0,1,2,3], v4_leq_F_50B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq50e_fstand_eltern,v4_con$v4_leq_f_g_leq50e,"v4_leq_F_50B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 466 2 3 3 1 1068 1543
## [2,] Percent 30.2 0.1 0.2 0.2 0.1 69.2 100
Create dataset
v4_leq_F<-data.frame(v4_leq_F_43A,v4_leq_F_43B,v4_leq_F_44A,v4_leq_F_44B,v4_leq_F_45A,
v4_leq_F_45B,v4_leq_F_46A,v4_leq_F_46B,v4_leq_F_47A,v4_leq_F_47B,
v4_leq_F_48A,v4_leq_F_48B,v4_leq_F_49A,v4_leq_F_49B,v4_leq_F_50A,
v4_leq_F_50B)
51. “Change in child care arrangements”
51A Nature (dichotomous [“good”,“bad”], v4_leq_G_51A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq51a_kindbetr,v4_con$v4_leq_f_g_leq51a,"v4_leq_G_51A")
## -999 bad good <NA>
## [1,] No. cases 468 2 5 1068 1543
## [2,] Percent 30.3 0.1 0.3 69.2 100
51B Impact (ordinal [0,1,2,3], v4_leq_G_51B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq51e_kindbetr,v4_con$v4_leq_f_g_leq51e,"v4_leq_G_51B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 467 2 2 3 1 1068 1543
## [2,] Percent 30.3 0.1 0.1 0.2 0.1 69.2 100
52. “Conflicts with spouse or partner about parenting”
52A Nature (dichotomous [“good”,“bad”], v4_leq_G_52A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq52a_konf_eschaft,v4_con$v4_leq_f_g_leq52a,"v4_leq_G_52A")
## -999 bad good <NA>
## [1,] No. cases 463 10 2 1068 1543
## [2,] Percent 30 0.6 0.1 69.2 100
52B Impact (ordinal [0,1,2,3], v4_leq_G_52B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq52e_konf_eschaft,v4_con$v4_leq_f_g_leq52e,"v4_leq_G_52B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 462 3 4 5 1 1068 1543
## [2,] Percent 29.9 0.2 0.3 0.3 0.1 69.2 100
53. “Conflicts with child’s grandparents (or other important person) about parenting”
53A Nature (dichotomous [“good”,“bad”], v4_leq_G_53A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq53a_konf_geltern,v4_con$v4_leq_f_g_leq53a,"v4_leq_G_53A")
## -999 bad <NA>
## [1,] No. cases 470 5 1068 1543
## [2,] Percent 30.5 0.3 69.2 100
53B Impact (ordinal [0,1,2,3], v4_leq_G_53B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq53e_konf_geltern,v4_con$v4_leq_f_g_leq53e,"v4_leq_G_53B")
## -999 0 1 3 <NA>
## [1,] No. cases 469 1 3 2 1068 1543
## [2,] Percent 30.4 0.1 0.2 0.1 69.2 100
54. “Taking on full responsibility for parenting as a single parent”
54A Nature (dichotomous [“good”,“bad”], v4_leq_G_54A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq54a_alleinerz,v4_con$v4_leq_f_g_leq54a,"v4_leq_G_54A")
## -999 bad good <NA>
## [1,] No. cases 473 1 1 1068 1543
## [2,] Percent 30.7 0.1 0.1 69.2 100
54B Impact (ordinal [0,1,2,3], v4_leq_G_54B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq54e_alleinerz,v4_con$v4_leq_f_g_leq54e,"v4_leq_G_54B")
## -999 0 1 <NA>
## [1,] No. cases 472 1 2 1068 1543
## [2,] Percent 30.6 0.1 0.1 69.2 100
55. “Custody battles with former spouse or partner”
55A Nature (dichotomous [“good”,“bad”], v4_leq_G_55A)
v4_leq_a_recode(v4_clin$v4_leq_f_g_leq55a_sorgerecht,v4_con$v4_leq_f_g_leq55a,"v4_leq_G_55A")
## -999 bad good <NA>
## [1,] No. cases 469 5 1 1068 1543
## [2,] Percent 30.4 0.3 0.1 69.2 100
55B Impact (ordinal [0,1,2,3], v4_leq_G_55B)
v4_leq_b_recode(v4_clin$v4_leq_f_g_leq55e_sorgerecht,v4_con$v4_leq_f_g_leq55e,"v4_leq_G_55B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 468 2 1 3 1 1068 1543
## [2,] Percent 30.3 0.1 0.1 0.2 0.1 69.2 100
Create dataset
v4_leq_G<-data.frame(v4_leq_G_51A,v4_leq_G_51B,v4_leq_G_52A,v4_leq_G_52B,v4_leq_G_53A,
v4_leq_G_53B,v4_leq_G_54A,v4_leq_G_54B,v4_leq_G_55A,v4_leq_G_55B)
69. “Major change in finances (increased or decreased income)”
69A Nature (dichotomous [“good”,“bad”], v4_leq_I_69A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq69a_finanz_sit,v4_con$v4_leq_i_j_k_leq69a,"v4_leq_I_69A")
## -999 bad good <NA>
## [1,] No. cases 363 52 60 1068 1543
## [2,] Percent 23.5 3.4 3.9 69.2 100
69B Impact (ordinal [0,1,2,3], v4_leq_I_69B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq69e_finanz_sit,v4_con$v4_leq_i_j_k_leq69e,"v4_leq_I_69B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 362 4 24 41 44 1068 1543
## [2,] Percent 23.5 0.3 1.6 2.7 2.9 69.2 100
70. “Took on a moderate purchase, such as TV, car, freezer, etc.”
70A Nature (dichotomous [“good”,“bad”], v4_leq_I_70A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq70a_finanz_verpfl,v4_con$v4_leq_i_j_k_leq70a,"v4_leq_I_70A")
## -999 bad good <NA>
## [1,] No. cases 443 14 18 1068 1543
## [2,] Percent 28.7 0.9 1.2 69.2 100
70B Impact (ordinal [0,1,2,3], v4_leq_I_70B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq70e_finanz_verpfl,v4_con$v4_leq_i_j_k_leq70e,"v4_leq_I_70B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 442 4 13 11 5 1068 1543
## [2,] Percent 28.6 0.3 0.8 0.7 0.3 69.2 100
71. “Took on a major purchase or a mortgage loan, such as a home, business, property, etc”
71A Nature (dichotomous [“good”,“bad”], v4_leq_I_71A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq71a_hypothek,v4_con$v4_leq_i_j_k_leq71a,"v4_leq_I_71A")
## -999 bad good <NA>
## [1,] No. cases 467 5 3 1068 1543
## [2,] Percent 30.3 0.3 0.2 69.2 100
71B Impact (ordinal [0,1,2,3], v4_leq_I_71B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq71e_hypothek,v4_con$v4_leq_i_j_k_leq71e,"v4_leq_I_71B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 466 2 1 2 4 1068 1543
## [2,] Percent 30.2 0.1 0.1 0.1 0.3 69.2 100
72. “Experienced a foreclosure on a mortgage or loan”
72A Nature (dichotomous [“good”,“bad”], v4_leq_I_72A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq72a_hypoth_kuend,v4_con$v4_leq_i_j_k_leq72a,"v4_leq_I_72A")
## -999 bad good <NA>
## [1,] No. cases 469 2 4 1068 1543
## [2,] Percent 30.4 0.1 0.3 69.2 100
72B Impact (ordinal [0,1,2,3], v4_leq_I_72B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq72e_hypoth_kuend,v4_con$v4_leq_i_j_k_leq72e,"v4_leq_I_72B")
## -999 0 2 3 <NA>
## [1,] No. cases 468 2 2 3 1068 1543
## [2,] Percent 30.3 0.1 0.1 0.2 69.2 100
73. “Credit rating difficulties”
73A Nature (dichotomous [“good”,“bad”], v4_leq_I_73A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq73a_kreditwuerdk,v4_con$v4_leq_i_j_k_leq73a,"v4_leq_I_73A")
## -999 bad good <NA>
## [1,] No. cases 458 15 2 1068 1543
## [2,] Percent 29.7 1 0.1 69.2 100
73B Impact (ordinal [0,1,2,3], v4_leq_I_73B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq73e_kreditwuerdk,v4_con$v4_leq_i_j_k_leq73e,"v4_leq_I_73B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 457 2 8 5 3 1068 1543
## [2,] Percent 29.6 0.1 0.5 0.3 0.2 69.2 100
Create dataset
v4_leq_I<-data.frame(v4_leq_I_69A,v4_leq_I_69B,v4_leq_I_70A,v4_leq_I_70B,v4_leq_I_71A,
v4_leq_I_71B,v4_leq_I_72A,v4_leq_I_72B,v4_leq_I_73A,v4_leq_I_73B)
74. “Being robbed or victim of identity theft”
74A Nature (dichotomous [“good”,“bad”], v4_leq_J_74A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq74a_opf_diebstahl,v4_con$v4_leq_i_j_k_leq74a,"v4_leq_J_74A")
## -999 bad <NA>
## [1,] No. cases 459 16 1068 1543
## [2,] Percent 29.7 1 69.2 100
74B Impact (ordinal [0,1,2,3], v4_leq_J_74B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq74e_opf_diebstahl,v4_con$v4_leq_i_j_k_leq74e,"v4_leq_J_74B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 458 3 4 5 5 1068 1543
## [2,] Percent 29.7 0.2 0.3 0.3 0.3 69.2 100
75. “Being a victim of a violent act (rape, assault, etc.)”
75A Nature (dichotomous [“good”,“bad”], v4_leq_J_75A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq75a_opf_gewalttat,v4_con$v4_leq_i_j_k_leq75a,"v4_leq_J_75A")
## -999 bad <NA>
## [1,] No. cases 470 5 1068 1543
## [2,] Percent 30.5 0.3 69.2 100
75B Impact (ordinal [0,1,2,3], v4_leq_J_75B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq75e_opf_gewalttat,v4_con$v4_leq_i_j_k_leq75e,"v4_leq_J_75B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 469 3 1 1 1 1068 1543
## [2,] Percent 30.4 0.2 0.1 0.1 0.1 69.2 100
76. “Involved in an accident”
76A Nature (dichotomous [“good”,“bad”], v4_leq_J_76A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq76a_unfall,v4_con$v4_leq_i_j_k_leq76a,"v4_leq_J_76A")
## -999 bad good <NA>
## [1,] No. cases 463 11 1 1068 1543
## [2,] Percent 30 0.7 0.1 69.2 100
76B Impact (ordinal [0,1,2,3], v4_leq_J_76B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq76e_unfall,v4_con$v4_leq_i_j_k_leq76e,"v4_leq_J_76B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 461 8 2 3 1 1068 1543
## [2,] Percent 29.9 0.5 0.1 0.2 0.1 69.2 100
77. “Involved in a law suit”
77A Nature (dichotomous [“good”,“bad”], v4_leq_J_77A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq77a_rechtsstreit,v4_con$v4_leq_i_j_k_leq77a,"v4_leq_J_77A")
## -999 bad good <NA>
## [1,] No. cases 453 14 8 1068 1543
## [2,] Percent 29.4 0.9 0.5 69.2 100
77B Impact (ordinal [0,1,2,3], v4_leq_J_77B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq77e_rechtsstreit,v4_con$v4_leq_i_j_k_leq77e,"v4_leq_J_77B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 452 5 10 5 3 1068 1543
## [2,] Percent 29.3 0.3 0.6 0.3 0.2 69.2 100
78. “Involved in a minor violation of the law (traffic tickets, disturbing the peace, etc)”
78A Nature (dichotomous [“good”,“bad”], v4_leq_J_78A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq78a_owi,v4_con$v4_leq_i_j_k_leq78a,"v4_leq_J_78A")
## -999 bad good <NA>
## [1,] No. cases 456 17 2 1068 1543
## [2,] Percent 29.6 1.1 0.1 69.2 100
78B Impact (ordinal [0,1,2,3], v4_leq_J_78B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq78e_owi,v4_con$v4_leq_i_j_k_leq78e,"v4_leq_J_78B")
## -999 0 1 2 3 <NA>
## [1,] No. cases 455 6 7 6 1 1068 1543
## [2,] Percent 29.5 0.4 0.5 0.4 0.1 69.2 100
79. “Legal troubles resulting in your being arrested or held in jail”
79A Nature (dichotomous [“good”,“bad”], v4_leq_J_79A)
v4_leq_a_recode(v4_clin$v4_leq_i_j_k_leq79a_konf_gesetz,v4_con$v4_leq_i_j_k_leq79a,"v4_leq_J_79A")
## -999 bad <NA>
## [1,] No. cases 473 2 1068 1543
## [2,] Percent 30.7 0.1 69.2 100
79B Impact (ordinal [0,1,2,3], v4_leq_J_79B)
v4_leq_b_recode(v4_clin$v4_leq_i_j_k_leq79e_konf_gesetz,v4_con$v4_leq_i_j_k_leq79e,"v4_leq_J_79B")
## -999 0 <NA>
## [1,] No. cases 472 3 1068 1543
## [2,] Percent 30.6 0.2 69.2 100
Create dataset
v4_leq_J<-data.frame(v4_leq_J_74A,v4_leq_J_74B,v4_leq_J_75A,v4_leq_J_75B,v4_leq_J_76A,
v4_leq_J_76B,v4_leq_J_77A,v4_leq_J_77B,v4_leq_J_78A,v4_leq_J_78B,
v4_leq_J_79A,v4_leq_J_79B)
Create LEQ dataset
v4_leq<-data.frame(v4_leq_A,v4_leq_B,v4_leq_C,v4_leq_D,v4_leq_E,v4_leq_F,v4_leq_G,
v4_leq_H,v4_leq_I,v4_leq_J)
For explanation, please refer to the section in Visit 1
1. “How would you rate your quality of life?” (ordinal [1,2,3,4,5], v4_whoqol_itm1)
v4_quol_recode(v4_clin$v4_whoqol_bref_who1_lebensqualitaet,v4_con$v4_whoqol_bref_who1,"v4_whoqol_itm1",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 9 39 149 239 74 1033 1543
## [2,] Percent 0.6 2.5 9.7 15.5 4.8 66.9 100
2. “How satisfied are you with your health? (ordinal [1,2,3,4,5], v4_whoqol_itm2)”
v4_quol_recode(v4_clin$v4_whoqol_bref_who2_gesundheit,v4_con$v4_whoqol_bref_who2,"v4_whoqol_itm2",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 19 106 126 206 53 1033 1543
## [2,] Percent 1.2 6.9 8.2 13.4 3.4 66.9 100
3. “To what extent do you feel that physical pain prevents you from doing what you need to do?” (ordinal [1,2,3,4,5], v4_whoqol_itm3)
Coding reversed so that higher scores mean less impairment by pain.
v4_quol_recode(v4_clin$v4_whoqol_bref_who3_schmerzen,v4_con$v4_whoqol_bref_who3,"v4_whoqol_itm3",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 5 35 56 108 299 1040 1543
## [2,] Percent 0.3 2.3 3.6 7 19.4 67.4 100
4. “How much do you need any medical treatment to function in your daily life? (ordinal [1,2,3,4,5], v4_whoqol_itm4)”
Coding reversed so that higher scores mean less dependence on medical treatment.
v4_quol_recode(v4_clin$v4_whoqol_bref_who4_med_behand,v4_con$v4_whoqol_bref_who4,"v4_whoqol_itm4",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 58 113 83 118 128 1043 1543
## [2,] Percent 3.8 7.3 5.4 7.6 8.3 67.6 100
5. “How much do you enjoy life?” (ordinal [1,2,3,4,5], v4_whoqol_itm5)
v4_quol_recode(v4_clin$v4_whoqol_bref_who5_lebensgenuss,v4_con$v4_whoqol_bref_who5,"v4_whoqol_itm5",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 16 60 157 213 57 1040 1543
## [2,] Percent 1 3.9 10.2 13.8 3.7 67.4 100
6. “To what extent do ou feel your life to be meaningful?” (ordinal [1,2,3,4,5], v4_whoqol_itm6)
v4_quol_recode(v4_clin$v4_whoqol_bref_who6_lebenssinn,v4_con$v4_whoqol_bref_who6,"v4_whoqol_itm6",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 19 53 115 195 114 1047 1543
## [2,] Percent 1.2 3.4 7.5 12.6 7.4 67.9 100
7. “How well are you able to concentrate?” (ordinal [1,2,3,4,5], v4_whoqol_itm7)
v4_quol_recode(v4_clin$v4_whoqol_bref_who7_konzentration,v4_con$v4_whoqol_bref_who7,"v4_whoqol_itm7",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 79 187 194 35 1037 1543
## [2,] Percent 0.7 5.1 12.1 12.6 2.3 67.2 100
8. “How safe do you feel in your daily life?” (ordinal [1,2,3,4,5], v4_whoqol_itm8)
v4_quol_recode(v4_clin$v4_whoqol_bref_who8_sicherheit,v4_con$v4_whoqol_bref_who8,"v4_whoqol_itm8",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 12 35 143 238 77 1038 1543
## [2,] Percent 0.8 2.3 9.3 15.4 5 67.3 100
9. “How healthy is your physical environment?” (ordinal [1,2,3,4,5], v4_whoqol_itm9)
v4_quol_recode(v4_clin$v4_whoqol_bref_who9_umweltbed,v4_con$v4_whoqol_bref_who9,"v4_whoqol_itm9",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 7 17 101 265 116 1037 1543
## [2,] Percent 0.5 1.1 6.5 17.2 7.5 67.2 100
10. “Do you have enough energy for everyday life?” (ordinal [1,2,3,4,5], v4_whoqol_itm10)
v4_quol_recode(v4_clin$v4_whoqol_bref_who10_energie,v4_con$v4_whoqol_bref_who10,"v4_whoqol_itm10",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 15 41 144 205 101 1037 1543
## [2,] Percent 1 2.7 9.3 13.3 6.5 67.2 100
11. “Are you able to accept your bodily appearance?” (ordinal [1,2,3,4,5], v4_whoqol_itm11)
v4_quol_recode(v4_clin$v4_whoqol_bref_who11_aussehen,v4_con$v4_whoqol_bref_who11,"v4_whoqol_itm11",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 12 41 136 203 112 1039 1543
## [2,] Percent 0.8 2.7 8.8 13.2 7.3 67.3 100
12. “Have you enough money to meet your needs?” (ordinal [1,2,3,4,5], v4_whoqol_itm12)
v4_quol_recode(v4_clin$v4_whoqol_bref_who12_genug_geld,v4_con$v4_whoqol_bref_who12,"v4_whoqol_itm12",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 15 78 133 174 106 1037 1543
## [2,] Percent 1 5.1 8.6 11.3 6.9 67.2 100
13. “How available to you is the information that you need in your day-to-day life?” (ordinal [1,2,3,4,5], v4_whoqol_itm13)
v4_quol_recode(v4_clin$v4_whoqol_bref_who13_infozugang,v4_con$v4_whoqol_bref_who13,"v4_whoqol_itm13",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 4 12 66 206 216 1039 1543
## [2,] Percent 0.3 0.8 4.3 13.4 14 67.3 100
14. “To what extent do you have the opportunity for leisure activities?” (ordinal [1,2,3,4,5], v4_whoqol_itm14)
v4_quol_recode(v4_clin$v4_whoqol_bref_who14_freizeitaktiv,v4_con$v4_whoqol_bref_who14,"v4_whoqol_itm14",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 5 35 131 196 138 1038 1543
## [2,] Percent 0.3 2.3 8.5 12.7 8.9 67.3 100
15. “How well are you able to get around? (ordinal [1,2,3,4,5], v4_whoqol_itm15)”
v4_quol_recode(v4_clin$v4_whoqol_bref_who15_fortbewegung,v4_con$v4_whoqol_bref_who15,"v4_whoqol_itm15",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 3 28 92 200 182 1038 1543
## [2,] Percent 0.2 1.8 6 13 11.8 67.3 100
16. “How satisfied are you with your sleep?” (ordinal [1,2,3,4,5], v4_whoqol_itm16)
v4_quol_recode(v4_clin$v4_whoqol_bref_who16_schlaf,v4_con$v4_whoqol_bref_who16,"v4_whoqol_itm16",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 28 71 81 250 81 1032 1543
## [2,] Percent 1.8 4.6 5.2 16.2 5.2 66.9 100
17. “How satisfied are you with your ability to perform your daily living activities?” (ordinal [1,2,3,4,5], v4_whoqol_itm17)
v4_quol_recode(v4_clin$v4_whoqol_bref_who17_alltag,v4_con$v4_whoqol_bref_who17,"v4_whoqol_itm17",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 16 78 96 225 96 1032 1543
## [2,] Percent 1 5.1 6.2 14.6 6.2 66.9 100
18. “How satisfied are you with your capacity for work?” (ordinal [1,2,3,4,5], v4_whoqol_itm18)
v4_quol_recode(v4_clin$v4_whoqol_bref_who18_arbeitsfhgk,v4_con$v4_whoqol_bref_who18,"v4_whoqol_itm18",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 44 97 109 190 68 1035 1543
## [2,] Percent 2.9 6.3 7.1 12.3 4.4 67.1 100
19. “How satisfied are you with yourself?” (ordinal [1,2,3,4,5], v4_whoqol_itm19)
v4_quol_recode(v4_clin$v4_whoqol_bref_who19_selbstzufried,v4_con$v4_whoqol_bref_who19,"v4_whoqol_itm19",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 18 75 124 230 62 1034 1543
## [2,] Percent 1.2 4.9 8 14.9 4 67 100
20. “How satisfied are you with your personal relationships?” (ordinal [1,2,3,4,5], v4_whoqol_itm20)
v4_quol_recode(v4_clin$v4_whoqol_bref_who20_pers_bezieh,v4_con$v4_whoqol_bref_who20,"v4_whoqol_itm20",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 12 50 115 240 87 1039 1543
## [2,] Percent 0.8 3.2 7.5 15.6 5.6 67.3 100
21. “How satisfied are you with your sex life?” (ordinal [1,2,3,4,5], v4_whoqol_itm21)
v4_quol_recode(v4_clin$v4_whoqol_bref_who21_sexualleben,v4_con$v4_whoqol_bref_who21,"v4_whoqol_itm21",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 56 81 156 147 61 1042 1543
## [2,] Percent 3.6 5.2 10.1 9.5 4 67.5 100
22. “How satisfied are you with the support you get from your friends?” (ordinal [1,2,3,4,5], v4_whoqol_itm22)
v4_quol_recode(v4_clin$v4_whoqol_bref_who22_freunde,v4_con$v4_whoqol_bref_who22,"v4_whoqol_itm22",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 9 39 125 234 102 1034 1543
## [2,] Percent 0.6 2.5 8.1 15.2 6.6 67 100
23. “How satisfied are you with the conditions of your living place?” (ordinal [1,2,3,4,5], v4_whoqol_itm23)
v4_quol_recode(v4_clin$v4_whoqol_bref_who23_wohnbeding,v4_con$v4_whoqol_bref_who23,"v4_whoqol_itm23",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 43 79 229 147 1034 1543
## [2,] Percent 0.7 2.8 5.1 14.8 9.5 67 100
24. “How satisfied are you with your access to health services?” (ordinal [1,2,3,4,5], v4_whoqol_itm24)
v4_quol_recode(v4_clin$v4_whoqol_bref_who24_gesundhdiens,v4_con$v4_whoqol_bref_who24,"v4_whoqol_itm24",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 18 56 265 161 1032 1543
## [2,] Percent 0.7 1.2 3.6 17.2 10.4 66.9 100
25. “How satisfied are you with your mode of transportation?” (ordinal [1,2,3,4,5], v4_whoqol_itm25)
v4_quol_recode(v4_clin$v4_whoqol_bref_who25_transport,v4_con$v4_whoqol_bref_who25,"v4_whoqol_itm25",0)
## 1 2 3 4 5 NA's
## [1,] No. cases 11 24 54 257 164 1033 1543
## [2,] Percent 0.7 1.6 3.5 16.7 10.6 66.9 100
26. “How often do you have negative feelings, such as blue mood, despair, anxiety, depression?” (ordinal [1,2,3,4,5], v4_whoqol_itm26)
Coding reversed so that higher scores mean symptoms less often.
v4_quol_recode(v4_clin$v4_whoqol_bref_who26_neg_gefuehle,v4_con$v4_whoqol_bref_who26,"v4_whoqol_itm26",1)
## 1 2 3 4 5 NA's
## [1,] No. cases 16 81 117 211 83 1035 1543
## [2,] Percent 1 5.2 7.6 13.7 5.4 67.1 100
Here, domain scores for Physical Health, Psychological, Social relationships and Environment are calculated from the WHOQOL single items, according to the scoring instructions given in Angermeyer et al. (2000).
Global (continuous [4-20],v4_whoqol_dom_glob)
v4_whoqol_dom_glob_df<-data.frame(as.numeric(v4_whoqol_itm1),as.numeric(v4_whoqol_itm2))
v4_who_glob_no_nas<-rowSums(is.na(v4_whoqol_dom_glob_df))
v4_whoqol_dom_glob<-ifelse((v4_who_glob_no_nas==0) | (v4_who_glob_no_nas==1),
rowMeans(v4_whoqol_dom_glob_df,na.rm=T)*4,NA)
v4_whoqol_dom_glob<-round(v4_whoqol_dom_glob,2)
summary(v4_whoqol_dom_glob)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 12.00 14.00 13.95 16.00 20.00 1031
Physical Health (continuous [4-20],v4_whoqol_dom_phys)
v4_whoqol_dom_phys_df<-data.frame(as.numeric(v4_whoqol_itm3),as.numeric(v4_whoqol_itm10),as.numeric(v4_whoqol_itm16),as.numeric(v4_whoqol_itm15),as.numeric(v4_whoqol_itm17),as.numeric(v4_whoqol_itm4),as.numeric(v4_whoqol_itm18))
v4_who_phys_no_nas<-rowSums(is.na(v4_whoqol_dom_phys_df))
v4_whoqol_dom_phys<-ifelse((v4_who_phys_no_nas==0) | (v4_who_phys_no_nas==1),
rowMeans(v4_whoqol_dom_phys_df,na.rm=T)*4,NA)
v4_whoqol_dom_phys<-round(v4_whoqol_dom_phys,2)
summary(v4_whoqol_dom_phys)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 5.71 12.60 14.86 14.72 16.57 20.00 1037
Psychological (continuous [4-20],v4_whoqol_dom_psy)
v4_whoqol_dom_psy_df<-data.frame(as.numeric(v4_whoqol_itm5),as.numeric(v4_whoqol_itm7),as.numeric(v4_whoqol_itm19),as.numeric(v4_whoqol_itm11),as.numeric(v4_whoqol_itm26),as.numeric(v4_whoqol_itm6))
v4_who_psy_no_nas<-rowSums(is.na(v4_whoqol_dom_psy_df))
v4_whoqol_dom_psy<-ifelse((v4_who_psy_no_nas==0) | (v4_who_psy_no_nas==1),
rowMeans(v4_whoqol_dom_psy_df,na.rm=T)*4,NA)
v4_whoqol_dom_psy<-round(v4_whoqol_dom_psy,2)
summary(v4_whoqol_dom_psy)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 12.00 14.67 14.10 16.00 20.00 1039
Social relationships (continuous [4-20],v4_whoqol_dom_soc)
v4_whoqol_dom_soc_df<-data.frame(as.numeric(v4_whoqol_itm20),as.numeric(v4_whoqol_itm22),as.numeric(v4_whoqol_itm21))
v4_who_soc_no_nas<-rowSums(is.na(v4_whoqol_dom_soc_df))
v4_whoqol_dom_soc<-ifelse((v4_who_soc_no_nas==0) | (v4_who_soc_no_nas==1),
rowMeans(v4_whoqol_dom_soc_df,na.rm=T)*4,NA)
v4_whoqol_dom_soc<-round(v4_whoqol_dom_soc,2)
summary(v4_whoqol_dom_soc)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 4.00 12.00 14.67 14.10 16.00 20.00 1035
Environment (continuous [4-20],v4_whoqol_dom_env)
v4_whoqol_dom_env_df<-data.frame(as.numeric(v4_whoqol_itm8),as.numeric(v4_whoqol_itm23),as.numeric(v4_whoqol_itm12),as.numeric(v4_whoqol_itm24),as.numeric(v4_whoqol_itm13),as.numeric(v4_whoqol_itm14),as.numeric(v4_whoqol_itm9),as.numeric(v4_whoqol_itm25))
v4_who_env_no_nas<-rowSums(is.na(v4_whoqol_dom_env_df))
v4_whoqol_dom_env<-ifelse((v4_who_env_no_nas==0) | (v4_who_env_no_nas==1),
rowMeans(v4_whoqol_dom_env_df,na.rm=T)*4,NA)
v4_whoqol_dom_env<-round(v4_whoqol_dom_env,2)
summary(v4_whoqol_dom_env)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.00 14.00 15.50 15.61 17.50 20.00 1038
Create dataset
v4_whoqol<-data.frame(v4_whoqol_itm1,v4_whoqol_itm2,v4_whoqol_itm3,v4_whoqol_itm4,
v4_whoqol_itm5,v4_whoqol_itm6,v4_whoqol_itm7,v4_whoqol_itm8,
v4_whoqol_itm9,v4_whoqol_itm10,v4_whoqol_itm11,v4_whoqol_itm12,
v4_whoqol_itm13,v4_whoqol_itm14,v4_whoqol_itm15,v4_whoqol_itm16,
v4_whoqol_itm17,v4_whoqol_itm18,v4_whoqol_itm19,v4_whoqol_itm20,
v4_whoqol_itm21,v4_whoqol_itm22,v4_whoqol_itm23,v4_whoqol_itm24,
v4_whoqol_itm25,v4_whoqol_itm26,v4_whoqol_dom_glob,
v4_whoqol_dom_phys,v4_whoqol_dom_psy,v4_whoqol_dom_soc,
v4_whoqol_dom_env)
v4_df<-data.frame(v4_id,
v4_rec,
v4_clin_ill_ep,
v4_con_problems,
v4_dem,
v4_opcrit,
v4_leprcp,
v4_suic,
v4_med,
v4_subst,
v4_symp_panss,
v4_symp_ids_c,
v4_symp_ymrs,
v4_ill_sev,
v4_nrpsy,
v4_sf12,
v4_rlgn,
v4_med_adh,
v4_bdi2,
v4_asrm,
v4_mss,
v4_leq,
v4_whoqol)
ctmp1<-merge(x=v1_df, y=v2_df, by.x="v1_id", by.y="v2_id", all.x=T)
ctmp2<-merge(x=ctmp1, y=v3_df, by.x="v1_id", by.y="v3_id", all.x=T)
phen<-merge(x=ctmp2, y=v4_df, by.x="v1_id", by.y="v4_id",all.x=T)
To simplify the process of data analysis and subject selection, we here provide the IDs of individuals that have been included in various biological analyses (e.g. all sample that were whole-genome genotyped have an ID in the column “gwas_id”).
1436 individuals contained in this dataset have been genotyped on the Illumina PsychChip (https://www.illumina.com/products/by-type/microarray-kits/infinium-psycharray.html).
IMPORTANT:
1. Some individuals will be removed during QC of genotype data. Therefore, discrepancies with the number of individuals in the genotype dataset may exist. 2. Related individuals remain in the latest genotype dataset. Exclude by yourself if neccessary.
## [1] 1457
#make a dataframe for all analysis ids
ids<-data.frame(v1_id)
ids<-merge(x=ids,y=gwas_id,all.x=T, by.x="v1_id",by.y="id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$gwas_id)==F))
## [1] 1436
The smallRNAomes of a total of 1361 individuals contained in this dataset were sequenced from biomaterial collected AT THE FIRST VISIT. The variable gives the names of the corresponding .fastq files. The dummy variables “v2_smRNAome_id”, v3_smRNAome_id" and “v4_epic_id” are also created below to enable to include data properly in the long format dataset.
## [1] 1361 2
#merge to dataframe ids
ids<-merge(x=ids,y=v1_smRNAome_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v2_smRNAome_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v3_smRNAome_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v4_smRNAome_id,all.x=T, by="v1_id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$v1_smRNAome_id)==F))
## [1] 1323
In this analysis, 96 biploar individuals were analyzed at wo measurement points (visit 1 and visit 3) using the Illumina EPIC array. The dummy variables “v2_epic_id” and “v4_epic_id” are also created below to enable to include data properly in the long dataset.
## [1] 96 2
#merge to dataframe ids
ids<-merge(x=ids,y=v1_epic_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v2_epic_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v3_epic_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v4_epic_id,all.x=T, by="v1_id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$v1_epic_id)==F))
## [1] 96
length(subset(ids$v1_id,is.na(ids$v3_epic_id)==F))
## [1] 96
In this analysis, the RB1CC1 gene was sequenced in 63 clinical participants.
#merge to dataframe ids
ids<-merge(x=ids,y=rb1cc1_id,all.x=T, by="v1_id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$rb1cc1_id)==F))
## [1] 63
In this analysis, the mRNA transcriptomes of 543 individuals contained in this dataset (539 from visit 1, 4 from visit 3) were sequenced. The dummy variables “v2_lexo_id” and “v4_lexo_id” are also created below to enable to include data properly in the long dataset.
#merge to dataframe ids
ids<-merge(x=ids,y=v1_lexo_seq_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v2_lexo_seq_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v3_lexo_seq_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v4_lexo_seq_id,all.x=T, by="v1_id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$v1_lexo_id)==F))
## [1] 539
length(subset(ids$v1_id,is.na(ids$v3_lexo_id)==F))
## [1] 4
In a pilot study, a plasma proteome profiling pipeline was applied to 220 PsyCourse participants. Of these, 74 were from visit 1, 37 from visit 2, 72 from visit 3, 36 from visit 4, and one from an extra study visit between regular visits. This last individual was excluded. We do not have analysis IDs from these individuals, if they are contained in the analysis, the respective field contains a “Y”.
##
## 1 2 3 4 ZV
## 74 37 72 36 1
#merge to dataframe ids
ids<-merge(x=ids,y=v1_prot_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v2_prot_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v3_prot_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v4_prot_id,all.x=T, by="v1_id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$v1_prot_id)==F))
## [1] 74
length(subset(ids$v1_id,is.na(ids$v2_prot_id)==F))
## [1] 37
length(subset(ids$v1_id,is.na(ids$v3_prot_id)==F))
## [1] 72
length(subset(ids$v1_id,is.na(ids$v4_prot_id)==F))
## [1] 36
In a total of 222 PsyCourse individuals (212 from visit 1, 9 from visit 2, and 1 from visit 3), a selected panel of ~100 serum proteins was determined using a set of 155 antibodies in a high-throughput antibody-based assay. This suspension bead array technology enabled a multiplexed protein profiling of these proteins.
#merge to dataframe ids
ids<-merge(x=ids,y=v1_ab_prof_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v2_ab_prof_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v3_ab_prof_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v4_ab_prof_id,all.x=T, by="v1_id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$v1_ab_prof_id)==F))
## [1] 212
length(subset(ids$v1_id,is.na(ids$v2_ab_prof_id)==F))
## [1] 9
length(subset(ids$v1_id,is.na(ids$v3_ab_prof_id)==F))
## [1] 1
length(subset(ids$v1_id,is.na(ids$v4_ab_prof_id)==F))
## [1] 0
Plasma lipid profiles were measured for a total of 1040 PsyCourse individuals, 545 from visit 1, 351 from visit 2, 91 from visit 3, 52 from visit 4, and one from an extra study visit between regular visits. This last individual was excluded. We do not have analysis IDs from these individuals, if they are contained in the analysis, the respective field contains a “Y”. )
#merge to dataframe ids
ids<-merge(x=ids,y=v1_lip_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v2_lip_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v3_lip_id,all.x=T, by="v1_id")
ids<-merge(x=ids,y=v4_lip_id,all.x=T, by="v1_id")
#how many people in the dataset were analyzed?
length(subset(ids$v1_id,is.na(ids$v1_lip_id)==F))
## [1] 545
length(subset(ids$v1_id,is.na(ids$v2_lip_id)==F))
## [1] 351
length(subset(ids$v1_id,is.na(ids$v3_lip_id)==F))
## [1] 91
length(subset(ids$v1_id,is.na(ids$v4_lip_id)==F))
## [1] 52
save(psycrs3.1_wd, file="191018_v3.1_psycourse_wd.RData")
Write wide format .csv file
write.table(psycrs3.1_wd,file="191018_v3.1_psycourse_wd.csv", quote=F, row.names=F, col.names=T, sep="\t")
To create a long dataset, it has to be determimed which variables are assessd at one, two, three and four visits in the PsyCourse 3.1 dataset. Subsequently, one has to integrate variables that were measured at two or three measurement points with those assessed at four time points.*
For variables that were repeatedy measured at three points in time, dummy first measurement point variables were created, all coded -999, so that these can be treated as repeated measures.
Only four variables were measured at two times, and these are items on religion. These items do not assess change, but were only added at a later measurement point so that people who did not have the chance to complete it at the first measurement point could also be assessed (the questionnaire was introduced some time after the study had started). Below, these variables are collapsed into cross-sectional variables.
Get a list of variables measured one, two, three, or four times. These are identified by counting the variables that are similarly named after the “_" character.
#get variables names measured one time
crs<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==1))
length(crs)
## [1] 217
#get variables names measured two times
lng2<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==2))
length(lng2)
## [1] 4
#get variables names measured three times
lng3<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==3))
length(lng3)
## [1] 147
#get variables names measured four times
lng4<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==4))
length(lng4)
## [1] 409
#Check whether the sum of these variable is equal to the total number of variables in the wide dataset
length(c(crs,lng2,lng2,lng3,lng3,lng3,lng4,lng4,lng4,lng4))==dim(psycrs3.1_wd)[2]
## [1] TRUE
After inspectionThese variables and saw that variables that were asked on follow-up but not the first visit: For each variable name, create a “v1_” variable filled with -999.
#Modify items in lng3 so that each vector element has a "v1_" added in front of it
lng3_new_v1_varnames<-paste("v1",lng3, sep="_")
#Add new variables to psycrs3.1_wd and fill them with -999
psycrs3.1_wd[lng3_new_v1_varnames] <- -999
I had a look and these four variables are the religion variables, the questionnaire of which is asked at visit 1 but also at visit 4.
psycrs3.1_wd$v1_rel_act<-ifelse(is.na(psycrs3.1_wd$v1_rel_act) &
is.na(psycrs3.1_wd$v4_rel_act)==F &
psycrs3.1_wd$v4_rel_act!=-999,psycrs3.1_wd$v4_rel_act,psycrs3.1_wd$v1_rel_act)
psycrs3.1_wd$v1_rel_chr<-ifelse(is.na(psycrs3.1_wd$v1_rel_chr) &
is.na(psycrs3.1_wd$v4_rel_chr)==F &
psycrs3.1_wd$v4_rel_chr!=-999,psycrs3.1_wd$v4_rel_chr,psycrs3.1_wd$v1_rel_chr)
psycrs3.1_wd$v1_rel_isl<-as.factor(ifelse(is.na(psycrs3.1_wd$v1_rel_isl) &
is.na(psycrs3.1_wd$v4_rel_isl)==F &
psycrs3.1_wd$v4_rel_isl!=-999,as.character(psycrs3.1_wd$v4_rel_isl),as.character(psycrs3.1_wd$v1_rel_isl)))
psycrs3.1_wd$v1_rel_oth<-as.factor(ifelse(is.na(psycrs3.1_wd$v1_rel_oth) & is.na(psycrs3.1_wd$v4_rel_oth)==F &
psycrs3.1_wd$v4_rel_oth!=-999,as.character(psycrs3.1_wd$v4_rel_oth),as.character(psycrs3.1_wd$v1_rel_oth)))
psycrs3.1_wd$v4_rel_act<-NULL
psycrs3.1_wd$v4_rel_chr<-NULL
psycrs3.1_wd$v4_rel_isl<-NULL
psycrs3.1_wd$v4_rel_oth<-NULL
#get variables names measured four times
lng4_cor<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==4))
length(lng4_cor)
## [1] 556
#get variables names measured three times
lng3_cor<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==3))
length(lng3_cor)
## [1] 0
#get variables names measured two times
lng2_cor<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==2))
length(lng2_cor)
## [1] 0
#get variables names measured one time
crs_cor<-names(subset(table(substring(names(psycrs3.1_wd),4)),table(substring(names(psycrs3.1_wd),4))==1))
length(crs_cor)
## [1] 221
#Check whether the sum of these variable is equal to the total number of variables in the wide dataset
length(c(crs_cor,lng2_cor,lng2_cor,lng3_cor,lng3_cor,lng3_cor,lng4_cor,lng4_cor,lng4_cor,lng4_cor))==dim(psycrs3.1_wd)[2]
## [1] TRUE
lng4_cor_v1<-paste("v1",lng4_cor,sep="_")
lng4_cor_v2<-paste("v2",lng4_cor,sep="_")
lng4_cor_v3<-paste("v3",lng4_cor,sep="_")
lng4_cor_v4<-paste("v4",lng4_cor,sep="_")
names_lng<-c(lng4_cor_v1,lng4_cor_v2,lng4_cor_v3,lng4_cor_v4)
long<-subset(psycrs3.1_wd,select=names_lng)
#change names of longitudinally measured variables, so that visit info comes at the end
names(long)<-paste(substring(names(long),4),substr(names(long),2,2),sep=".")
#sort dataframe
long<-long[,sort(names(long))]
dim(long)
## [1] 1543 2224
#create a dataframe with cross-sectionally measured variables
cross<-subset(psycrs3.1_wd,select=!(names(psycrs3.1_wd)%in%names_lng))
dim(cross)
## [1] 1543 221
psycrs3.1_wd2<-cbind(cross,long)
dim(psycrs3.1_wd2)
## [1] 1543 2445
IMPORTANT: column number 222, “visit” contains the time information
psycrs3.1_ln<-reshape(data=psycrs3.1_wd2,
direction="long",
varying=names(long),
timevar="visit",
sep=".")
dim(psycrs3.1_ln)
## [1] 6172 779
#Remove the last column that contains only consective numbers for each time point, and can safely be removed
psycrs3.1_ln<-psycrs3.1_ln[,-779]
#Is the number of rows four times that of the long dataframe?
dim(psycrs3.1_ln)[1]==dim(psycrs3.1_wd2)[1]*4
## [1] TRUE
save(psycrs3.1_ln, file="191018_v3.1_psycourse_ln.RData")
Write long format .csv file
write.table(psycrs3.1_ln,file="191018_v3.1_psycourse_ln.csv", quote=F, row.names=F, col.names=T, sep="\t")
Altman, E. G., Hedeker, D., Peterson, J. L., & Davis, J. M. (1997). The Altman Self-Rating Mania Scale. Biol Psychiatry, 42(10), 948–955. http://doi.org/10.1016/S0006-3223(96)00548-3
Angermeyer, M. C., Kilian, R., & Matschinger, H. (2000). WHOQOL-100 und WHOQUOL-BREF. Handbuch für die deutschsprachigen versionen der WHO Instrumente zur Erfassung von Lebensqualität. Göttingen: Hogrefe.
Bernstein, D. P., Fink, L., Handelsman, L., Foote, J., Lovejoy, M., Wenzel, K., … Ruggiero, J. (1994). Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am J Psychiatry, 151(8), 1132–1136. http://doi.org/10.1176/ajp.151.8.1132
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Zule, W. (2003). Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abuse Negl, 27(2), 169–190.
Busner, J., & Targum, S. D. (2007). The clinical global impressions scale: Applying a research tool in clinical practice. Psychiatry (Edgmont), 4(7), 28–37.
Endicott, J., Spitzer, R. L., Fleiss, J. L., & Cohen, J. (1976). The global assessment scale. a procedure for measuring overall severity of psychiatric disturbance. Arch Gen Psychiatry, 33(6), 766–771.
Glaesmer, H., Schulz, A., Häuser, W., Freyberger, H. J., Brähler, E., & Grabe, H.-J. (2013). The childhood trauma screener (cts) - development and validation of cut-off-scores for classificatory diagnostics. Psychiatr Prax, 40(4), 220–226. http://doi.org/10.1055/s-0033-1343116
Grabe, H. J., Schulz, A., Schmidt, C. O., Appel, K., Driessen, M., Wingenfeld, K., … Freyberger, H. J. (2012). A brief instrument for the assessment of childhood abuse and neglect: The childhood trauma screener (cts). Psychiatr Prax, 39(3), 109–115. http://doi.org/10.1055/s-0031-1298984
Grof, P., Duffy, A., Cavazzoni, P., Grof, E., Garnham, J., MacDougall, M., … Alda, M. (2002). Is response to prophylactic lithium a familial trait? J Clin Psychiatry, 63(10), 942–947.
Hautzinger, M., Keller, F., & Kühner, C. (2006). Beck Depressions-Inventar (BDI-II). Harcourt Test Services Frankfurt.
Helmstaedter, C., Lendt, M., & Lux, S. (2001). Verbaler Lern- und Merkfähigkeitstest. Göttingen: Hogrefe.
Hou, L., Heilbronner, U., Degenhardt, F., Adli, M., Akiyama, K., Akula, N., … Schulze, T. G. (2016). Genetic variants associated with response to lithium treatment in bipolar disorder: A genome-wide association study. Lancet, 387(10023), 1085–1093. http://doi.org/10.1016/S0140-6736(16)00143-4
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (panss) for schizophrenia. Schizophr Bull, 13(2), 261–276.
Luborsky, L. (1962). Clinician’s judgments of mental health. Arch Gen Psychiatry, 7, 407–417.
McGuffin, P., Farmer, A., & Harvey, I. (1991). A polydiagnostic application of operational criteria in studies of psychotic illness. development and reliability of the opcrit system. Arch Gen Psychiatry, 48(8), 764–770.
Norbeck, J. S. (1984). Modification of life event questionnaires for use with female respondents. Res Nurs Health, 7(1), 61–71.
Peters, E., Joseph, S., Day, S., & Garety, P. (2004). Measuring delusional ideation: The 21-item peters et al. delusions inventory (pdi). Schizophrenia Bulletin, 30(4), 1005–1022. http://doi.org/10.1093/oxfordjournals.schbul.a007116
Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: A 10-item short version of the big five inventory in english and german. J Res Pers, 41(1), 203–212.
Rammstedt, B., Kemper, C. J., Klein, M. C., Beierlein, C., & Kovaleva, A. (2012). Eine kurze Skala zur Messung der fünf Dimensionen der Persönlichkeit : Big-Five-Inventory-10 (BFI-10), 2012/23, 32. Retrieved from http://nbn-resolving.de/urn:nbn:de:0168-ssoar-312133
Sarason, I. G., Johnson, J. H., & Siegel, J. M. (1978). Assessing the impact of life changes: Development of the life experiences survey. J Consult Clin Psychol, 46(5), 932–946.
Shugar, G., Schertzer, S., Toner, B. B., & Di Gasbarro, I. (1992). Development, use, and factor analysis of a self-report inventory for mania. Compr Psychiatry, 33(5), 325–331.
Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. Oxford University Press, USA.
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity. Br J Psychiatry, 133, 429–435.
The ALDA scala should only be assessed in clinical participants with a diagnosis of bipolar disorder↩
Self-reported weight is assessed at each study visit↩
Data not included in the present dataset, but were used to exclude control participants↩
Included during the course of the study, also included in Visit 4 to get information from people that did not fill out this cross-sectional questionnaire in Visit 1↩